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Abstract: Hyperspectral change detection (CD) can be effectively performed using deep-learning
networks. Although these approaches require qualified training samples, it is difficult to obtain
ground-truth data in the real world. Preserving spatial information during training is difficult
due to structural limitations. To solve such problems, our study proposed a novel CD method
for hyperspectral images (HSIs), including sample generation and a deep-learning network, called
the recurrent three-dimensional (3D) fully convolutional network (Re3FCN), which merged the
advantages of a 3D fully convolutional network (FCN) and a convolutional long short-term memory
(ConvLSTM). Principal component analysis (PCA) and the spectral correlation angle (SCA) were used
to generate training samples with high probabilities of being changed or unchanged. The strategy
assisted in training fewer samples of representative feature expression. The Re3FCN was mainly
comprised of spectral–spatial and temporal modules. Particularly, a spectral–spatial module with a
3D convolutional layer extracts the spectral–spatial features from the HSIs simultaneously, whilst a
temporal module with ConvLSTM records and analyzes the multi-temporal HSI change information.
The study first proposed a simple and effective method to generate samples for network training.
This method can be applied effectively to cases with no training samples. Re3FCN can perform
end-to-end detection for binary and multiple changes. Moreover, Re3FCN can receive multi-temporal
HSIs directly as input without learning the characteristics of multiple changes. Finally, the network
could extract joint spectral–spatial–temporal features and it preserved the spatial structure during
the learning process through the fully convolutional structure. This study was the first to use
a 3D FCN and a ConvLSTM for the remote-sensing CD. To demonstrate the effectiveness of the
proposed CD method, we performed binary and multi-class CD experiments. Results revealed
that the Re3FCN outperformed the other conventional methods, such as change vector analysis,
iteratively reweighted multivariate alteration detection, PCA-SCA, FCN, and the combination of 2D
convolutional layers-fully connected LSTM.

Keywords: change detection; fully convolutional network; 3D convolution; convolutional LSTM;
hyperspectral image

1. Introduction

1.1. Background of Hyperspectral Change Detection

The rapid development of sensor technologies assists in the formulation of hyperspectral images
(HSIs). These images allow high-dimensional spectral information over a wide range to be obtained
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from various platforms, such as aircraft, satellites, and unmanned aerial vehicles [1]. The spectral
profiles obtained from HSIs help to achieve target detection, classification, as well as change detection
(CD) because of the profiles ability to distinguish the spectrally similar materials and describe the finer
spectral changes [2,3].

CD is the process of identifying changes in land cover or land use that have occurred over
time in the same geographical area [4]. Applications of CD techniques include assessing natural
disasters, monitoring crops, and managing water resources [5–7]. Moreover, CD has offered the
benefit of hyperspectral remote sensing over the past two decades. As HSIs offer more-detailed
information about spectral changes than multispectral images, HSIs can improve the performance
of CD [8]. However, various CD techniques for the development of multispectral images may be
unsuitable for HSIs because the latter requires special processing. Any CD method for HSIs must
address the high dimensionality problems, high computational cost, and limited data sets. With the
existence of hundreds of narrow continuous bands, high dimensionality can enhance the more implicit
and less separable changes, because identifying the changes in a high-dimensional feature space is
computationally expensive [9]. Band-selection and feature-extraction methods are proposed to solve
these problems; however, vital spectral information could be lost using these approaches [10]. Another
crucial problem is the limited data sets as HSIs lack label information, because it is difficult to obtain
change information about objects in the real world. Furthermore, generating labels for a huge set of
training samples is labor-intensive and time-consuming [11].

To address these problems, several approaches have been proposed to achieve beneficial
hyperspectral CD applications. Image difference and ratio are widely approaches used to solve
such problems; however, these approaches are characterized by limited applications [10]. Generally,
traditional CD methods for HSIs can be categorized as: (i) Image algebra, (ii) transformation-based
methods, (iii) spectral analysis, and (iv) post-classification.

A classical method in image algebra is a spectral change vector analysis (CVA), which calculates
the magnitudes and directions of changes [12]. Using the two variables (i.e., magnitude and direction),
different types of change can be detected. Sequential spectral CVA (S2CVA) was proposed for
the hyperspectral CD to overcome the problems associated with the original CVA [13]. S2CVA is
implemented iteratively, with multiple change information models and it is identified hierarchically in
each iteration [13]. However, CVA-based methods have some disadvantages, such as difficulties in
identifying multi-class changes and in selecting an appropriate threshold [14].

Transformation-based methods can transform HSIs into other feature spaces to distinguish
changes from non-changes, these methods assist in producing multivariate components based on the
first few components [15]. Principal component analysis (PCA) exploits the variance in the principal
components (PCs) of the combined multi-temporal HSIs [16]. Multivariate alteration detection (MAD)
is based on the canonical correlation analysis, which investigates the linear combinations of the
original variables [17]. By assigning higher weights to non-change features, iterative reweighted (IR)
MAD generates a non-change background to detect changes [18]. Transformation-based methods are
advantageous in reducing both dimensionality and noise, with the ability to emphasize the changed or
unchanged features related to specific changes. However, if the changes comprise a large portion of
the images, it will be relatively time-consuming to generate new components [9].

Spectral analysis detects differences in spectral distance or shape in all bands between two pixels
acquired at two different times. This analysis is used to construct anomaly-detection algorithms
to distinguish unusual pixels from background pixels. Generally, Euclidean Distance (ED) [19],
Spectral Angle Mapper (SAM) [20], Spectral Correlation Measure (SCM) [21], and Spectral Information
Divergence (SID) [22] are widely used to measure differences between spectral signatures. Moreover,
the subspace distances between temporal HSIs were calculated using orthogonal subspace analysis [23],
which assisted in detecting the background anomalous pixels. These models are effective in solving
shadow problems and noise effects; however, they are relatively complex and are difficult in
determining an appropriate threshold for distinguishing between changes and non-changes.
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Post-classification methods are used to compare the land-cover classification results after the
multi-temporal images have been classified independently using a specific classifier. These methods
are widely used and provide “from-to” CD information. A fuzzy c-means (FCM) classifier is generally
used in a clustering algorithm that calculates the degree of uncertainty in each class and expresses the
property of the class membership [24]. The advantage of that particular method is its ability to generate
a change map obtained from two different sensors [15]. Nevertheless, the CD accuracy depends on the
classification accuracy [23].

