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Appendix A. 

1. Overview of Study Area 

Jinjiang is one of the most developed counties in China. The total GDP of Jinjiang 

increased from RMB 48.387 billion in 2004 to RMB 149.286 billion in 2014, and the population 

increased over the same period from 1,029,000 to 1,108,000. Within a decade, Jinjiang’s 

population increased by 17% to reach 63% in 2014. The soils are mostly laterite and red earth; 

urban forest coverage is at 39.76%. 

2. Data Sources 

2.1. Forest Management Planning Inventory Database 

The urban forest ground survey data used in this study were obtained from the 2004 

and 2014 Jinjiang Forest Management Planning Inventories (FMPIs). These data include the 

forest resource distribution drawings and compartment survey documents. The unique 

number of compartments is specified in the distribution maps. The compartment files record 

the serial number and attribute information. In future iterations of this study, the accuracy of 

each subcompartment attribute will be measured using both systematic sampling and 

stratified sampling. The overall volume sampling accuracy should be 90% or more and the 

reliability should be 95% or more [1]. In addition, the vector graphical data were used to 

calculate a patch shape index 4P A , where P is the perimeter and A is the area. Our 

investigation will be conducted every 10 years and will yield valuable subcompartment data 

that are key to resource planning and environmental studies.   

2.2. Human Activity Database 

With FMPI polygon serving as the basic unit, the spatiotemporal distributions of 

population density were mapped using the ArcGIS 10.0 space-analysis module functions for 

the kernel density tool and zonal statistics. Inversion via a double-channel algorithm was 

used to obtain urban LST raster data. For each patch, the average LST and population density 

were calculated. Initially, the 200 m compartment buffer circles for Jinjiang overlapped, so all 

compartments were connected. Therefore, we considered the 200 m buffer circle to be too 

large and calculated the impervious surface area ratio of the buffer circle area by using a 100 

m radius from the edges of each patch [2]. 

2.3. Land Surface Temperature Database 

The Landsat remote sensing imagery maps are integrated with forest inventory data 

and converted to a uniform spatiotemporal scale [3,4]. The calculation was done under stable 

atmospheric conditions. The sixth wave band of the Landsat-5 data was used to estimate 

sensor brightness temperature, and the tenth wave band of the Landsat-8 TIRS data was used 

to estimate the sensor brightness temperature. The multispectral band of the Operational 

Land Imager and TM5 data were used to generate the normalized difference vegetation index 

(NDVI) for areas under investigation to improve the modified normalized difference water 

index and the normalized difference build-up index (which have also been used for 

emissivity estimates). The purpose of this study is to accurately classify surface features based 

on the decision tree model.  

Currently, the algorithms proposed for Landsat 8 thermal infrared band land surface 

temperature (LST) retrieval include the Jimenez‒Munoz single-channel algorithm [5], the 

mono-window algorithm by Qin et al. [6], the Rozenstein split-window algorithm [7], and the 

Jimenez-Murnoz split-window algorithm [8]. For our purposes, we used the mono-window 

algorithm by Qin et al. [6] for single-channel retrieval.  

The equations are  
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where ε is the land surface emissivity, τ is the atmospheric transmissivity, Tsensor is the 

brightness temperature corresponding to the upper radiance, Ta is the atmospheric mean 

temperature, and a, b are coefficients. By using the atmospheric radiation transmission 

software LOWTRAN for a simulation, Rozenstein et al. (2014) worked out the TIRS retrieval 

regression coefficients of different temperature ranges [7]. 

We used the mono-window algorithm to estimate atmospheric transmissivity and 

atmospheric mean temperature Ta of the TM data from Landsat-5 TM and the TIRS data from 

Landsat-8. To simulate the atmospheric parameters, the summer atmospheric profile data 

were input as MODTRAN atmospheric section data according to the geographic orientation 

and seasonal aspects of the experimental area.  

2.3.1. Land Surface Emissivity 

The following methods are currently being used to determine land surface emissivity: the 

difference value method, the temperature-independent spectral index (TISI) method, the 

NDVI threshold value method (NDVI-THM), and others [9]. To obtain ε, the classification 

and regression tree method (CART) was applied to classify land surface. Based on these 

results, land surface emissivity was estimated by using the emissivity estimation method 

adopted by Qin et al. [10]. 

