
remote sensing  

Article

Using Landsat-8 Images for Quantifying Suspended
Sediment Concentration in Red River
(Northern Vietnam)

Quang Vinh Pham 1,2, Nguyen Thi Thu Ha 3,* , Nima Pahlevan 4,5, La Thi Oanh 3,
Thanh Binh Nguyen 1 and Ngoc Thang Nguyen 1

1 Institute of Geography, Vietnam Academy of Science and Technology, Ha Noi 10000, Vietnam;
pqvinh@ig.vast.vn (Q.V.P.), thanhbinhhtdl@gmail.com (T.B.N.), nnthang0101@gmail.com (N.T.N.)

2 Faculty of Geography, Graduate University of Science and Technology, Ha Noi 10000, Vietnam
3 Faculty of Geology, VNU University of Science, Ha Noi 10000, Vietnam; lathioanh_t58@hus.edu.vn
4 NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USA;

nima.pahlevan@nasa.gov
5 Science Systems and Applications, Inc., 10210 Greenbelt Road, Suite 600 Lanham, Lanham, MD 20706, USA
* Correspondence: hantt_kdc@vnu.edu.vn; Tel.: +84-24-35587060

Received: 16 October 2018; Accepted: 15 November 2018; Published: 20 November 2018 ����������
�������

Abstract: Analyzing the trends in the spatial distribution of suspended sediment concentration (SSC)
in riverine surface water enables better understanding of the hydromorphological properties of its
watersheds and the associated processes. Thus, it is critical to identify an appropriate method to
quantify spatio-temporal variability in SSC. This study aims to estimate SSC in a highly turbid river,
i.e., the Red River in Northern Vietnam, using Landsat 8 (L8) images. To do so, in situ radiometric
data together with SSC at 60 sites along the river were measured on two different dates during
the dry and wet seasons. Analyses of the in situ data indicated strong correlations between SSC
and the band-ratio of green and red channels, i.e., r-squared = 0.75 and a root mean square error
of ~ 0.3 mg/L. Using a subsample of in situ radiometric data (n = 30) collected near-concurrently
with one L8 image, four different atmospheric correction methods were evaluated. Although none
of the methods provided reasonable water-leaving reflectance spectra (ρw), it was found that the
band-ratio of the green-red ratio is less sensitive to uncertainties in the atmospheric correction for
mapping SSC compared to individual bands. Therefore, due to its ease of access, standard L8 land
surface reflectance products available via U.S. Geological Survey web portals were utilized. With the
empirical relationship derived, we produced Landsat-derived SSC distribution maps for a few images
collected in wet and dry seasons within the 2013–2017 period. Analyses of image products suggest
that (a) the Thao River is the most significant source amongst the three major tributaries (Lo, Da and
Thao rivers) providing suspended load to the Red River, and (b) the suspended load in the rainy
season is nearly twice larger than that in the dry season, and it correlates highly with the runoff
(correlation coefficient = 0.85). Although it is demonstrated that the atmospheric correction in tropical
areas over these sediment-rich waters present major challenges in the retrievals of water-leaving
reflectance spectra, the study signifies the utility of band-ratio techniques for quantifying SSC in
highly turbid river waters. With Sentinel-2A/B data products combined with those of Landsat-8,
it would be possible to capture temporal variability in major river systems in the near future.
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water-leaving reflectance spectra; atmospheric correction

Remote Sens. 2018, 10, 1841; doi:10.3390/rs10111841 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-5010-5615
http://www.mdpi.com/2072-4292/10/11/1841?type=check_update&version=1
http://dx.doi.org/10.3390/rs10111841
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2018, 10, 1841 2 of 19

1. Introduction

Changes in the spatial distribution of suspended sediment in riverine systems indicate a wide variety
of hydrological and environmental processes, including up-stream erosion and top-soil loss, sediment and
water transportation, nutrient and toxic loading, and contaminant accumulation. Suspended sediment also
attenuates light penetration in water column through absorption and scattering; therefore, its concentration
is a key parameter for assessing water clarity and its overall quality.