Additionally, CD can be implemented in a tensor factorization method [25], a semi-supervised
method [3], and an unsupervised statistical analysis method [26]. The multi-temporal images are
analyzed using a three-dimensional (3D) tensor cube [25], and a higher-order orthogonal iteration
algorithm is used to detect the changes. The application of a vector machine provides the results
of a semi-supervised distance metric for CD (SSDM-CD), which assists in identifying the changed
areas effectively and tries to solve the limited labeled training samples [3]. The similarity distance and
second-derivative spectral profiles generated from a synthetic image fusion were used [26] to detect
changes without dimensionality reduction.

Although the discussed previous studies demonstrated the effectiveness of the proposed methods,
several limitations remain, such as the inappropriate threshold selection, classification error, and model
complexity. To extract the features with a high dimensionality problem and to learn the CD rules for
newly obtained imagery from various platforms, data-driven and learning-based methods have been
developed. Deep-learning has exhibited good performance in remote sensing, such as classification
and CD. In the CD, deep-learning can learn different features hierarchically from different layers, and it
is effective for representing change information between multi-temporal images [27]. Deep-learning is
also better for handling the high dimensionality problem. A convolutional neural network (CNN) is a
representative deep architecture that is comprised of convolutional layers as the multi-scale feature
extractor and a fully connected layer as the classifier [28]. An end-to-end two-dimensional (2D)
CNN framework, known as GETNET, was proposed for detecting changes from temporal HSIs [10].
This framework generates a mixed-affinity matrix that integrates a subpixel representation and it is
fed into the network to detect temporal changes. Since the CNN acts mainly as a spatial–spectral
feature extractor in a CD framework, the input for the CNN architecture must be processed to obtain
temporal information. In this case, an important branch of deep-learning involves recurrent neural
networks (RNNs). An RNN uses recurrent connections between neural activations at consecutive time
steps, where hidden layers and memory cells store past signals for a long time [29]. Lye et al. [30]
used an end-to-end RNN based on the long short-term memory (LSTM) for multi/hyperspectral
CD that demonstrated that the RNN framework and an LSTM model could learn a stable change
rule. The two also serve as good transferability between target images with no extra learning process.
In recent years, several attempts have been made to combine a CNN and an RNN to extract meaningful
features. This study, described in Reference [31], proposed a recurrent CNN (ReCNN) for the CD,
which extracted the spatial–spectral features from a 2D CNN sub-network and fed them into an RNN
sub-network to extract the temporal features of changes. The ReCNN can detect changes effectively in
an end-to-end way by considering a spatial–spectral–temporal feature representation.

1.2. Problem Statements

Although deep-learning approaches produce superior results and take the advantage of
automatically learning the high-level semantic features from raw data in a hierarchical manner [32],
these approaches require training samples to train the network as the methods provide excellent
performance when the number of training samples is sufficient. Supervised deep-learning methods,
such as CNN and RNN, require training samples to train the network. These samples have high
probabilities of being either changed or unchanged; thus, the accuracy of the samples affects the CD
results. Many studies have verified the performance of such networks with samples extracted from
the ground-truth map [30,31,33]. However, the available labeled HSIs are limited because it is difficult
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to determine the change information without prior knowledge of the output values for the pixels.
Although several unsupervised methods, such as restricted Boltzmann machines (RBMs) [34] and
the auto-encoder (AE)-based algorithm [35], have been proposed to solve the problem, there are still
limitations. For example, the classification performance does not match with the supervised methods
and there are no global optimizations.

Another limitation of these networks relates to difficulties in maintaining a 2D structure (both
CNNs and RNNs) because the output of the convolutional layers is flattened to feed into the fully
connected layers. Moreover, the input of the RNN architecture works only with vectorized sequences.
However, in most remote-sensing applications, spatial information is very important, and a 2D class
map is required as an output [28].

1.3. Contributions of the Paper

To solve these problems, the present study proposes a sample generation method and a novel
CD network known as the recurrent 3D fully convolutional network (Re3FCN), which is a fully
convolutional network (FCN) that includes 3D convolutional layers and a convolutional LSTM
(ConvLSTM) [36]. The 3D convolutional layer can effectively extract the combined spectral–spatial
features from HSIs with fewer parameters [37]. ConvLSTM replaces the matrix multiplication operator
with the convolution operator; therefore, it can be applied to the image or feature maps wherein the
spatial information is critical [38]. Several studies have successfully combined 3D convolution and the
LSTM to extract spectral–spatial–temporal features. For example, 3D CNN network combined with
LSTM was used for the fall detection of video kinematic data [39]. 2D/3D CNN and a ConvLSTM
network were also used to extract spatiotemporal features from video data [40]. In contrast to the
CD, these studies aimed to recognize the motion and the gesture in RGB video images and spatial
structure of input could not be maintained because the studies used a fully connected layer at the end
of the network.

In contrast, the proposed method provides the following three major contributions.

(1) Our method is simple and effective in generating training samples. In many real cases, it is
difficult to obtain training/testing samples by applying CD methods. The fusion of PCs
obtained from multi-temporal images and the spectral correlation angle (SCA) [41] can produce
more-representative samples that have high probabilities of either being changed or unchanged,
for obtaining multivariate high accuracy. This improves the training of the network efficiency
with fewer samples.

(2) The method can also detect multi-class changes in an end-to-end manner. Most CD methods focus
on binary CD to identify specific changes, but the proposed method can discriminate the nature
changes in the sample-generation step. The proposed network can also learn the characteristics of
the changed class effectively. Moreover, the Re3FCN can receive two images directly and perform
the CD with no pre-treatment of the two input images.

(3) The proposed method is effective in extracting spectral–spatial–temporal features of
multi-temporal HSIs while maintaining spatial information using a fully convolutional structure.
The 3D convolution is effective in exploiting the spectral–spatial information, and ConvLSTM
can model the temporal dependency of multi-temporal images while maintaining the spatial
structure. Thus, this study is a novel method which uses an FCN that includes 3D convolutional
layers and an ConvLSTM for the hyperspectral CD.

The rest of this paper is organized as follows. In Section 2, we present the proposed CD
architecture. In Section 3, we describe the data sets, the environmental conditions of the experiments,
and the results. Finally, we draw conclusions in Section 4.
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2. Change Detection Methodology

The proposed method was divided into two parts, namely (i) generating samples for network
training and (ii) training the Re3FCN and producing the CD map.

