
remote sensing  

Article

Generation of High Resolution Vegetation
Productivity from a Downscaling Method

Tao Yu 1,2, Rui Sun 1,2,* , Zhiqiang Xiao 1,2, Qiang Zhang 1,2,3, Juanmin Wang 1,2 and
Gang Liu 1,2

1 State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Beijing Normal University and
Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences, Beijing 100875, China;
yutaogis@mail.bnu.edu.cn (T.Y.); zhqxiao@bnu.edu.cn (Z.X.); zhangqiang1228@mail.bnu.edu.cn (Q.Z.);
201631170025@mail.bnu.edu.cn (J.W.); gang4.liu@changhong.com (G.L.)

2 Beijing Engineering Research Center for Global Land Remote Sensing Products, Institute of Remote Sensing
Science and Engineering, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China

3 Department of Publication, National Nature Science Foundation of China, Beijing 100085, China
* Correspondence: sunrui@bnu.edu.cn; Tel.: +86-10-5880-5457

Received: 7 September 2018; Accepted: 3 November 2018; Published: 6 November 2018
����������
�������

Abstract: Accurately estimating vegetation productivity is important in the research of terrestrial
ecosystems, carbon cycles and climate change. Although several gross primary production (GPP)
and net primary production (NPP) products have been generated and many algorithms developed,
advances are still needed to exploit multi-scale data streams for producing GPP and NPP with
higher spatial and temporal resolution. In this paper, a method to generate high spatial resolution
(30 m) GPP and NPP products was developed based on multi-scale remote sensing data and a
downscaling method. First, high resolution fraction photosynthetically active radiation (FPAR) and
leaf area index (LAI) were obtained by using a regression tree approach and the spatial and temporal
adaptive reflectance fusion model (STARFM). Second, the GPP and NPP were estimated from a
multi-source data synergized quantitative algorithm. Finally, the vegetation productivity estimates
were validated with the ground-based field data, and were compared with MODerate Resolution
Imaging Spectroradiometer (MODIS) and estimated Global LAnd Surface Satellite (GLASS) products.
Results of this paper indicated that downscaling methods have great potential in generating high
resolution GPP and NPP.
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1. Introduction

As vegetation productivity is one of the most variable components of the terrestrial carbon cycle,
accurately estimating this component is important in research on terrestrial ecosystems, carbon cycles
and climate change. The technology of remote sensing is developing rapidly, but it is still difficult
to precise monitor dynamic changes in vegetation productivity in both high spatial and temporal
resolution simultaneously. The 16-day revisit cycle and cloud contamination of Landsat images
have long limited their use in studying regional and global biophysical processes, which evolve
rapidly during the growing season [1]. In contrast, the coarse resolution of sensors, such as
Moderate Resolution Imaging Spectroradiometer (MODIS), have a short revisit period, but the lower
spatial resolution images introduce some difficulty in fine scale environmental applications [1,2].
Although several vegetation gross primary production (GPP) and net primary production (NPP)
products from MODIS and Landsat have been generated, and some GPP and NPP algorithms have
been developed, the contradiction between spatial and temporal resolution of GPP and NPP products
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from single sensor limits their application in vegetation dynamics research and ecosystem services [2].
In this condition, advances and new methods are needed to exploit multi-scale data streams for
producing time series high accuracy GPP and NPP in both a higher spatial and temporal resolution,
which is also of great significance in studying vegetation productivity dynamics and carbon budgets.

To produce high accuracy GPP and NPP datasets in both high spatial and temporal resolution,
high quality input data with high resolution are needed. MODIS GPP and NPP products (MOD 17)
were generated from a Light Use Efficiency (LUE) model from high quality MODIS leaf area index (LAI)
and Fraction of Photosynthetically Active Radiation (FPAR) products (R2 = 0.6705 and RMSE = 1.1173
for the LAI product, R2 = 0.8048 and RMSE = 0.1276 for the FPAR product against the Earth Observing
System sites) [3,4]. The estimated Global LAnd Surface Satellite (GLASS) GPP and NPP products [5]
were derived from high quality GLASS LAI and FPAR products (RMSE = 0.7848 and R2 = 0.8095 for
the LAI product, and RMSE = 0.1276 and R2 = 0.8048 for the FPAR product against the Validation
of Land European Remote sensing Instrument) [6,7]. But the contradiction between spatial and
temporal resolution still exists in the inputs data for estimating high resolution GPP and NPP.
Downscaling methods are good ways for blending the multi-scale remote sensing data and create
predictions at a finer resolution than the inputs [8], therefore, have great potential in generating high
resolution input data for vegetation productivity estimation. Traditional downscaling methods include
image fusion methods, such as intensity-hue-saturation (IHS) [9], principal component substitution
(PCS) [10], wavelet decomposition [11] and wavelet transforms [12] that focus on producing new
multispectral images that combine high-resolution panchromatic data with low resolution multispectral
observations [13]. Regression approaches focus on downscaling images using relations between fine
resolution data and coarse resolution images in other wavebands [14,15]. Machine learning techniques,
such as support vector machine (SVM) [16,17] and artificial neural network (ANN) [18,19] are also
used for downscaling in remote sensing.