There are several methods for measuring near-surface suspended sediment concentrations (SSC) [1,2].
Amongst all of the methods, remote sensing has been demonstrated as a promising tool to study the
spatial variability of SSC, whose presence increases the overall backscattering (brightness) of water column
across the visible and the near-infrared (NIR) spectra [3–8]. However, developing a robust model for
SSC estimations in inland waters is a daunting task, due to major contributions of other optically active
components of water column, such as chlorophyll a and colored dissolved organic matter [9]. This task
becomes even more challenging, given the presence of organic and/or inorganic particles with varying
absorption/scattering properties [7], the effects of varying particle size and shape on the attenuation
and/or scattering coefficients [10,11], and the dynamic nature of suspended sediment transport in fluvial
systems, either from catchment flow events and/or from internal re-suspension of bed materials.

The Red River in the Northern Vietnam is amongst the most turbid rivers in Southeast Asia [12].
It is used for agriculture and is the primary source of sediment supplied to the Red River Delta, one of
the most populated deltas in the world. The Red River flows from Yunnan in Southwest China to the
Gulf of Tonkin and is 1126 km in length, flowing through many residential areas and various geologic
settings; resulting in significant spatial variability and variable optically active water constituents [13].
Such variability along the river complicates the development of robust retrieval algorithms for the
existing Earth-observing satellite data.

Remote sensing has been widely used to estimate and map the turbidity and SSC in coastal and
inland waters, particularly in reservoirs, estuarine, lacustrine, and coastal bay waters. There are few
studies that focus on estimating SSC in river waters using MODIS satellite images but challenging
due to the coarse spatial resolution of the data comparing to the size of the river section [14–16].
Several studies have applied Landsat satellite data to estimate SSC in river waters [5,17–21] taking
advantage of its 30-m spatial resolution [20]. Our literature review indicated that the visible spectral
bands and various band ratios of Landsat image products are well correlated with SSC [22].

The latest Landsat sensor, the Operational Land Imager onboard Landsat-8 (hereafter referred to as
L8), launched in 2013, has a high potential for monitoring aquatic environments [23]. To map and monitor
SSC, several empirical regression-based models have been developed. These include single-band [24–28],
two-band ratio [29,30], and three-band combinations [31,32]. Results from these studies have demonstrated
L8 as a suitable satellite asset for a robust estimation of SSC [33,34]. Although there is a considerable body
of literature available for describing SSC retrievals in coastal and inland waters, the utility of L8 for SSC
mapping in riverine systems has not been fully explored. The main challenge in remote sensing of inland
waters, however, is how to precisely remove atmospheric effects from calibrated satellite measurements
at top of atmosphere (TOA). More specifically, a large fraction of the signal recorded at TOA arise from
scattering and absorption in the atmosphere. Therefore, evaluating the performance of atmospheric
corrections is a critical step toward accurate/precise retrievals of water quality parameters, such as SSC.
However, there is currently no widely accepted atmospheric correction for highly turbid, relatively narrow
riverine systems in tropical regions where scattered clouds are commonly present.

The purpose of this study is to evaluate the suitability of L8 images for SSC mapping along the
Red River for river water managements. To that end, we focus on two aspects of riverine remote
sensing: (a) developing an empirical SSC algorithm and (b) assessing the performance of four different
atmospheric correction methods for quantifying SSC. We conducted two field campaigns under L8
overpasses where in situ radiometric data were collocated at 60 stations. Together with radiometric
data, near-surface grab samples were acquired to allow for estimating SSC in the Red River’s major
confluence. We first explore the relationships between the in situ water-leaving reflectance spectra
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(ρw) and SSC, to identify most robust empirical model for SSC retrievals in the Red River. Second,
we compare a subset of near-concurrent in situ ρw to evaluate surface reflectance products derived
from different atmospheric correction methods, i.e., the Landsat-8 Surface Reflectance Code (LaSRC),
the Dark-Object Subtraction (DOS), the Fast Line-of-sight Atmospheric Analysis of Hypercubes
(FLAASH), and the SeaWiFS Data Analysis System (SeaDAS) [35]. Lastly, spatial distributions of SSC
(at 30 m pixel size) over the river confluence in both the dry and wet seasons are analyzed to better
understand the seasonal variations in SSC along the Red River. The manuscript is therefore structured
as follows: The next section provides the material and methods elaborating on the study area, field
sampling, and image processing. Section 3 describes the results followed by the discussion in Section 4.