(1) Generating samples for network training using PCA and similarity measures. To identify multiple
changes, a difference image (DI) was produced using PCA and the spectral similarity measure.
The PCs and SCA were calculated using multi-temporal images and fused to form the DI. To select
training samples of each class, the endmembers were extracted as a reference spectrum of each
class. Finally, the pixels in which spectral angle was lower than the threshold were assigned
to each endmember class. The samples were then selected randomly, and 3D image patches
centered at each selected sample were fed into the Re3FCN network.

(2) Training the Re3FCN and producing the CD map. The 3D patches obtained from each image
passed through the 3D convolutional layer to extract spectral and spatial information, whereupon
the spectral–spatial feature maps were fed into the ConvLSTM layer. In this phase, the temporal
information between two images was reflected. The output of the ConvLSTM layer was fed
into the prediction layer to generate the score map. The number of final feature maps equaled
the number of classes. Finally, the pixels were classified to the final classes according to the
score map.

2.1. Sample Generation

Let IT1 and IT2 be two HSIs acquired over the same location at different times T1 and T2,
respectively. The size of each image is C× R× L (IT(x, y, l), 1 ≤ x ≤ C, 1 ≤ y ≤ R, and 1 ≤ l ≤ L),
where C and R are the columns and rows of the image, respectively, and L is the number of spectral
bands. Figure 1 shows the flow of generating samples for network training. Generally, PCA can be
applied in two ways to detect changes in multi-temporal images [42]. First approach involves directly
comparing independently obtained PCs from different images with other CD methods, such as image
differencing and regression analysis. The second approach involves combining multi-temporal images
with α and β bands into one image with (α+ β) bands; then, the stacked image is transformed to
(α+ β) PCs.

Remote Sens. 2018, 10, x  5 of 22 

 

DI. To select training samples of each class, the endmembers were extracted as a reference 
spectrum of each class. Finally, the pixels in which spectral angle was lower than the threshold 
were assigned to each endmember class. The samples were then selected randomly, and 3D 
image patches centered at each selected sample were fed into the Re3FCN network. 

(2) Training the Re3FCN and producing the CD map. The 3D patches obtained from each image 
passed through the 3D convolutional layer to extract spectral and spatial information, 
whereupon the spectral–spatial feature maps were fed into the ConvLSTM layer. In this phase, 
the temporal information between two images was reflected. The output of the ConvLSTM layer 
was fed into the prediction layer to generate the score map. The number of final feature maps 
equaled the number of classes. Finally, the pixels were classified to the final classes according to 
the score map. 

2.1. Sample Generation 

Let 𝐼  and 𝐼  be two HSIs acquired over the same location at different times 𝑇  and 𝑇 , 
respectively. The size of each image is 𝐶 × 𝑅 × 𝐿  (𝐼 (𝑥, 𝑦, 𝑙), 1 ≤ 𝑥 ≤ 𝐶, 1 ≤ 𝑦 ≤ 𝑅, and 1 ≤ 𝑙 ≤ 𝐿) , 
where 𝐶 and 𝑅 are the columns and rows of the image, respectively, and L is the number of spectral 
bands. Figure 1 shows the flow of generating samples for network training. Generally, PCA can be applied 
in two ways to detect changes in multi-temporal images [42]. First approach involves directly comparing 
independently obtained PCs from different images with other CD methods, such as image differencing 
and regression analysis. The second approach involves combining multi-temporal images with α and β 
bands into one image with (α + β) bands; then, the stacked image is transformed to (α + β) PCs. 

 
Figure 1. Flowchart of sample generation. 𝐸 = {𝐸 , 𝐸 , ⋯ , 𝐸 } is the endmember set including 𝑚 +

1 endmembers. Ω  and Ω  represent i-th changed class and unchanged class, respectively. 

The stacked image 𝐼  can be simplified as follows. 𝐼  and 𝐼  can be expressed in a matrix as 
follows: 

𝐼 =

𝑥 ( , ) ⋯ 𝑥 ( , )

⋮ ⋱ ⋮
𝑥 ( , ) ⋯ 𝑥 ( , )

, (1) 

𝐼 =

𝑥 ( , ) ⋯ 𝑥 ( , )

⋮ ⋱ ⋮
𝑥 ( , ) ⋯ 𝑥 ( , )

, (2) 

where 𝐿  and 𝐿  are the number of bands and 𝑛  and 𝑛  represent of the number of pixels of 𝐼  
and 𝐼 , respectively. If 𝐼  and 𝐼  have the same size, 𝐿 = 𝐿  and 𝑛 = 𝑛 . Considering each band 
as a vector, the stacked image 𝐼  can be simply defined as follows: 

Figure 1. Flowchart of sample generation. E = {E1, E2, · · · , Em+1} is the endmember set including
m + 1 endmembers. Ωci and Ωu represent i-th changed class and unchanged class, respectively.

The stacked image Is can be simplified as follows. IT1 and IT2 can be expressed in a matrix
as follows:

IT1 =


xT1

(1,1) · · · xT1
(1,n1)

...
. . .

...
xT1

(L1,1) · · · xT1
(L1,n1)

, (1)

IT2 =


xT2

(1,1) · · · xT2
(1,n2)

...
. . .

...
xT2

(L2,1) · · · xT2
(L2,n2)

, (2)
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where L1 and L2 are the number of bands and n1 and n2 represent of the number of pixels of IT1 and
IT2 , respectively. If IT1 and IT2 have the same size, L1= L2 and n1= n2. Considering each band as a
vector, the stacked image Is can be simply defined as follows:

Is =



XT1
1

XT1
2
...

XT1
L

XT2
1

XT2
2

...
XT2

L



. (3)

In Is, two images in an unchanged area are relatively correlated and two images in a changed area
are relatively uncorrelated [42]. The first PC represented the maximum variance of the multi-temporal
images and the second PC represented the largest variance not explained by the first PC. In this way,
the first component represented unchanged information between two images, and the subsequent
PCs were related to the change information. However, because PCA is a scene-dependent technique,
the changed portion of the whole scene affected the results of newly obtained PCs, as described in
Reference [43]. Therefore, the CD was achieved by analyzing the relative contribution of each input
band of the PCs. The contributions of the original input bands and the PCs could be determined
from the loadings, which were calculated from the eigenvectors and eigenvalues obtained from the
PCA. The eigenvalues represented the percentage of the total variance explained by each PC, and the
eigenvectors provided the orientations of the PC axes in the p-dimensional space, where p was the
number of extracted PCs. By considering the eigenvalues and loadings, the optimal PCs were selected
that distinguished the changes. The loading equation was

Loading = Eigenvector×
√

Eigenvalue (4)