The spatial and temporal adaptive reflectance fusion model (STARFM) [1] was initially developed
for blending Landsat and MODIS surface reflectance, and has demonstrated utility in generating
maps of surface reflectance that preserve the high spatial resolution of Landsat and the high frequency
of MODIS. STARFM used spatial information from fine resolution Landsat imagery and temporal
information from coarse resolution MODIS imagery to produce surface reflectance in both spatial
and temporal resolution, which was particularly useful in detecting gradual changes over large land
areas [2]. Some improvements of STRAFM, such as the spatial temporal adaptive algorithm for
mapping reflectance change (STAARCH) [20], enhanced spatial and temporal adaptive reflectance
fusion model (ESTARFM) [21], and unmixing-based STARFM (USTARFM) [22], have been developed
to reduce the limits of STRAFM in predicting disturbances when the changes are transient and
not recorded in the base Landsat images, in reducing the dependence on temporal information
from homogeneous patches of land cover at the MODIS pixel scale, and in handling the directional
dependence of reflectance as a function of the sun-target-sensor geometry described by the Bidirectional
Reflectance Distribution Function (BRDF). Studies have shown that STARFM is extendable to other
biophysical properties [13], such as evapotranspiration (ET) [23], land surface temperature (LST) [24]
and LAI [25], so long as the multi-scale input data streams are comparable and spatially and temporally
consistent. Therefore, the application of STARFM may be available in generating time series high
resolution GPP and NPP. Some studies on the application of STARFM in generating high resolution GPP
and NPP have been performed. For example, high resolution chlorophyll index (CI), which involved
NIR and green spectral bands, was generated by STARFM and then was used to retrieve GPP [26].
Time series Normalized Difference Vegetation Index (NDVI) was generated by STARFM, and then was
assimilated into LUE models to estimate GPP [27,28] and NPP [29,30]. But the relationship between
MODIS and Landsat vegetation index varied due to different cloud contamination, aerosols and
viewing angles, which could introduce some uncertainties into GPP/NPP estimation. In this condition,
developing a robust GPP and NPP downscaling method with high accuracy is of great significance.
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The aims of this paper are (i) to generate high resolution fraction photosynthetically active
radiation (FPAR) and LAI from a downscaling method based on STRAFM, (ii) to obtain high resolution
GPP and NPP estimates by using a light use efficiency model and to validate the estimates. Results of
this study indicated that downscaling methods are applicable in generating time series high resolution
GPP and NPP.

2. Materials and Methods

2.1. Study Area

A case study was conducted in the areas near the middle of the Heihe River watershed in an arid
and semi-arid area in North-western China (38◦10′N~39◦35′N and 99◦57′E~101◦46′E), and the location
of the study area and land-use types are shown in Figure 1. Land-use types in the study area mainly
include croplands, bare land, wetland, forest and grass. Crop lands are mainly distributed throughout
the oasis of Zhangye in western areas, and the Gobi Desert constitutes the dominant land use types in
the north-eastern areas. The topography of this area varies significantly from northeast to southwest,
and can be divided into plains and mountains with elevations ranges from 1200 m to 5000 m. Bare lands
are mainly located in the north-east, while the mountains are mainly distributed in the southwestern
areas. This area has a temperate continental climate, with an average annual air temperature of
about 6 ◦C~8 ◦C, an average annual precipitation about 100 mm~250 mm and an average annual pan
evaporation about 1200 mm~1800 mm. Influenced by Asian monsoon, most rainfall occurs from May
to September in the rainy season, and decreases from south to north. Maize is the main crop of the
agricultural land in the oasis, and they are irrigated about once a month by canal irrigation.
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Figure 1. Location of study area. A 30 km × 30 km experimental region was set up in the study area.

2.2. Data and Data Processing

2.2.1. Remote Sensing Data

MODIS LAI/FPAR products. The MODIS LAI/FPAR products (MOD15 C55) [31] with a spatial
resolution of 1 km were provided on an 8-day basis. The LAI/FPAR retrieve algorithm consisted of a
main procedure that exploits the spectral information content of MODIS surface reflectance at up to
seven spectral bands and a backup algorithm that uses empirical relationships between Normalized
Difference Vegetation Index (NDVI) and canopy LAI and FPAR [32]. The main algorithm employed a
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biome-dependent look-up table approach based on simulations with a stochastic radiative transfer
model that considered three-dimensional canopy structure [32]. The back-up algorithm was triggered
to estimate the LAI and FPAR using vegetation indices when this main algorithm failed. The validation
methods include comparisons with in situ data, comparisons with data from airborne and other space
borne sensors, analysis of trends in products [32]. In this study, MODIS LAI/FPAR products from June
to September 2012 in the study area were used to generate high resolution LAI and FPAR from the
downscaling method.

GLASS LAI/FPAR products. GLASS LAI/FPAR products from June to September 2012 in study area
were also used to generate high resolution LAI and FPAR from the downscaling method. The GLASS
LAI/FPAR products were generated and released by the Center for Global Change Data Processing
and Analysis of Beijing Normal University [33], and are also available from the Global Land Cover
Facility [34]. The temporal resolution of the products is 8 days and spatial resolution is 1 km.
The GLASS LAI product was generated from time-series MODIS and AVHRR reflectance data using
general regression neural networks, and was believed to be more temporally continuous and spatially
complete than the MODIS LAI product [35]. Furthermore, the GLASS FPAR product was generated
from the GLASS LAI product, thus, showed the same properties as the GLASS LAI product.