2.3.2. Atmospheric Transmissivity 

To retrieve land surface data, water vapor is a key factor affecting estimates of atmospheric 

transmissivity. The relation between atmospheric transmissivity and atmospheric water 

vapor content is determined by atmospheric simulation. In general, MODT-RAN, 6S, and 

other atmospheric simulation software are used to simulate the relationship between 

atmospheric transmissivity and water-vapor content. Qin et al. [6] developed the Landsat 8 

TIRS atmospheric transmissivity equation by using the atmospheric radiation transmission 

software LOWTRAN for simulations. By applying the atmospheric water vapor content to the 

equation, the calculated atmospheric transmissivity was 0.62. 

2.3.3. Brightness Temperature 

Using the conversion of image digital number into the satellite upper radiance data based 

on the calibration coefficient, the corresponding brightness temperature with the Planck 

function is obtained:  
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(~6.62606896), c is the speed of light (~2. 99792 × 108 m/s), k is the Boltzmann constant (~1. 

3806505 × 10−23 J/K), and λi is the central wavelength in channel i.  



3. Integration of Remote Sensing Imagery and Forest Management Planning Inventory 

Data 

We calibrated the sample-plot investigation data and the topographic map. During 

calibration, the topographic map, the texture properties of TM images, and Google Earth 

provided the basis for the validation of land-use type and key registration points (e.g., 

mountaintops). According to our study of relatively-low-resolution TM images, land-use 

classification based on a mean value rather than a single image cell does not impact the fusion 

calibration of the overall data.  

Concurrently, the matched spatial data (i.e., multiple ecological factors, population, and 

temperature,) were converted to the WGS 1984 UTM (50N) coordinate system. For calibration, 

the ArcGIS 10.0 geo-referencing function was used. The result of this integration formed our 

new attribute database. 

4. Spatial Statistical Analysis: Cluster Regions 

4.1. Reasons for Identifying the Surrounding Patches  

The local Getis–Ord Gi* statistics were calculated with 500–3500 m threshold distances 

and 250 m intervals (Figure S1). With the larger distance, we found that the minimum 

number of significant neighboring patches exceeded eight when the distance reached the 2250 

m radius threshold in 2004, and this condition was satisfied by the 2000 m radius threshold in 

2014. In addition, the total area of hot and cold spots increased at the beginning, and reached 

stable conditions at the 2250 m threshold (rate of increase 2.35% in 2004 and 0.54% in 2014). 

The proportion of total hot and cold spot area was 82.94% in 2004 and 62.55% in 2014. 

Therefore, the modeling of spatial positioning of hot-spot clusters (high value next to high 

value) and cold-spot clusters (low value next to low value) under the specific threshold 

distance scale (2,250 m) of urban STUFC was done by using Local Getis–Ord Gi* statistics.  

4.2 Reasons for Focusing on Hot and Cold Spots  

We further considered that the global Moran’s I exponent, on the basis of the urban forest 

polygon data, verified that these spatial correlations indicated clustering. The capacity to 

evaluate spatial linkage and spatial change by using spatial statistics has enhanced the 

evaluation of authentic landscape heterogeneity in key areas of the urban ecological system. 

The hot- and cold-spot data generated by using local spatial statistics can serve as a reference 

for future spatial monitoring and can also be used to verify the accuracy of large-scale aerial 

remote sensing imagery. After understanding the mechanisms driving STUFC hot-spot areas, 

it will be important to include corresponding intervening measures that ensure the rational 

allocation of urban forest spatial resources to reduce LST.  

Almost all spatial data are subject to spatial dependence and spatial autocorrelation. To 

this end, the spatial autocorrelation statistical index mainly consist of the global exponential 

indexes (including Moran’s I, Geary’s C, and Global G) and a local exponential index 

(including Moran’s I, which is also known as LISA, and Getis–Ord Gi*). Specifically, the 

spatial stability of STUFC hot and cold spots leads to the assumption that the application of a 

spatial autocorrelation statistical index is accurate, i.e., it is assumed that the STUFC 

distribution is influenced by an ecological process that continuously changes with the spatial 

weight matrix and may be quantified by using the spatial autocorrelation statistical index. 

Global Moran’s I uses the overall space of the whole urban forest patches as the statistical 

magnitude, which is the most commonly used index for measuring spatial correlation. 