2. Materials and Methods

2.1. Study Area

The Red River is the second largest river in Vietnam, after the Mekong River in Southern Vietnam.
It is a complex hydrological system that is strongly affected by anthropogenic activities [13]. The river
is one of the most sediment-laden rivers in the world, with an estimated suspended load ranging from
90 × 106 ton/year [36] to 160 × 106 ton/year that discharge into the Gulf of Tonkin [12]. The Red
River crosses into Vietnam at Ha Khau and Lao Cai named Thao River, and flows downstream.
It receives inputs from two major tributaries, the Da and Lo rivers, in Thai Hoa commune (Ba Vi
district, Hanoi city, Vietnam) and Bach Hac ward (Viet Tri, Phu Tho, Vietnam), respectively (Figure 1).
It then flows eastward to the Gulf of Tonkin (the South China Sea). The river confluence, where three
major tributaries intersect, is selected in this study because of its complexity in hydrodynamics and
diversity in their optical properties. The river-bed from the sub-confluence of the Thao River and the
Da River to the sub-confluence of the Red River with the Lo River, is approximately 4 m in width
during the wet season, and 200–500 m in width for two channels in the dry season. The mean depth
of these channels is 5–6 m in the dry season and may reach 10–11 m during the rainy season [37].
Mapping the distribution of SSC in this confluence helps us to better understand the contribution of
each tributary in providing suspended load in the Red River.
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Figure 1. The Red River basin in Northern Vietnam (A), together with the sampling stations over the
confluence on 11 November 2017 and 19 January 2018, overlaid onto the L8 shortwave infrared band
(band 7) image (B).
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In addition, the Red River is situated in the region that is affected by the tropical monsoon climate,
which is characterized by the alternations between the dry and wet seasons. The wet season lasts
for six months from May to October (recently, the season extents to November), and it accumulates
approximately 85–95% of the total annual rainfall. The mean annual water discharges of the Da, Lo,
and Thao rivers are 1700, 1050, and 750 m3/s (as calculated for the period from 1998–2008) [36], but due
to the recent construction of dams on the Da River and the Lo, the mean annual water and suspended
sediment discharges in these three tributaries have been drastically changed, i.e., the water discharges
of all three tributaries have increased slightly in contrast to the downward trend of suspended sediment
discharges in the Da River and the Red River [38]. The mountainous areas in the upstream basin of
the Red River, particularly the Thao River, are highly eroded due to their tectonically active geologic
settings [39]. The high-erosion rates give the river its red-brown color, making up the present-day
name of the river. Additionally, the establishment and operation of two large reservoirs in the Da
River (Hoa Binh and Son La hydropower reservoirs) has led to a considerable reduction in the total
suspended load in the Red River [40]. The Thao River had been ranked as the second significant
source of suspended sediment discharge among three tributaries prior to 1989, and it became the first
significant source of suspended sediment discharge for the Red River from 1989 up to the present [38].

2.2. Field Sampling and Measurement

In situ SSC and above-water radiometric data were collected concurrently during the two field
campaigns on 11 November 2017 (corresponding to late of the rainy season in 2017, after a short period of
heavy rains over the catchment in October and early November 2017 [41]) and 19 January 2018 (middle
of dry season). Water samples and water-leaving reflectance measurement were collected/recorded at
60 sites (Figure 1) within an hour before, and two hours after the L8 overpass time, i.e., ~ 10:30 a.m.
local time) by two groups of three people in two boats. Water samples were taken at a depth of 0–50 cm
using a Van Dorn water sampler, preserved in 1 L cleaned, dark-color bottles, and then refrigerated and
transported to the laboratory.