Landsat data. Landsat-7 Enhanced Thematic Mapper Plus (ETM+) images [36] in 10 July 2012 were
used to derive high resolution LAI and FPAR from a regression tree approach in this study. The data
were first destriped, and then surface reflectance was obtained after radiometric correction and
atmospheric correction. Then a regression tree [37] was then established between a reference dataset
(MODIS LAI and FPAR/GLASS LAI and FPAR) and pixel-aggregated Landsat surface reflectance,
and then applied to Landsat imagery to estimate LAI and FPAR at 30 m resolution.

Landcover data. GlobeLand30 landcover map, which was comprised of ten landcover types,
including forests, artificial surfaces and wetlands, was used in this paper [38,39]. This map was
extracted from more than 20,000 Landsat and Chinese HJ-1 satellite images. The spatial resolution of
the landcover map was 30 m.

2.2.2. Meteorological Data

Meteorological data, including the daily maximum temperature, the daily minimum temperature
and the daily mean temperature, were firstly collected from meteorological stations in the study area,
and were interpolated to 30 m by using the method of Kriging interpolation. Then eight day mean
temperature was obtained by averaging the daily values. Daily solar shortwave radiation with a
resolution of 30 m was obtained through a Mountain Microclimate Simulation Model (MT-CLIM) [40],
and then eight day mean solar shortwave radiation were obtained by averaging the daily values.

2.2.3. Field Data

Ground-based field carbon flux data used in this study were derived from the MUlti-Scale
Observation EXperiment on Evapotranspiration over heterogeneous land surfaces 2012 of the Heihe
Watershed Allied Telemetry Experiment Research (HiWATER-MUSOEXE) [41–43]. A 30 km × 30 km
experimental region was set up according to landscape situations, agricultural structures and irrigation
status in the study area, in which distributed 21 field observation sites. A core experimental area
consists of 17 field observation sites distributed in a 5.5 km × 5.5 km region. All the observation
sites were distributed in the middle of the study area, as shown in Figure 2 [44]. Land use types of
the 21 field observation sites, including croplands (mainly maize), orchard, vegetable field, desert,
desert steppe, Gobi and wetland. The eddy covariance systems and meteorological tower were set
in each observation site. Half-hourly data of carbon flux were obtained from the eddy covariance
systems, and meteorological variables were obtained from the meteorological tower. Gap-filling
and flux-partitioning were processed using the Edire software package. Then daily carbon flux was
obtained by averaging the half-hourly data. Daily ground-based GPP were obtained by partitioning the
observed net flux into GPP and ecosystem respiration according to Coops et al. [45], Wang et al. [46],
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and Zhang et al. [47] from 9 June to 16 September 2012 from the 21 field observation sites; then,
eight days mean GPP were calculated by averaging the daily GPP. The ground based eight days GPP
from 21 observation sites were used to direct validate the GPP estimates in our study.
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2.3. Methods

To generate time series high resolution GPP/NPP, a LUE model based on the downscaling method
was adopted in this paper, as shown in Figure 3. First, high resolution (30 m) FPAR and LAI were
obtained by using the downscaling method, and high resolution (30 m) temperature and water stress
were obtained through interpolation. Second, time series high resolution GPP and NPP were estimated
from a LUE GPP/NPP model. To assess the performance of the method, the GPP and NPP estimates
were validated with the ground-based field data, and were compared with the MODIS and GLASS
vegetation productivity products.

2.3.1. Downscaling of FPAR and LAI

The Spatio-Temporal Enhancement Method for medium resolution LAI (STEM-LAI) [25] was
adopted to downscale 1 km MODIS LAI/GLASS LAI to 30 m LAI. The STEM-LAI is a downscaling
method based on STARFM and regression tree to generate time series high resolution LAI from MODIS
data and Landsat images. As STARFM is extendable to some other biophysical properties [1,25],
such as evaporation [23] and land surface temperature [24], high resolution FPAR data were also
derived from this method. The specific steps of LAI and FPAR downscaling as follows:

Firstly, high-quality MODIS/GLASS LAI samples retrieved from the main algorithm were selected
based on the product quality flags. The MODIS/GLASS LAI product provide quality control flags for
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each pixel. The quality control flags embedded in the MODIS and GLASS product reflect the retrieval
quality reasonably well. To ensure that only the best quality of data are being used in the regression
tree training.

Then the homogeneous MODIS/GLASS pixels were selected by using the coefficients of variation
of the Landsat pixels inside each MODIS/GLASS 1 km pixel. The coefficient of variation was defined
as the ratio of the standard deviation to the mean value [37]. The coefficient of variation (CV) was
computed and averaged among all Landsat spectral bands from Landsat surface reflectance inside
each MODIS/GLASS pixel cell [37]. The CV described the relative variation of a MODIS/GLASS pixel
in a Landsat resolution (30 m). The smaller the CV was, the purer the MODIS/GLASS pixel was. If the
band averaged CV of a MODIS/GLASS pixel was less than a threshold, the MODIS/GLASS pixel was
considered to be a homogeneous sample.

A regression tree approach [37] was then established between a reference dataset (MODIS
LAI/GLASS LAI) and pixel-aggregated Landsat surface reflectance, and then applied to Landsat
imagery to estimate LAI at 30 m resolution during the Landsat acquisition dates. Specifically,
high quality MODIS LAI/GLASS LAI retrievals from homogeneous pixels were used as reference
samples to build rule-based Cubist regression tree [48] that relate low resolution LAI samples to
aggregated Landsat surface reflectance via multivariate linear regression, then the high resolution
LAI (30 m) on the Landsat acquisition data could be obtained from the regression tree. The cubist
regression tree method was a data mining approach that builds rule-based predictive multivariate
linear regression models based on available samples.