Although the optimal PCs show the changed and unchanged pixels; some pixels are not
distinguished by the PCs. To discriminate between the changed and unchanged pixels, the optimal
PCs and spectral similarity values are combined. A measurement of spectral similarity identifies the
finer spectral differences between the two images, which are the differences that the PCs cannot detect.
Therefore, combining the PCs and spectral similarity values increases the possibility of discriminating
multivariate changes. Our study used the SCA, which reflected the level of the linear correlation
between two spectral vectors. The SCA is an angle of the SCM and has been used widely to detect
spectral changes because it is less affected by illumination and shadows, due to the relative insensitivity
gain and bias factors [44]. The SCM and SCA are calculated as follows:

SCM(x, y) =
∑L

l=1

(
IT1(x, y, l)− IT1(x, y)

)(
IT2(x, y, l)− IT2(x, y)

)
√

∑L
l=1

(
IT1(x, y, l)− IT1(x, y)

)2
∑L

l=1

(
IT2(x, y, l)− IT2(x, y)

)2
(5)

SCA(x, y) = cos−1
(

SCM(x, y) + 1
2

)
, (6)

where IT1(x, y) and IT2(x, y) are the mean values of the vectors of IT1(x, y, l) and IT2(x, y, l), respectively.
The SCA varies between zero and π

2 radians. The DI (i.e., the combination of the PCs and SCA) is
generated by
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DIi(x, y) = PCi(x, y)× SCA(x, y) (7)

where DIi and PCi are the i-th band and the selected PC, respectively. The DI is the weighted PCs.
After generating the DI, we used iterative error analysis (IEA), as in Reference [45], to extract the
endmembers. The endmembers represented spectral signatures of the pure materials in the scene.
Thus, the endmembers, obtained from the DI, represented the unique spectra of various changed and
unchanged classes. IEA is a popular endmember extraction method that extracts endmembers one
by one in sequential steps. As an input parameter, IEA requires the number of endmembers to be
extracted. In the CD analysis, the number of extracted endmembers was taken as the number of total
classes (m + 1), which included the changed classes Ωc = {Ωc1, Ωc2, · · · , Ωcm} and the unchanged
class Ωu. The extracted endmembers E = {E1, E2, · · · , Em+1} contained the representative spectral
information of each class.

Finally, the pixels were clustered to each endmember class using the spectral similarity values.
The SCA was calculated between all the pixels and endmembers. The pixels with a smaller SCA
matched to each endmember spectrum. However, the pixels with a bigger SCA than the maximum
angle threshold were not classified; rather they were assigned to the background class Ωb. Pixels were
extracted randomly from Ωc and Ωu as training samples; whilst no pixels were taken from Ωb. The 3D
image patches centered at these pixels were fed into the network.

2.2. Training Re3FCN and Producing CD Map

The Re3FCN is based on FCN architecture that includes 3D convolutional layers and the
ConvLSTM. Figure 2 shows the architecture of the Re3FCN. Rather than using a fully connected
layer, the network uses a convolutional layer at its end. The Re3FCN has two main modules, namely
the spectral–spatial module and the temporal module, trained in an end-to-end manner and it preserves
the spatial structure during the learning process. A simple network with low complexity is suitable
for hyperspectral CD tasks. This is because small patches are used as input, which naturally reduces
the depth of the network, and the predicted classes are relatively simple in comparison to other
classification tasks. For example, ImageNet classification has 1000 categories and the PASCAL VOC
classification has 20 classes [31].
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Figure 2. Architecture of the proposed change detection (CD) method.

2.2.1. Spectral-Spatial Module with 3D Convolutional Layers

3D patches were selected randomly from IT1 and equivalently from IT2 . Let iT1 and iT2 be 3D
patches taken from the same location in IT1 and IT2 , respectively. iT1 and iT2 were fed separately into
the spectral–spatial module of each branch. The spectral–spatial module in the Re3FCN had three 3D
convolutional layers and batch normalization (BatchNorm) layers. The BatchNorm layer was placed
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after the 3D convolutional layer. The BatchNorm layers facilitate higher learning rates and reduce the
dependency on initialization, thereby enabling more stable and faster training [46].

Many studies have used 2D CNNs to predict spatial distributions for HSIs, because 2D
convolutional layers exploit any local spatial correlation in the images that enforce a local
connectivity pattern between the neurons of adjacent layers [47]. However, to effectively apply
2D CNN for hyperspectral feature learning, pre-processing such as PCA for dimension reduction,
and post-processing such as the fusion of spectral information, should be conducted [10,47,48].
The processing is achieved because performing 2D convolution on all image bands separately requires
many learnable parameters when applied to an HSI with hundreds of bands. This inevitably leads
to overfitting, which is a burdensome calculation process. Moreover, a 2D convolution does not
conduct inter-band calculation; therefore, the spectral relation between the bands is not considered.
2D convolution can be expressed as:

oxy
lj = f

(
N−1

∑
n=0

M−1

∑
i=0

M−1

∑
j=0

wij
n o(x+i)(y+j)

(l−1)n + b

)
, (8)

where oxy
lj is the pixel value at position (x, y) on the j-th feature map in layer l, where the current

operation is located. f (·) is the activation function, and b is a bias. wij
n is the weight value at position

(i, j) in the n-th shared M×M kernel. N is the number of feature maps in the (l − 1)-th layer.
To solve the limitation of 2D convolution, 3D convolution has been introduced for HSI processing

and many studies have shown the effectiveness of 3D convolution for HSI classification [37,49].
3D convolution can extract both spatial and spectral features simultaneously using a 3D kernel.
3D convolution is calculated as:

oxyz
lj = f

(
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n
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∑
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M−1

∑
i=0

M−1

∑
j=0

wijr
n o(x+i)(y+j)(z+r)
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)
, (9)

where oxyz
lj is the pixel value at position (x, y, z) in the j-th 3D feature cube and in the l-th layer. R is

the spectral dimension of the 3D kernel, and wijr
n is the weight value at position (i, j, r) connected to

the n-th feature in the (l − 1)-th layer. Figure 3 shows the difference between 2D convolution and 3D
convolution. Compared to 2D convolution, 3D convolution can obtain spectral and spatial tensors.
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Generally, in a deep-learning network, pooling layers are used to reduce the computational cost
and to prevent overfitting. However, pooling layers lead to a serious loss of spatial dimension of the
feature maps. In this case, the Re3FCN used dilated convolution [50], instead of traditional convolution
and pooling. Dilated convolution [51] defines the spacing filled with zero between the original kernel
values, which allows the size of the receptive field to be extended without losing spatial resolution.
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Figure 4 shows dilated convolutions with different dilation rates. The operation of 3D convolution
with a dilation rate (d1, d2, d3) is formulated as:

oxyz
lj = f

(
∑
n

R−1

∑
r=0

M−1

∑
i=0

M−1

∑
j=0

wijr
n o(x+d1i)(y+d2 j)(z+d3r)