Through the laboratory exercise, both chlorophyll a concentration (Chl) and SSC were determined
following the standard methods described in the American Public Health Association [1]. Specifically,
Chl was determined via spectrophotometric methods using acetone 95% extraction through a 0.7
µm porosity filter (using the Whatman 1825-047 GF/F Glass microfiber 47 mm diameter, 0.7 µm
nominal pore size), and a DR 5000 UV-VIS Laboratory Spectrophotometer and SSC was determined
by the standard gravimetric method. For SSC determination, water samples were filtered under a
vacuum through a 1.5 µm mesh (using the Whatman 934-AH Glass microfiber 47 mm diameter, 1.5
µm nominal pore size). The filter pads were then flushed with distilled water and dried (at 104 ± 1 ◦C
for a minimum of one hour). The SSC was then calculated using the following equation:

SSC = (A − B)/V, (1)

where A is the mass of filter and dried residue (mg), B is the mass of filter (tare weight) (mg), and V is
the volume of water sample filtered (L).

Above-water reflectance measurements were made at all the sites using a SVC (Spectra Vista
Corporation, Poughkeepsie, NY, USA) GER1500, a field portable spectroradiometer covering the ultra-violet,
visible, and near-infrared (NIR) wavelengths from 350 to 1050 nm at 1.5-nm resolution. The water-leaving
reflectance, i.e., ρw(λ), was corrected for surface Fresnel reflection using the following Equation [42]:

ρw(λ) = Rp*{[Lw(λ)-ρ*Lsky(λ)]/π*Lp}, (2)

where Rp is the reflectance of our standard reference panel, Lw(λ) is the water-leaving radiance,
Lsky(λ) is the sky radiance measured sequentially at 40–45 degrees from nadir and zenith, respectively,
and 135 degrees from the Sun in azimuth [43], ρ is the air-water interface Fresnel reflectance with a
value of 0.022, and Lp is the radiance for the reference panel.



Remote Sens. 2018, 10, 1841 5 of 19

Along with water sampling, water clarity was measured concurrently in the field using a standard
20 cm plastic Secchi disk. The Secchi Depth (SD) measurements were used in the field as a reference to
exclude areas with potential effects of river bottom on ρw. Using ρw resampled to L8 spectral response
functions [44] and measured SSC, we experiment with multiple empirical correlations to identify the
most robust band (or band combinations) that best explains the variability in SSC in the Red River.

2.3. Image Analyses

The L8 images acquired on 11 November 2017 and other six images acquired in both wet and
dry seasons of 2013, 2014, and 2017 were analyzed in this study. The image characteristics, including
acquisition time, solar geometry, path/row, and environmental conditions are tabulated in Table 1.

Table 1. L8 images used in the study.

No. Scene Identifier Path/Row Acquisition Date Sun Elevation/Azimuth Cloud Cover

1. LC81270452017315LGN00 127/45 11 November 2017 46.431/152.357 45.75
2. LC81270452013224LGN01 127/45 12 August 2013 65.906/102.072 22.22
3. LC81270452014243LGN02 127/45 31 August 2014 63.744/115.977 27.82
4. LC81270452017219LGN01 127/45 7 August 2017 65.741/98.224 34.85
5. LC81270452013336LGN01 127/45 2 December 2013 41.969/153.988 0.73
6. LC81270452014003LGN01 127/45 3 January 2014 39.547/150.417 35.41
7. LC81270452016345LGN01 127/45 10 December 2016 40.603/153.255 30.88

We further evaluate the performances of the four atmospheric correction methods, i.e., LaSRC,
DOS, FLAASH, and SeaDAS, using measured in situ ρw. The standard Landsat-8 surface reflectance
products (ρw