At last, STARFM was then applied to time series MODIS LAI/GLASS LAI (1 km) and Landsat
derived high resolution LAI (30 m) data streams to interpolate high spatial resolution LAI. As STARFM
is extendable to some other biophysical properties [1,25] so long as the multi-scale input data streams
are comparable and spatially and temporally consistent, high resolution FPAR data were also derived
from this method.
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Figure 3. Flowchart of gross primary production (GPP) and net primary production (NPP) estimates
from downscaling methods. High resolution (30 m) fraction photosynthetically active radiation (FPAR)
and leaf area index (LAI) were firstly obtained by using a downscaling method, then time series high
resolution (30 m) GPP and NPP were estimated by using a Light Use Efficiency (LUE) model.
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2.3.2. Estimation of GPP and NPP

To estimate high resolution GPP and NPP by integrating remote sensing data and
eco-physiological processes, the Multi-source data Synergized Quantitative (MusyQ) GPP/NPP
algorithm [5,44] was adopted in this paper. The MusyQ GPP/NPP algorithm is essentially a LUE
model. GPP could be described as [49]:

GPP = FPAR× PAR× εmax × f1(T)× f2(β), (1)

where PAR is the photosynthetically active radiation (PAR), and εmax is the biome-specific
potential LUE, which could be obtained through a biome-specific potential εmax Look-Up Table
(LUT) by referring to land cover categories of the Biome Properties Look-Up Table (BPLUT) of the
MODIS GPP/NPP algorithm [50], shown in Table 1.

Table 1. Biome-specific potential LUE for different landcover types.

Landcover εmax(g C/MJ)

C3 crops 1.300
C4 crops 1.700

Deciduous broadleaved forest (DBF) 1.165
Evergreen broadleaved forest (EBF) 1.268
Deciduous needle-leaf forest (DNF) 1.086
Evergreen needle-leaf forest (ENF) 0.962

Mixed forest 1.051
Grass 0.860

Wetland 0.860

f1(T) and f2(β) are the down-regulation effects of temperature and water conditions on εmax,
respectively. f1(T) could be calculated according to the Carnegie, Ames, Stanford Approach
(CASA) [51]. f2(β) was calculated by [52]:

f2(β) =
1 + NDWI

1 + NDWImax
, (2)

NDWI =
ρ(NIR)− ρ(MIR)
ρ(NIR) + ρ(MIR)

, (3)

where NDWI is the normalized difference water index, NDWImax is the maximum NDWI in
the growing season, and ρ(NIR) and ρ(MIR) are the reflectance in near-infrared band and mid-
infrared band, respectively.

NPP is the net flow of carbon from the atmosphere to plants, which is defined as the balance
between GPP and autotrophic respiration [5,44,51].

NPP = GPP− Ra, (4)

where Ra is autotrophic respiration. Ra could be separated into two parts, maintenance respiration Rm,
which refers to the energy necessary to maintain biomass, and growth respiration Rg which refers to
the energy needed for converting assimilates into new structural plant constituents [5,44].

Ra = Rm + Rg. (5)

Rm were estimated separately for non-forest and forest lands. For non-forest land, Rm was
estimated with LAI and specific leaf area (SLA) [5,44].

Rm = LAI/SLA× 0.5× 2(T−Tb)/10, (6)
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where SLA was obtained from the BPLUT of MODIS GPP/NPP algorithm [50] in our model.
For forest land, Rm was defined as the summation of the maintenance respiration of leaves, stems,

and roots [5,44].
Rm,i = Mirm,iQ

T−Tb/10
10,i , (7)

where Mi is the biomass of plant component i, rm,i is maintenance respiration coefficient for
component i, Q10,i is the temperature sensitivity factor, T is the daily average temperature and Tb
is the base temperature, rm,i is the maintenance respiration coefficient. Forest lands are classified as
four classes, needle-leaf forests, broadleaved forests, mixed forests and others, and Q10,i and rm,i for
each classes are obtained according to the BPLUT of MODIS GPP/NPP algorithm [50]. Specifically,
leaf mass is estimated from LAI and SLA [5,44]:

M1 = LAI/SLA, (8)

Stem and root mass are obtained using [5,44]:

M2 = biomass/(1 + y), (9)

M3 = y×M2, (10)

where y is the ecophysiological biome-specific constant obtained from the Boreal Ecosystem
Productivity Simulator (BEPS) model [53]. The leaf, stem, fine root and coarse root respiration
items were calculated separately according to the BEPS model.

Growth respiration Rg was the proportional to the difference between GPP and maintenance
respiration Rm:

Rg = γ(GPP− Rm), (11)

where γ is the growth respiration coefficient and is defined as 0.25 [5,44].

2.3.3. Accuracy Assessment

To assess the performance of downscaling method proposed in this paper, the estimated GPP
from the MusyQ GPP algorithm was validated with the ground observed GPP. Noting that the mean
GPP values in a 3 pixels × 3 pixels window around each observation site were used to compare with
the ground observed GPP to decrease the co-registration errors between images and observation sites.
Besides, the estimated GPP and NPP were validated with high resolution GPP and NPP pixel by pixel.
The Determination Coefficient (R2), Root Mean Square Error (RMSE) and Mean Relative Error (MRE)
were used to quantify the downscaled GPP and NPP.