(l−1)n + b

)
. (10)
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2.2.2. Temporal Module with Convolutional LSTM

Feedforward networks, such as CNNs, assume that all inputs are independent. When extracting
features, a CNN does not consider the temporal relationship between two inputs. However, in the CD
tasks, many dependent portions between the time-series data were available because generally, changes
occurred as a minor portion in the entire study site. Thus, it was helpful to derive timely information
for the CD. Unlike CNNs, RNNs are designed to deal with dependent sequential inputs, used to
solve sequential learning problems. An RNN can explore the temporal dependency of multi-temporal
images by connecting previous information to the present task using recurrent hidden states.

To solve this problem, the LSTM was proposed as described in [52], which is an RNN architecture
that can remember values over arbitrary intervals using a memory cell ct at time step t. The LSTM
has three gates, namely the input gate ig, the output gate og, and the forget gate f g, each of which has
a learnable weight. f gt is the gate for forgetting the previous information. The output range of the
sigmoid function σ is 0–1: if σ = 0, the previous state information is forgotten; if σ = 1, the previous
state information is memorized. igt is the gate for remembering the current information. The cell states
are regulated, where they are deleted or added with information through the gates.

Let f T1 and f T2 be the spectral-spatial feature maps obtained from iT1 and iT2 , respectively.
The simplest LSTM can be expressed as in Reference [32]

f gt = σ
(

Wh f g·ht−1 + W f f g· f Tt + b f g

)
, (11)

igt = σ
(

Whig·ht−1 + W f ig· f Tt + big

)
, (12)

ogt = σ
(

Whog·ht−1 + W f og· f Tt + bog

)
, (13)

Here, “·” is the matrix multiplication operator. The weight matrix W subscripts have specific
meaning. For example, Wh f g and b f g are the weight matrices between ht−1 and f g, the bias of
f g, respectively.
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ct is the candidate cell value and constructs a new candidate value with igt, which is added to the
memory cell ct to influence the next state. Finally, output ht is determined by multiplying tanh (ct) and
ogt [Equations (14) and (15)], where “

⊙
” is the element-wise multiplication.

ct = tanh
(

Whc·ht−1 + W f c· f Tt + bc

)
, (14)

ct = f gt
⊙

ct−1 + igt
⊙

ct, (15)

ht = ogt
⊙

tanh(ct). (16)

Although the conventional LSTM deals with temporal data, its architecture is not suitable for
images and feature maps because (i) the size of the weight matrix increases the computational cost
and (ii) spatial connectivity is ignored [36]. ConvLSTM is a modification of the conventional LSTM
through replacing the matrix multiplication operators with the convolution operators. ConvLSTM
operates as Equations (17)–(20), which is the modification of Equations (11)–(16), wherein the matrix
multiplication operators are replaced by convolution operators. Its structure is shown in Figure 5.

f gt = σ
(

Wh f g ∗ ht−1 + W f f g ∗ f Tt + b f g

)
(17)

igt = σ
(

Whig ∗ ht−1 + W f ig ∗ f Tt + big

)
(18)

ogt = σ
(

Whog ∗ ht−1 + W f og ∗ f Tt + bog

)
(19)

ct = tanh
(

Whc ∗ ht−1 + W f c ∗ f Tt + bc

)
(20)

ct = f gt
⊙

ct−1 + igt
⊙

ct (21)

ht = ogt
⊙

tanh(ct) (22)
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Figure 5. Structure of the convolutional long short-term memory (LSTM). h0 is a randomly initialized
hidden state, and c0 is a memory cell. f gt,igt, ogt, ct, ct, and ht are forget gates, input gates, output
gates, candidate memory cells, memory cells, and hidden states, respectively, at time t.

Here, “∗” is a convolutional operator. The three gates of ConvLSTM have 3D tensors. ConvLSTM
determines the future state of a cell in the pixel based on the input and past state of its adjacent region
using a convolutional operator [36].

After f T1 and f T2 are fed into each temporal module of the T1, T2 branch, ConvLSTM will output
a sequence

(
hT1 , hT2

)
. Usually, before the first input is fed into the ConvLSTM, h0 and c0 are initialized

to zero, revealing the ignorance about future information. Moreover, ht and ct have the same size as
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the inputs of zero padding that were used. The Re3FCN has one more convolutional layer called the
prediction layer and an activation function layer, such as softmax and sigmoid, to generate heat maps.
Herein, only the ConvLSTM output h2 is fed into the final prediction layer. Then, the sigmoid layer
is used for binary CD and the softmax layer is used for multi-class CD. The cross entropy (CE) loss
function is used for parameter updates. The CE can be computed as follows [47]:

E(W, b) =
1
l

l

∑
i=1

CE(ỹi, yi)=
−1

l

l

∑
i=1

K

∑
k=1

[yiklogỹik + (1− yik) log(1− ỹik)], (23)

where W and b are the parameter sets of weights and bias, respectively. ỹi is the predicted class label,
and yi is the ground-truth label for a given sample. K is the number of classes, and l is the total number
of training patches. The stochastic gradient descent algorithm with momentum is used for parameter
updates. The t-th parameters are updated as follows:

Wt+1 = Wt − η
∂E(W, b)

∂W

∣∣∣∣wt (24)

bt+1 = bt − η
∂E(W, b)

∂b

∣∣∣∣bt (25)

where η is the learning rate for step length control, which is set as 0.001 in our experiments, and the
gradients are calculated using back-propagation as described in Reference [53].

2.2.3. Quality Evaluation

To evaluate the proposed method, we calculated the overall accuracy (OA), the Kappa coefficient,
and the producer accuracy (PA) by class. The OA was the number of correctly classified pixels divided
by a total number of sampled pixels. The Kappa coefficient measured how closely the images were
classified by the specific classifier with the ground-truth map. In other words, Kappa was a value that
compared an observed accuracy with an expected accuracy. For the Kappa coefficient, >0.8 represents
a strong agreement between the classification result and the ground truth, 0.6–0.8 represents good
accuracy, 0.4–0.6 represents moderate accuracy, and <0.4 represents poor accuracy as outlined in
Reference [54]. The PA was the measure of the omission error, which represented the pixels belonging
to one class that were incorrectly included in other classes.