LaSRC) obtained from LaSRC data are readily available via the USGS Earth Explorer data
portal [45]. The algorithm uses available ancillary data, the aerosol Moderate Resolution Imaging
Spectroradiometer–Climate Modeling Grid–Aerosol Information as input data to correct for the effect
of the atmosphere [46]. Furthermore, Level-1 TOA radiance/reflectance images were ingested into the
ENVI 5.3 software package to gauge the performances of two commonly used atmospheric correction
modules, FLAASH and DOS, to generate surface reflectance products, hereafter referred to as ρw

FL

and ρw
DOS, respectively. Note that while TOA radiance was supplied to FLAASH, DOS applies

TOA reflectance products to arrive at surface reflectance products. The DOS procedure uses the
dark values associated with the minimum values of L8 image bands. For the implementation in
FLAASH, the tropical atmospheric profiles were employed, together with a generic tropospheric
aerosol layer. The over-water retrieval is carried out via identifying dark water pixels, followed by
computing the reflectance ratio of the NIR and Short-wave Infrared (SWIR) bands (i.e., 2.2-micron
channel), which was proven to yield reasonable estimates of water constituent in turbid waters in
tropical area [47]. The SeaDAS package, originally developed for the atmospheric correction of ocean
color images and recently adopted for processing L8 data, uses the Rayleigh-corrected NIR and
SWIR (1.6-micron channel) band ratio to infer the dominant aerosol model and optical thickness [48].
Here, the SeaDAS-derived remote sensing reflectance products are converted to water-leaving
reflectance (ρw

SDS = Rrs × π) to allow for coherent inter-comparisons across different algorithms.
Matchup analyses were then conducted using the in-situ ρw (n = 30) collected on 11 November 2017 to

assess the quality of various reflectance products. The detailed procedure of using L8 images for quantifying
and mapping SSC in the Red River in this study is described in Figure 2.
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Figure 2. Flowchart describes the methodology for mapping the suspended sediment concentration
(SSC) spatial distribution in the Red River surface water using L8 images and the 60 point-data of
SSC, Secchi Depth (SD), chlorophyll a concentration (Chl) and the water-leaving reflectance (ρw).
Four atmospheric correction methods were evaluated, including the Landsat-8 surface reflectance code
(LaSRC), the dark-object subtraction (DOS), the Fast Line-of-sight Atmospheric Analysis of Hypercubes
(FLAASH), and the SeaWiFS Data Analysis System (SeaDAS).

3. Results

3.1. In Situ Radiometry and SSC

The measured ρw within the range of 400–900 nm associated with the 60 sites over the confluence
of the Lo-Da-Thao rivers (Figure 1) are shown in Figure 3a,b for 11 November 2017 and 19 January 2018,
respectively. The hyperspectral water-leaving reflectances in the confluence measured in November 2017 is
slightly larger in magnitude than those measured in January 2018, indicating larger backscattering signals
due to increased SSC in November 2017 (i.e., towards the end of rain season). This is corroborated by
comparing in situ SSC data for the two campaigns, where mean SSC in November was nearly twice than
that in January 2018 (i.e., 75.8 versus 46.4 mg/L in Table 2). The ρw are characteristic of highly turbid waters
and are similar in shape and magnitude to previously reported spectra [7,49,50], with distinct increased
water-leaving radiance within the red/NIR region, i.e., 650 to 670 nm. The higher variability in the spectral
curves in Figure 3a within the 600–700 nm range reflects a larger variability in optically active constituents
of the river waters in the wet season (prior to November) than in the dry season (after November).
The differences in the shapes of the two timeframes can be attributed to distinct phytoplankton types
and their specific absorption spectra. Furthermore, it is postulated that the differences in particulate
(organic/inorganic) scattering/absorption properties may give rise to dissimilar ρw, i.e., flat spectra in dry
season (Figure 3b) versus peaked spectra at ~ 570 nm. Further research is required to identify the specific
inherent optical properties of water constituents in the Red River, to enable an enhanced understanding of
contributions of various particles and/or phytoplankton types.
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Figure 3. The water-leaving reflectance (ρw) measured at (a) 40 sites on 11 November 2017 and
(ρ) 20 locations on 19 January 2018 (b) along the Red River. The L8 visible/near-infrared (NIR)
bandwidths are overlaid (band 1: B1 to band 5: B5). Each curve corresponds to the reflectance
spectrum measured at a sampling site.