3. Results

3.1. Validation of Downscaled FPAR and LAI

3.1.1. Cross Validation of Downscaled FPAR and LAI

The downscaled 30 m FPAR and LAI demonstrate finer scale features with a clear identification
and have a high accuracy (Figures 4 and 5). We compared the downscaled FPAR/LAI in July 2012
with corresponding retrieved high resolution (30 m) FPAR/LAI products by [54]. Specifically, the high
resolution (30 m) LAI and FPAR was retrieved by using an instantaneous quantitative model based
on the law of energy conservation and the concept of recollision probability [5] from Chinese HJ-1B
satellite observations data. This model separated direct energy absorption in the canopy from energy
absorption caused by multiple scattering between the soil and the canopy, and took the direct sunlight
and diffuse skylight into consideration. Validation against field measurements indicated that FPAR
and LAI retrievals had high accuracy [54]. In general, a good linear relationship existed between the
downscaled FPAR and retrieved FPAR (Figure 6), R2 could reach 0.82 and 0.76 of the downscaled FPAR
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from GLASS data (D_FPAR_GLASS) and downscaled FPAR from MODIS data (D_FPAR_MODIS),
respectively. RMSE between downscaled FPAR and retrieved FPAR were 0.10 and 0.12 respectively.
Meanwhile, good consistency was shown between the downscaled LAI and retrieved LAI (Figure 7).
RMSE between the downscaled LAI and retrieved LAI were 0.63 and 0.69, respectively. However,
we found that most plots in Figure 6 were distributed under the 1:1 line, which demonstrated that
both the downscaled LAI from GLASS data (D_LAI_GLASS) and the downscaled LAI from MODIS
data (D_LAI_MODIS) were lower than the retrieved LAI from the HJ-1B data. The main reason may
be that the problem of mixed pixels led to the low values of the reference data, i.e., GLASS and MODIS
1 km LAI. Specifically, some other types of land cover (such as bare land, grassland and artificial land)
exist in a GLASS/MODIS 1 km pixel, which may lead to low values of LAI in the growing season.
Furthermore, high resolution (30 m) FPAR/LAI products from HJ-1 were generated monthly and
retrieved from the maximum value in the month, which could also have led to the overestimation of
FPAR and LAI.
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3.1.2. Comparison of FPAR and LAI Time Series

Temporal dynamic patterns of the downscaled FPAR, GLASS FPAR and MODIS FPAR from
17 field observation sites, which were mainly covered by vegetation are shown in Figure 8. In general,
the time series of the D_FPAR_GLASS, D_FPAR_MODIS, MODIS FPAR and GLASS FPAR agreed
well in cropland, orchard, vegetable field and wetland. It could be clearly seen that GLASS
FPAR was more continuous with smoother trajectories, therefore, D_FPAR_GLASS showed the
same properties as GLASS FPAR, i.e., the time series was also continuous. FPAR time series
increased initially then decreased after reaching the peak around July (DOY 185–216). In cropland,
the D_FPAR_GLASS, D_FPAR_MODIS, MODIS FPAR and GLASS FPAR agreed better in August and
September (DOY 217–280), but the GLASS FPAR was about 0.1~0.2 lower than the MODIS FPAR and
downscaled FPAR in June, July and August. The MODIS FPAR could be as high as about 0.8 while
the GLASS FPAR was only about 0.6 in the peak of growing season. MODIS FPAR was the highest
in the whole growing season in vegetable land, as shown in Figure 7c, except for a low value that
appeared in July (DOY 201–208), which led to a low value in the D_FPAR_MODIS. Time series of the
GLASS FPAR and D_FPAR_GLASS in vegetable land were obviously more continuous. In orchard and
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wetland, we could find that good agreements were generally achieved among D_FPAR_GLASS data,
D_FPAR_MODIS, MODIS FPAR and GLASS FPAR generally. But in orchard, the MODIS FPAR was
higher than the others in the early growing season.Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 22 
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Generally, D_LAI_GLASS, D_LAI_MODIS, MODIS LAI and GLASS LAI agreed well in most times
(Figure 9). We also found that time series of GLASS LAI and D_LAI_GLASS were more continuous
with smoother trajectories. In cropland, GLASS LAI was less than 3 in June and July, which was
lower than the MODIS LAI and the downscaled LAI. MODIS LAI and D_LAI_MODIS were a little
lower than the GLASS LAI and D_LAI_GLASS in August and September in orchard. In the vegetable
field, downscaled LAI, GLASS LAI and MODIS LAI achieved good agreements, but GLASS LAI was
more continuous. In wetland, MODIS LAI was less than 3 in June and July, which was lower than the
downscaled LAI and GLASS LAI.
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3.2. Validation of Estimated GPP and NPP

3.2.1. Validation Against Ground-Based GPP

Spatial distribution of high resolution (30 m) GPP (Figure 10) and NPP (Figure 11) were obtained
according to the method proposed in Section 2.3. We found the GPP and NPP reached their maximum
in July and August. Areas covered with crops occupied the highest values of GPP and NPP, followed
by the mountainous areas. Regions covered with deserts and Gobi demonstrated the lowest GPP
and NPP values. Validation against the ground measurements demonstrated that both the GPP
base on downscaled GLASS data (D_GPP_GLASS) and GPP based on downscaled MODIS data
(D_GPP_MODIS), had high accuracy. In general, a good linear relationship existed between the
downscaled GPP and ground-based GPP. R2 between the ground-based GPP and D_GPP_GLASS
could be as high as 0.78, and the RMSE was 2.69 g C·m−2·d−1 (Figure 12a). The R2 between the
ground-based GPP and D_GPP_MODIS could be as high as 0.84, and the RMSE is 2.20 g C·m−2·d−1

(Figure 12b). Mean relative error (MRE) of D_GPP_GLASS was 5.07%, and MRE of D_GPP_MODIS
was 3.21%.