Herein, we compared the accuracy of the Re3FCN with several other methods, namely the CVA,
IR-MAD, PCA-SCA, support vector machine (SVM) [55], FCN, and the combination of 2DCNN-fully
connected LSTM (2DCNN-LSTM). CVA and IR-MAD are effective unsupervised CD methods that
have been used in many binary CD studies [12,31,32]. PCA-SCA is the fusion of PCA and SCA. Herein,
we used PCA-SCA for sample generation to extract endmembers and for multi-class CD, because it
can provide multiple changes through fusion techniques. SVM is a supervised classifier that finds
a hyperplane in an N (the number of features) dimensional space to classify the data. In this paper,
the SVM with RBF kernel was used.

k-means clustering was used to select thresholds automatically for unsupervised methods,
such as the CVA and IR-MAD. PCA-SCA classified the pixels according to the SCA values with
endmembers. To compare our model with the other deep-learning architectures, we used FCN and
2DCNN-LSTM for both the binary and multi-CD. The FCN architecture used in the experiment
comprised of several convolutional layers with a 2D kernel for feature extraction and pixel labels
prediction. The 2DCNN-LSTM has the same structure of that described in Reference [32], and it is
mainly composed of three sub-networks such as a 2D convolutional network, a recurrent network,
and fully connected layers. The network uses fully connected layers at the end of the structure for
predicting labels. As the CVA, IR-MAD, PCA-SCA, SVM, and FCN cannot deal with separated images,
we used stacked images as input for these methods, whereas the 2DCNN-LSTM and Re3FCN that
received multi-temporal images as input were trained in an end-to-end manner.
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3. Dataset

The dataset included two sites of hyperspectral EO-1 Hyperion multi-temporal images
obtained from Yancheng in the Jiangsu province of China, which is a wetland agricultural area.
The multi-temporal images were acquired on 3 May 2006 (T1) and on 23 April 2007 (T2), and the
images were registered using geographic map projection WGS-84. The center coordinates of the
sites were (33◦39’51.85 N, 120◦18’16.25 E) and (33◦40’49.44 N, 120◦30’57.96 E), respectively (Figure 6).
The Hyperion spatial resolution was 30 m, and its spectral resolution was 10 nm in 242 bands ranging
from 0.400 to 2.500 µm. Subset images with 400 × 145 pixels and 114 spectral bands ranging from
0.5184 to 2.335 µm were used after removing the noise and uncalibrated bands. Pre-processing, such as
geometric and radiometric correction was applied to the multi-temporal images before CD.Remote Sens. 2018, 10, x  12 of 22 
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Figure 6. Locations of the two study sites in wetland agricultural areas in Yancheng (China), along with
false-color composite multi-temporal EO-1 Hyperion images (R: 0.864 µm, G: 0.651 µm, B: 0.549 µm).
The background map was obtained from the ArcGIS world map [56], and the Hyperion EO-1 images
were downloaded from the USGS websites [57]. The upper images are of site 1 and the lower images
are of site 2.

In the dataset, changed and unchanged classes were defined as Ωc and Ωu, respectively.
Binary CD distinguished the pixels of the sites into changed and unchanged classes. Figure 7a,b
show the ground-truth maps for the binary CD. To conduct multi-class CD, we divided Ωc into
Ωc1, Ωc2, Ωc3, and Ωc4 depending on the pattern of changes from T1 to T2. The four major land-cover
changes are related to vegetation, bare soil, and water changes [33]. The ground truths with four
classes of sites 1 and 2 are shown in Figure 7c,d, respectively. Ωc1 represented changes from bare soil
to vegetation, Ωc2 was from vegetation to bare soil, Ωc3 was from bare soil to water, and Ωc4 was from
water to bare soil. Site 2 comprised of many wetland areas, covered by water. Therefore, changes in
the wetlands were considered as water changes; for example, Ωc3 represented changes from bare soil
to wetland, and Ωc4 represented changes from wetland to bare soil.
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Figure 7. Ground truths for binary CD and multi-class CD. In the binary ground truths of (a) site 1
and (b) site 2, the change class (Ωc) is white and the unchanged class (Ωu) is gray. The multi-class CD
ground truths of (c) site 1 and (d) site 2 contain four major changes (Ωc1, Ωc2, Ωc3, and Ωc4), shown in
different colors.

4. Results

4.1. Sample Generation

4.1.1. PCs for CD

To generate training samples, we applied PCA to the stacked images. The objective of this phase
was to transform the multi-temporal images to make the changed and unchanged areas prominent
in the scene. Tables 1 and 2 provide the eigenvalues and cumulative percentage variances for the
newly obtained PCs for sites 1 and 2, respectively, and Figures 8 and 9 show the loadings of each PC.
By analyzing the eigenvalues and loading factors, we selected those PCs that were most useful for
identifying the changed or unchanged areas. In the case of site 1, we extracted PC1–PC6 because they
accounted for roughly 99% of the total variance in the staked multi-temporal image. The percentage
variance indicates the number variance in the multi-temporal images that is explained by the PC. As
PCs with low rank tend to concentrate uncorrelated noise between bands, we extracted the first few
PCs. As shown in Figure 8a, PC1 is loaded mainly on the T2 image and has a negative loading in
the visible band and a positive loading in the infrared band. This suggested that PC1 was mainly a
summary of the vegetation pixels in the T2 image. In contrast with PC1, PC2 was mainly loaded on
vegetation pixels in the T1 image (Figure 8b). Given PC1 and PC2 described the vegetation information
in each period, it was possible to extract change information using those components. Moreover, PC4
was negatively loaded on T1 and positively loaded on T2 in the red and infrared bands. Thus, PC4
could be used to measure the changes in those pixels that have contrast reflectance between two
periods. In the same way, we selected PC5 and PC6 as the final optimal PCs for CD. However, PC3 had
negative loadings in the visible and infrared bands on both the T1 and T2 images. This meant that PC3
represented those pixels that had low reflectance in the visible and infrared bands in both scenes that
were not suitable for analyzing changes in land cover.

Table 1. Eigenvalues and percentage variances of the principal components (PCs) obtained from site 1.

PC1 PC2 PC3 PC4 PC5 PC6

Eigenvalue 0.571 0.257 0.151 0.011 0.007 0.002
Cumulative % variance 56.35% 81.89% 96.79% 97.88% 98.58% 98.82%
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Table 2. Eigenvalues and percentage variances of PCs obtained from site 2.