Table 2. Descriptive statistics associated with in situ SSC and its correlations with in situ SD and L8
band-averaged mean reflectance.

Date Parameter N Minimum Maximum Mean Median Std. Deviation RSSC

11 November 2017

SSC (mg/L) 40 22.4 178.0 75.8 75.8 42.08 -
SD (cm) 31 15 43 31.5 32.0 8.19 −0.94

Chl (mg/m3) 40 1.3 56.1 12.6 8.7 10.8 −0.04
ρw(443) (B1) 40 0.002 0.049 0.008 0.005 0.011 −0.30
ρw(482) (B2) 40 0.014 0.085 0.041 0.036 0.019 −0.49
ρw(562) (B3) 40 0.060 0.289 0.144 0.144 0.055 −0.32
ρw(655) (B4) 40 0.050 0.277 0.143 0.143 0.051 0.09
ρw(865) (B5) 40 0.001 0.021 0.007 0.006 0.005 0.80

19 January 2018

SSC (mg/L) 20 13.2 78.4 46.4 46.4 19.98 -
SD (cm) 20 22 82 39 35.0 16.07 −0.77

Chl (mg/m3) 20 6.7 90.3 23.2 15.4 23.3 −0.68
ρw(443) (B1) 20 0.008 0.025 0.016 0.015 0.005 0.50
ρw(482) (B2) 20 0.016 0.067 0.035 0.035 0.013 0.41
ρw(562) (B3) 20 0.035 0.201 0.093 0.093 0.044 0.42
ρw(655) (B4) 20 0.025 0.209 0.083 0.075 0.050 0.58
ρw(865) (B5) 20 0.000 0.013 0.005 0.004 0.004 0.65

Table 2 includes the descriptive statistics associated with correlations among in situ SSC, SD, Chl,
and L8 band-averaged reflectance spectra. SSC in the river water ranged widely from 22.4 to 178 mg/L
(average value of 75.8 mg/L) in November 2017, and from 13.2 to 78.4 mg/L in January 2018 (average
value of 46.4 mg/L). As expected, SSC is highly correlated with the SD with the Pearson coefficients,
RSSC, of −0.94 and −0.77 in November and January, respectively. Contrary to SSC, Chl in the river
water ranged from 1.3 to 56.1 mg/m3 (average of 12.6 mg/m3) in November 2017, approximately
half of that in January 2018 (ranged from 6.7 to 90.3 mg/m3, average of 23.2 mg/m3). The correlation
between SSC and Chl in the river water was found to be insignificant, ranging from −0.04 (for the
dataset obtained in November 2017) to −0.68 (for the dataset obtained in January 2018), confirming
the high complexity of the river water color in the wet season which varies largely within the tone
from green (driven by Chl pigments) to brownish red (derived from Seston). Following several
experiments, we found that SSC is correlated with ρw(865), with the coefficient of determination being
0.65, suggesting its high potential for predicting SSC in the Red River.