We compared the precision of the high resolution (30 m) D_GPP_GLASS, D_GPP_MODIS,
with the low resolution (1 km) MODIS GPP (MOD17 C55) and the estimated GLASS GPP
(Figure 12c,d). MOD17 products were an application of the described radiation conversion efficiency
concept to predictions of daily GPP using a LUE model based on the MOD12 land cover product,
Data Assimilation Office (DAO) meteorological datasets, and the MOD15 LAI/FPAR products [55].
The estimated GLASS GPP and NPP products with a spatial resolution of 1km and temporal resolution
of the 8-day were generated by the GLASS FPAR and LAI data from the MusyQ GPP/NPP algorithm [5].
We could find that estimated GLASS GPP and MODIS GPP underestimate ground-based GPP in most
vegetation types. RMSE between estimated GLASS GPP and ground-based GPP could be as high as
6.42 g C·m−2·d−1, while the RMSE between estimated MODIS GPP and ground-based GPP could reach
7.09 g C·m−2·d−1. A higher R2 and lower RMSE demonstrated that the GPP from the downscaled data
achieved a better precision than the low resolution (1 km) estimated GLASS GPP and MODIS GPP,
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and indicated the applicability and reliability of the method proposed in this paper in generating high
resolution GPP.
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3.2.2. Cross Validation Against High Resolution GPP and NPP

We compared the downscaled GPP/NPP with the high resolution GPP/NPP, which was derived
from high resolution FPAR and LAI data by using the MusyQ GPP/NPP algorithm. Specifically,
the high resolution (30 m) LAI and FPAR were retrieved by using an instantaneous quantitative model
based on the law of energy conservation and the concept of recollision probability from Chinese
HJ-1B satellite observations data [54]. Figure 13 demonstrated the comparison of the downscaled GPP
against high resolution GPP. In general, a good linear relationship existed between the downscaled
GPP and modelled GPP. R2 was greater than 0.8, and RMSE was less than 1.5 g C·m−2·d−1 from
June to September. But, we could found that both D_GPP_GLASS and D_GPP_MODIS somewhat
underestimated modelled GPP in most times. As for the NPP estimates, as shown in Figure 14,
the estimated NPP showed good consistency with the modelled NPP. NPP from downscaled GLASS
data (D_NPP_GLASS) and NPP from downscaled MODIS data (D_NPP_MODIS) underestimated
modelled NPP in September.
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Figure 13. Cross validation of estimated GPP against high resolution GPP: (a) Comparison
of D_GPP_GLASS and modelled GPP; (b) Comparison of D_GPP_MODIS and modelled GPP.
D_GPP_MODIS means the GPP from downscaled FPAR/LAI based on MODIS data by using MusyQ
GPP/NPP algorithm. D_GPP_GLASS means the GPP from downscaled FPAR/LAI based on GLASS
data by using MusyQ GPP/NPP algorithm. Modelled GPP is the GPP from retrieved FPAR/LAI by
using MusyQ GPP/NPP algorithm.

3.3. Comparison of GPP and NPP Time Series

Among the twenty field measurement sites, we chose seventeen sites that were mainly covered
by vegetation to analyze the temporal dynamic patterns of GPP and NPP during the growing
season of 2012. These 17 sites included 14 sites in croplands, one in orchard, one in vegetable
field and one in wetland. The time series of the ground-based GPP, MODIS GPP, estimated GLASS
GPP, D_GPP_MODIS and D_GPP_GLASS were shown in Figure 15. In cropland, we could find
that D_GPP_MODIS and D_GPP_GLASS agreed better with the ground-based GPP in most times.
While the MODIS GPP and estimated GLASS GPP underestimated the ground measurement GPP
significantly, and could not reflect the temporal patterns of GPP. The MODIS GPP and estimated
GLASS GPP were less than 6 g C·m−2·d−1 during the whole growing season, but the GPP
D_GPP_GLASS and D_GPP_MODIS were higher than 8 g C·m−2·d−1 in most times, and could
be as high as 16 g C·m−2·d−1 at the peak of growing season. In orchard, estimated GLASS GPP and
MODIS GPP were about 3~4 g C·m−2·d−1 lower than ground-based GPP, GPP D_GPP_GLASS and
D_GPP_MODIS. But estimated GLASS GPP and MODIS GPP achieved good agreements. In vegetable
field, the time series of the ground-based GPP, MODIS GPP, estimated GLASS GPP, D_GPP_GLASS
and D_GPP_MODIS matched well in most times. In wetland, MODIS GPP underestimated the
ground based GPP obviously, while estimated GLASS GPP matched well with ground-based GPP,
D_GPP_GLASS and D_GPP_MODIS.