PC1 PC2 PC3 PC4 PC5

Eigenvalue 2.244 0.340 0.301 0.087 0.019
Cumulative % variance 73.17% 85.88% 95.69% 98.51% 99.12%
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In the same way, we selected PC1–PC5 obtained from site 2 because they accounted for roughly
99% of the total variance in the multi-temporal images. We selected PC2, PC4, and PC5 as the final
PCs as they represented change information; for example, PC2 was positively loaded in the T1 image,
but negatively loaded in the T2 image. Therefore, PC2 could be used to measure brightness changes in
the pixel reflectance. In contrast, PC1 was loaded positively and evenly in all bands in both the T1 and
T2 images. Thus, the pixels had similar reflectance patterns in both times. PC3 was excluded from the
optical PCs because it possibly represented pixels with similar reflectance patterns.
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4.1.2. Clustering Pixels by SCA with Endmembers

After the final PCs were selected for CD, the PCs were fused to SCA values, which were calculated
between multi-temporal images. Figure 10 shows the color composites of the optimal PCs, SCA value
maps, and the results of the fusion of PCs and SCA for sites 1 and 2. In the fused images, the changed
and unchanged areas were more clearly distinguished than the original color composite of the PCs.
This was because a large value of the SCA was multiplied on a pixel, where the spectral difference
was great (assumed as the changed area), and a small value close to zero was multiplied on a pixel,
where the spectral difference in the multi-temporal image was small (assumed as the unchanged
area). This assisted in distinguishing and highlighting the unchanged/changed areas and the multiple
changes in the images.
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Figure 10. Results of fusion between PCs and SCA in experimental sites. (a) Color composite of PCs
with (R: PC1, G: PC2, B: PC4), (b) SCA between T1 and T2 images, (c) the fused image between PCs
and SCA for site 1. Additionally, (d) color composite of PCs with (R: PC2, G: PC4, B: PC5), (e) SCA
between T1 and T2 images, (f) the fused image between PCs and SCA for site 2.

The endmember set [E1, E2, · · · , Em+1] was extracted using IEA, and the number of endmembers
m + 1 was set to five, which was the total number m of changed classes plus the one unchanged
class. Since the endmembers represented pure pixels that had unique spectral values in the scene,
the distinguished features in the fusion images were the extracted endmembers. The locations of
the endmembers are shown in Figure 11a,b. E1 − E5 were extracted from the specific changed or
unchanged classes.
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Figure 11. Locations of five endmembers extracted from the fused images of (a) site 1 and (b) site 2,
and the final samples for the network training with difference classes for (c) site 1 and (d) site 2.

Finally, the training samples were generated by assigning the pixels to specific endmember classes
ωEi with the SCA threshold values, which was calculated between Ei and all the pixels (Figure 11c,d).
For example, ωE1 was the class of E1, and those pixels with SCA values lower than the threshold
value of E1, were assigned to class ωE1 . Herein, the threshold was set to 0.05, which was determined
experimentally. If the threshold value was set too high, then the pixels were more likely to be classified
incorrectly. If the value was set too low, then the number of training samples was insufficient. Therefore,
an appropriate value must be set, revealing that a value in the range 0.05–0.1 is suitable. Since the
pixels were assigned by the threshold value, some of the pixels that did not have SCA values within
the threshold for any Ei were not classified. This class was labeled ωb and the pixels in this class were
not used in the samples for network training. The samples were divided into training and testing
samples. Table 3 provides the numbers of ground truths and the training/testing samples for binary
and multi-class CD. Of all the samples, 70% were used for training, and 30% were used for testing.
For site 1, ωE4 and ωE1 (which represent Ωc3 and Ωc4, respectively) contributed relatively few samples,
and ωb for site 2 contributed a larger portion than that of site 1. Table 4 gives the PA of ωEi except
ωb. The samples were extracted with high accuracy. The OA of ωEi for site 1 was higher than that of
site 2. The reason for the difference was that as site 2 contained many materials with similar spectral
properties (e.g., wetlands over vegetation, which exhibited both vegetation and water characteristics),
the pixels could be misclassified into different endmembers.

Table 3. Numbers of ground truths, training and testing samples in sites 1 and 2.

Dataset Type of CD Ground Truth Training Samples Testing Samples

Site 1

Binary CD
Ωu 37,606 ωE5 25,530 10,942
Ωc 20,394 ωE1∼4 13,341 5717

ωb 2470

Multi-class CD

Ωu 37,606 ωE5 25,530 10,942
Ωc1 6863 ωE3 4924 2110
Ωc2 13,435 ωE2 8370 3587
Ωc3 56 ωE4 24 10
Ωc4 51 ωE1 23 10

ωb 2470

Site2

Binary CD
Ωu 44,798 ωE5 25,307 10,846
Ωc 13,202 ωE1∼4 7137 3059

ωb 11,651

Multi-class CD

Ωu 44,798 ωE5 25,307 10,846
Ωc1 5158 ωE1 3100 1328
Ωc2 473 ωE2 224 96
Ωc3 5655 ωE3 2978 1275
Ωc4 1889 ωE4 838 359

ωb 11,651
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Table 4. Class accuracies of samples generated from sites 1 and 2.