We then evaluated commonly used band ratios, such as ρw(865)/ρw(655), ρw(655)/ρw(562),
ρw(482)/ρw(655), and ρw(443)/ρw(655) [22] to estimate SSC using the 40 in situ observations in
November 2017. Results showed that SSC has a fairly strong correlation with three ratios, B4/B3,
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B4/B5, and B4/B2 (R2 = 0.75, 0.70, and 0.61, respectively) with B4/B1 exhibiting poor correlations
(R2 = 0.04). The latter is not surprising because B1 is highly influenced by the dissolved organic
absorption. Results obtained from the regression analysis of in situ SSC with B4/B3, B4/B2, B4/B5,
and B5 for the 40 sampling points are illustrated in Figure 4a–d, respectively. The three band-ratio of
Landsat data for estimating SSC has not been addressed in preceding studies [22]; only the combination
of L8 bands 2, 3 and 4 have been examined recently [31,32]. Considering the effect of suspended
matters on water spectrum, several L8 band combinations within the visible and NIR were investigated,
i.e.: (B3 + B4)/B2; (B3 + B5)/B2; (B4 + B5)/B3; (B3 + B5)/B4; (B3 + B4)/B5. The (B4 + B5)/B3 exhibited
a strong correlation with SSC (R2 = 0.76; Figure 4e), while both (B3 + B4)/B5 and (B3 + B5)/B4 were less
correlated with SSC (R2 = 0.02 and 0.06, respectively), and the two other ratios of B2 ((B3 + B4)/B2 and
(B3 + B5)/B2, respectively) showed moderate correlations with SSC. The L8 there-band combination
for estimating SSC in a reservoir [24] was also explored and it is presented in Figure 4f, indicating the
limitation of this band combination for estimating SSC in the highly turbid water, such as the Red River.
The analyses suggest that exponential fits provide best estimates of SSC, which agrees with a previous
study [51]. Among all the analyses, SSC in the Red River water is strongly associated with the B4/B3
and the (B4 + B5)/B3, i.e., ρw(655)/ρw(562) and [ρw(865) + ρw(655)]/ρw(562), with the similar highest
determination of coefficients (R2 = 0.75 and 0.76) and the same smallest errors (root mean square errors,
RMSE, of 0.31 mg/L and 0.305 mg/L, corresponding to <1% of mean). Thus, these band combinations
are selected for estimating SSC in the Red River waters in this study using the following equation:

SSC = 2.73 × e3.11 × (B4/B3) (3)

and:
SSC = 4.24 × e2.53 × [(B4 + B5)/B3] (4)

where the SSC units are expressed is mg/L, B4/B3 is the ratio of ρw(655)/ρw(562) and (B4 + B5)/B3
stands for [ρw(865) + ρw(655)]/ρw(562).
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Figure 4. Exponential curves regressed to in situ SSC, ρw (d), and corresponding two-band ratios (a–c)
and three-band combinations (e,f). The hyperspectral ρw spectra were resampled to L8 bands. In total,
40 measurement pairs over the Red River collected on 11 November 2017 are utilized to examine SSC
estimations. The smallest error of estimate in B4/B3 (RMSE = 0.31) and (B4 + B5)/B3 allude to their
robust utility in predicting SSC in the Red River (a,e).
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We further validated the performance of the two models (Figure 4a,e) using the 20 measurements
collected in 19 January 2018 (Figure 5a,b). The estimated SSC are relatively consistent with the in situ
SSC, with a RMSE of 9.08 mg/L, R2 = 0.75 (Figure 5a), which corresponds to normalized RMSE of <20%
given the mean SSC, i.e., 9.08/46.4. The uncertainties in the proposed model resemble the performance of
another empirical models using L8 NIR band [28,52] and are lower than those utilizing machine learning
methods [52]. Such relatively high uncertainties are expected, due to the lack of representativeness in
ρw-SSC model development associated with the dry season. Such under-representation can be surmounted
by incorporating the specific inherent optical properties of water constituents in model developments [53].
Yet, recognizing the uncertainties, the proposed empirical model can be applied in river water management
practices to enable timely decision-making using L8 images. For example, using our model (Equation (3)),
it would be possible to monitor illegal sand exploitation and/or waste-water discharges through identifying
anomalous spatial patterns in Landsat-derived SSC.
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Figure 5. The scatterplots of in situ SSC and estimated SSC using Equation (3) (a) and Equation (4) (b)
for dataset obtained on 19 January 2018. Result confirms the appropriateness of Equation (3) (R2 = 0.75;
RMSE = 9.08) for estimating SSC in the Red River water using an L8 image.