Temporal patterns of the estimated GLASS NPP, D_NPP_MODIS and D_NPP_GLASS were
demonstrated in Figure 16. In cropland, the temporal variation trend of D_NPP_MODIS and
D_NPP_GLASS matched well. But estimated GLASS NPP was lower than 4 g C·m−2·d−1 in the
growing season, which was much lower than D_NPP_MODIS and D_NPP_GLASS. In orchard,
vegetable field and wetland, estimated GLASS NPP, D_NPP_MODIS and D_NPP_GLASS generally
achieved good agreements generally. In vegetable field and wetland, estimated GLASS NPP is a little
higher than D_NPP_MODIS and D_NPP_GLASS.
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sites in cropland.

4. Discussion

4.1. Comparison of the Accuracy of GPP Estimates from STARFM

In this paper, a framework to generate high resolution GPP and NPP dataset at 30 m
was developed based on downscaling method from Landsat data and MODIS/GLASS data.
Direct validation against ground measurement data and cross validation against high resolution
images demonstrated that this downscaling framework could obtain time series high temporal and
spatial resolution GPP and NPP datasets. Data fusion approaches have been demonstrated to be
feasible and efficient ways to synthesize time series images from multi-scale remote sensing data at
different spatial and temporal resolutions [26,55,56]. The STARFM has been found to be applicatable to
produce an accurate interpolated NDVI time series in many studies [55,57]. Furthermore, based on the
time series high resoltution NDVI generated from STARFM, and the liner relationship between FPAR
and NDVI, some studies have been carried out to estimate GPP and NPP from the LUE model [26,30,58].
However, the relationship between MODIS and Landsat NDVI may vary, due to different acquisition
dates and cloud contamination, aerosols, viewing angles and temporal compositing [58], and the
relation between FPAR and NDVI also changes with vegetation type and solar zenith angle [59],
all these factors can introduce uncertainties into the FPAR estimation and GPP/NPP estimation.
In our study, time series FPAR were generated from MODIS/GLASS FPAR products, which have been
temporal infilled of cloud-contaminated pixels, and have been validated to be in good quality with high
accuracy. Owing to the lack of ground observations, the downscaled GPP were validated with MODIS
GPP product at 1 km scale (R2 ranged from 0.55 to 0.81, and RMSE ranged from 1.39 g C·m−2·d−1

to 3.92 g C·m−2·d−1) [20,21] or validated with Landsat derived GPP (R2 ranged from 0.85 to 0.86)
in previous studies (Table 2) [26]. In this study, the downscaled GPP were validated with both high
resolution GPP at 30 m scale (R2 ranged from 0.81 to 0.95, and RMSE ranged from 0.84 g C·m−2·d−1 to
1.55 g C·m−2·d−1) and ground observed data (R2 ranged from 0.71 to 0.90, and RMSE ranged from
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0.87 g C·m−2·d−1 to 3.14 g C·m−2·d−1). The validation results demonstrated that both the GPP from
downscaled GLASS data and from MODIS data had higher accuracy.

Table 2. Comparison of the GPP estimates from spatial and temporal adaptive reflectance fusion
model (STARFM).

Biome Validation Data R2 RMSE (g C·m−2·d−1) References

Medicago

MOD17 A2 GPP

0.66 1.48

He et al., 2018 [28].

Barley 0.76 1.51
Maize 0.14 3.92

Durum wheat 0.79 1.47
Pea 0.55 1.44

Spring wheat 0.67 1.39
Winter wheat 0.81 1.66

Cropland

MOD17 A2 GPP

0.80

Liu et al., 2018 [27].
Grass 0.75
EBF 0.66
DBF 0.63

Wheat Landsat derived
GPP

0.85 Singh, 2011 [26].
Sugarcane 0.86

Cropland (mainly maize)

Ground observed
GPP

0.89(D_GPP_GLASS),
0.87 (D_GPP_MODIS)

3.14 (D_GPP_GLASS),
2.52 (D_GPP_MODIS)

This paper
Orchard 0.68(D_GPP_GLASS),

0.71 (D_GPP_MODIS)
0.87 (D_GPP_GLASS),
0.89 (D_GPP_MODIS)

Wetland 0.90 (D_GPP_GLASS),
0.75 (D_GPP_MODIS)

0.90 (D_GPP_GLASS),
1.02 (D_GPP_MODIS)

Vegetable field 0.74 (D_GPP_GLASS),
0.74 (D_GPP_MODIS)

1.30 (D_GPP_GLASS),
1.47 (D_GPP_MODIS)

4.2. Uncertainties Analysis

The errors of the input data of the downscaling process would have influence on the accuracy of
the downscaling results. Although both GLASS LAI/FPAR products (RMSE = 0.7848 and R2 = 0.8095
for the LAI product, R2 = 0.9292 and RMSE =0.0716 for the FPAR product) [6,7] and MODIS LAI/FPAR
products (RMSE = 1.1173 and R2 = 0.6705 for the LAI product, R2 = 0.8048 and RMSE = 0.1276 for the
FPAR product) [3,4] have high accuracy, the errors of the GLASS and MODIS product certainly have
some impact on the accuracy of downscaling FPAR and LAI, and then have some influence in the
GPP and NPP estimates. Second, there are stripes in the original Landsat ETM+ images, the destripe
process may introduce errors in the high spatial resolution surface reflectance data, which will bring
additional errors to the final high spatial and temporal LAI/FPAR products.