PA

Ωu Ωc1 Ωc2 Ωc3 Ωc4

Corresponding class

Site 1
Site 2

ωE5 ωE3 ωE2 ωE4 ωE1

ωE5 ωE1 ωE2 ωE3 ωE4

Site 1
Site 2

0.963 0.998 0.941 1.000 1.000
0.971 0.941 0.930 0.924 0.971

4.2. Change Detection Results and Discussion

Figures 12 and 13 show the binary and multi-class CD maps obtained from the Re3FCN and
other methods. The OA, Kappa coefficient, and accuracy of all the class methods on the binary and
multi-class CD are given in Tables 5 and 6. To compare the CD ability in samples where no training
samples were extracted, the accuracies in class ωb were calculated. Compared to site 1, site 2 had
lower OAs and Kappa coefficients for all the methods. This seemed affected by the sample accuracies.
The sample classes of site 1 were more accurate than those of site 2. Moreover, most errors were
identified in the class ωb pixels, (which had no sample data), because site 2 had a higher portion of ωb
pixels as compared with site 1, the OA and Kappa values were lower in site 2 as compared to site 1.
The results showed that the sampling error in the sample-generation step could affect the accuracy of
the entire CD results. Nevertheless, the CD results on ωb pixels can provide useful information for
confirming the likelihood of CD in the absence of reference data.
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Figure 12. Binary and multi-class CD maps obtained from the Re3FCN and other methods for site 1. 
Binary CD: (a) CVA, (b) IR-MAD, (c) FCN, (d) 2DCNN-LSTM, and (e) Re3FCN. Multi-class CD: (f) 
PCA-SCA, (g) SVM, (h) FCN, (i) 2DCNN-LSTM, and (j) Re3FCN. 
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Figure 12. Binary and multi-class CD maps obtained from the Re3FCN and other methods for site
1. Binary CD: (a) CVA, (b) IR-MAD, (c) FCN, (d) 2DCNN-LSTM, and (e) Re3FCN. Multi-class CD:
(f) PCA-SCA, (g) SVM, (h) FCN, (i) 2DCNN-LSTM, and (j) Re3FCN.
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(g) SVM, (h) FCN, (i) 2DCNN-LSTM, and (j) Re3FCN. 
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(f) PCA-SCA, (g) SVM, (h) FCN, (i) 2DCNN-LSTM, and (j) Re3FCN.
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Re3FCN 0.981 0.958 0.994 0.958 0.928 0.969 0.911 0.982 0.925 0.917

Table 6. Accuracy comparison of multi-class CD on sites 1 and 2.

Methods OA Kappa
PA

Ωu Ωc1 Ωc2 Ωc3 Ωc4 ωb

Site 1

PCA-SCA 0.958 0.919 0.972 0.918 0.942 0.977 0.826 0.809
SVM 0.973 0.951 0.991 0.946 0.940 0.600 0.558 0.884
FCN 0.972 0.945 0.990 0.942 0.940 0.605 0.739 0.844

2DCNN-LSTM 0.973 0.950 0.964 0.935 0.951 0.488 0.739 0.878
Re3FCN 0.976 0.953 0.993 0.951 0.942 0.837 0.783 0.905

Site 2

PCA-SCA 0.916 0.775 0.957 0.771 0.714 0.746 0.849 0.756
SVM 0.945 0.872 0.973 0.894 0.546 0.875 0.862 0.852
FCN 0.942 0.846 0.958 0.923 0.633 0.871 0.873 0.811

2DCNN-LSTM 0.951 0.880 0.976 0.901 0.606 0.868 0.863 0.861
Re3FCN 0.962 0.895 0.985 0.937 0.731 0.842 0.866 0.899

Although classical unsupervised CD methods, such as CVA and IR-MAD with k-means clustering
and PCA-SCA achieved good performance compared to the SVM and other deep-learning methods,
errors occured in class ωb and at the edges of the classes. For example, CVA and IR-MAD had the
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lowest OA and Kappa coefficient in site 1 and site 2, respectively. Moreover, PCA-SCA showed
relatively poor CD results as compared to those of the other methods. Many errors occured at the
edges of the objects. This was because the PCA-SCA considers only spectral values when classifying
the pixels of spectrally similar materials; for example, shadows in the object edge line and water that
have low reflectance can be misclassified.

SVM and the deep-learning methods outperformed the classical methods in terms of the OA and
Kappa coefficient in both site 1 and site 2, including the pixels in ωb. However, the FCN and SVM need
specific operation like image stacking before the CD. Moreover, 2DCNN-LSTM and Re3FCN achieved
better performance than that of the FCN with a 2D kernel and the SVM. For example, the OA and
Kappa coefficient of the FCN in site 2 for binary CD were 0.938 and 0.822, respectively. The respective
improvements in the OA and Kappa coefficient were 1.3% and 0.030 achieved by the 2DCNN-LSTM
and 3.1% and 0.089 achieved by the Re3FCN. Furthermore, for a multi-class CD in site 2, the OA and
Kappa coefficient of the SVM were 0.945 and 0.875, respectively, but the 2DCNN-LSTM delivered
improved values of 0.951 (OA) and 0.880 (Kappa coefficient); and the Re3FCN delivered improved
values of 0.962 (OA) and 0.895 (Kappa coefficient). The results showed the possibility that using
recurrent convolutional networks could be effective for hyperspectral CD.

Furthermore, comparing the Re3FCN and the 2DCNN-LSTM, although both methods showed
good performance and had similar accuracies, the results showed that the Re3FCN had the most
stable and best performance in both site 1 and site 2. In particular, the Re3FCN was efficient at
detecting binary and multi-class changes and it achieved the highest accuracies in class ωb in all the
CD experiments. For example, the OA and Kappa coefficient of the 2DCNN-LSTM and the Re3FCN in
site 1, in terms of binary CD, had similar OA and Kappa coefficients such as 0.977 (OA), 0.949 (Kappa
coefficient), and 0.981 (OA), 0.958 (Kappa coefficient). However, the accuracies on ωb of the Re3FCN
(0.928) was higher than the 2DCNN-LSTM (0.917). Moreover, the accuracies in the multi-class CD in
site 2, Re3FCN, had a higher OA (0.899) on the pixels included in ωb than 2DCNN-LSTM OA (0.861).
The results showed that the Re3FCN could learn change rules from existing data and could be applied
effectively to pixels without reference data. The present CD experiment confirmed that using a 3D
convolution and ConvLSTM allowed a spectral–spatial–temporal change detector to be constructed.

5. Conclusions

In this study, we proposed a novel sample generation and a CD network, called the Re3FCN. This
method merged the advantages of both a 3D FCN and a convolutional LSTM. The PCA and SCA were
combined to generate reliable samples with high accuracy, and the training samples were determined
based on the SCA value for each endmember. This method assists in conducting CD in cases where
there are is reference or training data, such as in unsupervised CD. Furthermore, the Re3FCN (i)
can extract spectral–spatial–temporal information between multi-temporal images, (ii) is effective in
detecting binary and multi-class changes whilst maintaining the spatial structural inputs by replacing
fully connected layers with convolutional layers, and (ii) can be trained in an end-to-end manner. The
CD results were compared with those of the CVA, IR-MAD, PCA-SCA, SVM, FCN, and 2DCNN-LSTM.
The Re3FCN outperformed them in both the binary and multi-class CD. Particularly, the Re3FCN was
effective in detecting changes in areas from which no training samples had been extracted.

However, several problems in the CD method were identified; for example, the errors associated
with sample generation can affect the final CD. To solve these problems, we improved the accuracy of
the training-sample generation and conducted additional experiments to confirm the ability to learn
changed rules from multi-temporal images obtained from different sensors.
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