Moran’s I may indicate the presence of clustering, but it is not competent to detect hot- and 

cold-spot clustering. Only the local exponential index can recognize the existence of hot- and 

cold-spot clusters in relation to STUFC without the specific spatial location data, which can be 

obtained by using local Moran’s I (also named LISA) or Getis–Ord Gi*. Moran’s I may be used 

to detect the abnormal spatial values in LST compartments or to detect the discrepancies 



between LST compartments. The results achieved using this method, however, cannot be 

deemed conclusive regarding the specific spatial locations of hot and cold spots. Without 

considering neighboring forest stands, the local Getis–Ord Gi* only adopts the standard 

distance measurement to identify spatial position when detecting LST hot- and cold-spot 

clusters in forest patches. From 2002 to 2013 in the United States, Potter et al. studied the 

spatial structure mode relating to plant invasion, plant death from plant diseases and insects, 

and urban forest fire frequency [11]. They verified that the identification of the spatial 

location of hot- and cold-spot clustering using the combination of global Moran’s I and local 

Gi*(d) allows researchers to measure statistical significance at specific levels, which is a 

rigorous measurement method.  

5. Spatial Statistical Analysis: GeogDetector Model 

The GeogDetector software has been used to map environmental factors in relation to 

neural tube defects [12], geographic mortality in children younger than five years old, and 

fluoroquinolone residues in the soil based on the consistency of variable spatial patterns [13]. 

GeogDetector has four components to map, model, and analyze variable grid data integrated 

with a geographical interface. In this study, two components we used:  

 (1) Factor detector 

 This detector quantifies the impact of a factor D on the observed spatial pattern of 

ecological-factor residues by using q value (Power of determinant, PD), the dispersion 

variance ( ) of pooled data of the entire region, and the sum of stratified dispersion 

variance ( ). Therefore, the q value for factor D can be expressed by using  

 , (5) 

where q represents the determinant power of each impact factor, the hypothesis D is a 

potential impact factor, n is the number of samples in the sub-region affecting factor D, N is 

the number of samples in the entire region, m is the number of impact factors, is the 

variance of the variable in sub-region D, and  represents the discrete variance across the 

study area. Assuming , the model is established. The quantity q varies over the interval 

[0, 1]. A large q indicates that the explanatory variable factor has a strong influence on the 

explained variable. 

 

(2) Interaction detector 

 This detector quantifies the combined effect of two factors X1 and X2; for example, 

by overlaying geographical layers X1 and X2 in a GIS environment to form a new layer 

X1 ∩ X2. With the q values for layers X1, X2 and X1 ∩ X2, the interaction detector can 

deal with the interesting issue of whether two factors acting together have a stronger or 

weaker effect on LST residues than when they act separately. 
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6. Results 

6.1. Geostatistical Analysis of STUFC 

By using the global Moran’s I index, our analysis of STUFC showed spatial 

autocorrelation, and its spatial clustering decreased (Moran’s index was 0.476 in 2004; 0.178 in 

2014; Table 2). We analyzed the temporal and spatial variations in the STUFC. Based on a 

distance to neighboring forest patch of 2250 m, the local Getis–Ord Gi* statistics indicated that 

the number of hot spot patches increased (1543 in 2004 and 2444 in 2014), as did the number 

of cold spots, although to a lesser extent (1059 in 2004 and 1458 in 2014). In addition, 

nonsignificant clustering areas increased dramatically (698 in 2004 and 2,061 in 2014). The 

total area of statistically significant hot and cold spots was 2847.18 ha (both in 2004 and 2014). 

Hot and cold spots also exhibited the largest differences in the degrees of spatial clustering 

(Figure 5). We used a box plot (Figure S2) to compare the STUFC for four areas (total area, hot 

spots, cold spots, and nonsignificant clustering areas). The average STUFC in cold spots 

(−0.091 in 2004 and −0.133 in 2014) was significantly less than that in hot spots (0.042 in 2004 

and 0.002 in 2014) and non-clustering areas (0.001 in 2004 and −0.052 in 2014). 

With respect to cluster position, the locations of hot and cold spots were similar in 2004 

and 2014. The hot spots were distributed mainly in the northwestern and southeastern 

corners of the city, and the cold spots were distributed mainly in the hilly areas of the north, 

central, and east‒central regions.  