The process of FPAR and LAI downscaling would also bring some uncertainties in estimating
high resolution GPP and NPP. In our study, the high spatial resolution of FPAR and LAI were retrieved
by Cubist regression tree approach from Landsat ETM+ data using MODIS/GLASS FPAR and LAI
products as a reference. Although the Cubist regression tree have the ability to predict outside the
range of values in the training dataset, the accuracy of the regression tree approach still relied on the
data quality and distribution of training dataset [37]. If high quality data are limited, the regression
tree approach may not be stable for FPAR and LAI retrievals. Because of large heterogeneity of land
surface in the study area, most of GLASS/MODIS 1 km pixels are mixed pixels, the low fraction of
vegetation cover land cover types (such as bare land, grassland and artificial land) existed in a mixed
GLASS/MODIS 1 km pixel will lead to the low values of the reference data, i.e., GLASS/MODIS
1 km FPAR and LAI, in the growing season [60,61]. Therefore, the FPAR and LAI estimates from the
regression tree approach may not be able to describe the high values of FPAR and LAI, as shown in
Figures 6 and 7.

The precision of reference high spatial resolution data and the spatial representativeness of ground
observation data are also related to the performance assessment of the downscaling method. In this
paper, high resolution (30 m) FPAR/LAI retrievals based on the law of energy conservation and the
concept of recollision probability were used to validate the downscaled FPAR and LAI. Some errors exist in
geometric correction when retrieving the FPAR and LAI from the Chinese HJ-1B satellite data, which could
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lead to some uncertainty in the downscaled FPAR and LAI validation. Moreover, satellite pixel scale
and the footprint size of ground observation may be another factor that influenced the accuracy when
validating the GPP estimates. The spatial representativeness of the observed GPP data related to the
height of the eddy covariance instruments. In this study, the heights of the eddy covariance instruments
range from 2.85 m to 4.50 m, the footprint size of carbon flux is mainly smaller than 200 m, and the
spatial representative of ground observation is more close to the 30 m scale, which is the reason why the
accuracy of downscaled GPP is higher. The large number of carbon flux station in the maize cropland,
small footprint size of ground observed GPP data, and mixed pixel phenomenon are the main reasons of
GPP underestimation at 1 km scale compared with ground observed data.

4.3. Future Work

Bias of the downscaled FPAR and LAI in our study, may have introduced some considerable
errors in the GPP and NPP estimation. Specifically, FPAR is related to the absorbed radiation in GPP
estimation and LAI was related to the maintenance respiration in NPP estimation. In the future, we may
carry out research into the error transfers in GPP and NPP estimates when using the downscaled
FPAR and LAI in the MuSyQ GPP/NPP algorithm. Second, the STARFM predictions were affected
by the number of spectral slices, the maximum search distance and the method used to inform the
search for similar neighbor pixels [1,25]. Therefore, we may do some further analysis on the parameter
optimization in the GPP and NPP predictions. Third, STARFM did not gain the ability to accurately
predict short-term, transient changes that are not recorded in any of the bracketing fine-resolution
images, therefore combining STARFM with ESTARFM and STAARCH may be a feasible way to solve
the problem in generating high resolution vegetation productivity [21]. To improve the accuracy of the
downscaling results, higher quality low resolution data would be used, and some improvements model
of STARFM would be adopted. Improving the method to match the scale between ground observation
data and satellite derived data, would be another way to improve the accuracy of downscaling results.

5. Conclusions

Downscaling methods in remote sensing provide a new observational approach to estimate
high resolution vegetation productivity. In this paper, a method to generate high spatial resolution
(30 m) GPP and NPP products based on low resolution (1000 m) FPAR and LAI data was developed.
First, the time series of downscaled high resolution FPAR and LAI were obtained on the basis of
STARFM and a regression tree approach. Then high resolution GPP and NPP were estimated by
using the MuSyQ GPP/NPP algorithm. At last, downscaled GPP and NPP were validated by using
ground-based data and high resolution data. The results of this paper indicated the applicability and
reliability of the downscaling method in generating high resolution time series GPP and NPP.

Generally, good consistency existed between the downscaled FPAR/LAI and inverted FPAR/LAI.
The time series of D_FPAR_GLASS, D_FPAR_MODIS, MODIS FPAR and GLASS FPAR agreed well
in cropland, orchard, vegetable field and wetland. Second, direct validation against the ground-based
data and cross validation against the high resolution data showed that downscaled GPP achieved high
accuracy. GPP from the downscaled data achieved a better precision than the estimated GLASS GPP and
MODIS GPP. R2 between the D_GPP_GLASS and ground-based GPP could be as high as 0.78, and RMSE
was only 2.69 g C·m−2·d−1 And R2 between D_GPP_MODIS and ground-based GPP could reach 0.84,
and RMSE was only 2.20 g C·m−2·d−1. Third, the ground-based GPP, MODIS GPP, estimated GLASS GPP,
D_GPP_MODIS and D_GPP_GLASS achieved good agreements. Temporal patterns of estimated GLASS
NPP, D_NPP_MODIS and D_NPP_GLASS were also generally consistent. But estimated GLASS NPP in
cropland was also relatively lower than D_NPP_MODIS and D_NPP_GLASS.
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