6.1 6.2. Geostatistical Analysis of Urban Forest Stand Structure 

To clarify the mechanism of STUFC influence on hot and cold spots between 2004 and 

2014, we need to know the urban forest stand structure dynamics. We considered the 

following characteristics: patch area, canopy density, stand age, shape index, and dominant 

species.  

The total forest area of hot (decreased 1336.338 ha) and cold (decreased 1611.518 ha) spots 

decreased by 2947.846 ha over these 10 years. Nonsignificant (accounted for 18.04% and 

37.45% of the total area in 2004 and 2014, respectively) areas increased by 1616.589 ha. The 

transfer matrix shows that, in 2004 and 2014, the area of urban forest undergoing conversion 

from hot spots to cold spots and non-clustering areas was 2035.970 ha. Within this area, 

1393.680 ha of cold and hot spots transitioned into nonsignificant areas. The conversion 

between cold and hot spots was less; only 232.404 ha. The average of canopy density 

(increased by 0.093 and 0.179 in hot and cold spots, respectively) and stand age (increased by 

4.919 years and 5.926 years in hot and cold spots, respectively) both increased between 2004 

and 2014. The shape index increased 0.096 in hot spots, but decreased 0.372 in cold spots. 

Meanwhile, these five dominant tree species in hot spots accounted for more than 80% of the 

forest stands (81.86% in 2004 and 83.18% in 2014), whereas the proportion of the five 

most-dominant tree species in cold spots decreased from 79.28% in 2004 to 54.58% in 2014. 

These results indicate that the composition of tree species in cold spots became more complex, 

which signals enhanced diversity.  
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6.2 6.3. Geostatistical Analysis of Anthropogenic Activity 

The overall spatial clustering degree of population density tended to decrease (global 

Moran’s I = 0.731, z-score = 199.072 in 2004; global Moran’s I = 0.642, z-score = 269.293 in 2014). 

Local Getis–Ord Gi* statistics show that, in hot spots, the population density increased from 

1113.0±360.7 people ha–1 in 2004 to 1257.5±586.0 people ha–1 in 2014. In contrast, the 

population density in cold spots decreased from 990.1±561.0 to 892.7±439.5 people ha–1. The 

population density in nonsignificant areas was 1330.0±606.3 people ha–1 in 2004 and 

1379.0±638.0 people ha–1 in 2014. From 2004 to 2014, the total impervious surface area 

increased from 38.05% to 51.42%. The average within a 100 m radius increased 14.95% and 

12.08% in hot and cold spots, respectively (Figure 6). 

7. Discussion 

7.1. The Restrictive Factors for the Integration Research 

Recently, research into the LST of forest is mainly conducted based on the sample plot 

scale obtained by using long-term sample-plot survey data and the landscape scale of remote 

sensing imagery. However, two challenges remain: (1) a lack of reliable vegetation index, and 

(2) issues related to the integration of the sample-plot data and landscape-scale data.  

Specifically, the vegetation index (i.e., NDVI), which is based on the interpretation of 

remote sensing imagery, is not verifiable in terms of eco-environmental significance. Because 

of the sophisticated ecological factors and interactions that affect the urban environment, the 

features of LST of forest can hardly be fully described by only one vegetation index. Various 

issues relating to the statistics and algorithms between LST and vegetation index remain 

unsettled. In addition, remote sensing imagery is a pixel-based method, and the LST value is 

captured by the image as a mean value rather than as a sampling-point value. Previous land 

surface investigations have used survey data from limited sampling points, which fails to 

provide the true attribute data on a regional scale.  

Although remote sensing imagery, temperature and vegetation indices, energy-balance 

models, and statistical analyses have been used in many studies to characterize the spatial 

distribution of LST on regional scales, few studies look at the complex changes in function 

and structure in forest areas [14]. The lack of available data on regional scale limits our efforts 

to quantify LST spatial heterogeneity and its causes in these areas. Many scholars agree that 

analyses relying on remote sensing imagery alone suffer from several significant problems. 

For example, Tooke et al. reported that traditional classification based on remote sensing 

imagery cannot explain mixed pixels [15]. Specifically, spectral reflectance characteristics are 

not used in this method to classify and quantify vegetation. Moreover, the heterogeneity of 

urban forest is difficult to characterize on a local scale by using single-image pixels. 

Geometric variability is caused by the intensification of high-resolution images and, coupled 

with the field of view and illumination effect, accurate extraction of consistent vegetation data 

on different spatiotemporal scales becomes highly unlikely [16]. Furthermore, resolution and 

classification errors can also impact the accuracy of mapping and landscape patterns. Thus, 

the causes of LST pattern changes must be determined by coupling LST information from 

remote sensing imagery with a multi-source database on a unified scale. 

Forest management planning inventories not only provide detailed information on 

multiple ecological factors affecting forest stands, but also can be used to validate remote 

sensing interpretations and quantitative analyses [17]. Although the integration of multiple 

data sources can lead to uncertainty, this uncertainty can be significantly reduced by 

calibrating the size and format of all data sources and by ensuring the accuracy of the data 

[18]. Forest-resource planning and design data comprise a set of land surface investigation 

data on the whole-forest regional scale, and these data can be used to supplement data 



obtained from remote sensing imagery.  

7.2. Enlightenment 

In brief, the decreasing spatial clustering trend in STUFC and population density from 

2004 to 2014 shows an expanding influence of anthropogenic activity on the spatial range of 

urban forest. Meanwhile, the consistency of the spatiotemporal distribution patterns for 

anthropogenic activity (PD and ISP100) and for STUFC suggests that anthropogenic activity 

affects the spatiotemporal distribution pattern of STUFC through land-use change, 

anthropogenic heat emissions, and environmental pollution [20]. Simultaneously, 

anthropogenic activity facilitates the spatial heterogeneity of STUFC because, when 

connected to construction land, and the STUFC does not exhibit spatial clustering. Urban 

sprawl leads to more and more urban forest located in densely populated urban 

environments. Anthropogenic disturbance is long-term and continuous. Therefore, 

comparing the changes in the global Moran’s I and local Gi* index in the different periods of 

urbanization would help to clarify the relationship between urban forest landscape pattern 

and process. Furthermore, it is an important directive function to optimize the regional urban 

forest cold-island effect. Using a local Gi* method to spatially identify the specific location of 

LST cold spots in urban forests is a key step in understanding the ecological process of 

atypical spatial patterns. Based on the detection regions, we used the Geogdetector model to 

clarify the spatial relationship between multiple impact factors including human activity 

factors and STUFC in cold spots. 

Although the forest area factor has less influence on the STUFC in the cold spots in 2014, 

whether the size of the forest area is important for the cooling effect of urban forests is not 

simple to determine because the influence of this factor on STUFC is closely related to the 

degree of forest fragmentation and connectivity at a specific time and place. More 

importantly, the interactive effect with other factors is greater than the effect of the forest area 

factor itself. 
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Figure S1. Results for Gi* at various search radii indicating the proportion of regions identified as hot 

and cold spots. 
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Figure S2. Change in STUFC, urban forest stand structure, and anthropogenic activity factors 

under local Getis–Ord Gi* statistical distribution for 2004 (white boxes, no shadow) and 2014 (gray 

boxes, dense shadow): (a) Land surface temperature (LST), (b) forest patch area (PA), (c) dominant 

species (DS), (d) canopy density (CD), (e) stand age (SA), (f) shape index (ShI), (g) population 

density (PD), (h) impervious surface percent in 100 m radius (ISP100). The abscissa labels are as 

follows: entire study region (All), hot spots (HS), cold spots (CS), and nonsignificant areas (NS). 

PM Pinus massoniana. AC, Acacia confusa; EG, Eucalyptus grandis; CE, Casuarina equisetifolia; DL, 

Dimocarpus longan; OB, Other Broad-leaved trees. 
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Figure S3. Locations of hot and cold spots of 14 factors in (a) 2004 and (b) 2014. PM: Pinus massoniana. 

AC: Acacia confusa, EG: Eucalyptus grandis, CE: Casuarina equisetifolia, DL: Dimocarpus longan. 
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Figure S4. Influence of interactions in study areas in (a) 2004 and (b) 2014. 

 

Figure S5. Influence of interactions in hotspot areas in (a) 2004 and (b) 2014. 

 

 

Figure S6. Influence of interactions in nonsignificant areas in (a) 2004 and (b) 2014. 