3.2. Evaluating of Landsat-Derived ρw for Monitoring SSC

The natural-look image Figure 6A and the false color composition image Figure 6B of the confluence on
11 November 2017, which reflects the challenging environmental conditions, is illustrated in Figure 6. Due to
the presence of scattered clouds or their shadows, only 30 in situ samples were used for matchup analyses.Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 20 
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and the atmospheric condition during image acquiring time. 

The four different ρw products are derived from LaSRC (i.e., USGS standard products [35]), DOS, 
FLAASH, and SeaDAS. Figure 7 shows a qualitative comparison of spectral profiles of ρw obtained 
from the four processors (Figure 7b–e) and the in situ data. It can clearly be seen that none of the 
processors provides robust retrievals of ρw. The retrieved spectra are different from the in situ data, 
both in their shape and magnitude. Owing to the presence of adjacent clouds and its strict flagging 
criteria, SeaDAS mostly did not yield valid retrievals. SeaDAS also uses the NIR channel to estimate 
aerosol contribution; hence, no retrievals are reported for this channel. Furthermore, because of 
relatively high backscattering in the NIR, ~30% of SeaDAS retrievals were physically unrealistic (i.e., 
negative in the blue bands) one of which is shown in Figure 7e. 

 

Figure 6. The natural look image (4:3:2 band composition) (A) and the false color composition image
(7:6:2 band composition) (B) of the Red River confluence acquired by the L8 sensor on 11 November 2017
that reflects the difference of water color among three major tributaries (Lo, Da, Thao Rivers) and the
atmospheric condition during image acquiring time.
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The four different ρw products are derived from LaSRC (i.e., USGS standard products [35]), DOS,
FLAASH, and SeaDAS. Figure 7 shows a qualitative comparison of spectral profiles of ρw obtained
from the four processors (Figure 7b–e) and the in situ data. It can clearly be seen that none of the
processors provides robust retrievals of ρw. The retrieved spectra are different from the in situ data,
both in their shape and magnitude. Owing to the presence of adjacent clouds and its strict flagging
criteria, SeaDAS mostly did not yield valid retrievals. SeaDAS also uses the NIR channel to estimate
aerosol contribution; hence, no retrievals are reported for this channel. Furthermore, because of
relatively high backscattering in the NIR, ~ 30% of SeaDAS retrievals were physically unrealistic
(i.e., negative in the blue bands) one of which is shown in Figure 7e.
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Figure 7. The measured (L8-resampled) spectral ρw (a) compared against those derived from the
Landsat 8 image (11 November 2017) processed via Fast Line-of-sight Atmospheric Analysis of
Hypercubes (FLAASH) (b) and dark-object subtraction (DOS) (c) Landsat-8 surface reflectance code
(LaSRC) (d) atmospheric correction methods; and extracted from SeaWiFS Data Analysis System
(SeaDAS) (e). None of the processors provide robust retrievals of ρw for this complex scene (Figure 6).

Table 3 illustrates the statistical analyses for the performances of different processors. The statistical
metrics include descriptive statistics of L8 retrievals and their linear regression analysis parameters with in
situ ρw (R2, RMSE, slope, and y-intercept). Because of inadequate valid retrievals and lack of rigor in the
performances (Figure 7c), the results of SeaDAS and DOS are excluded in the table. The computed metrics
indicate that outputs of LaSRC and FLAASH significantly overestimate ρw in all bands (Figure 8). However,
on average, they produce reasonable ρw in B4, and in particular, in B3 (Figure 8d,c). The computed R2,
ranging from 0.09 to 0.41, suggests that the L8-derived single band reflectance for SSC retrievals may be
limited, due to large uncertainties in the atmospheric correction methods (Table 3). Nevertheless, the band
ratio B4/B3 derived from LaSRC and FLAASH processing exhibits reasonable correlations with in situ
SSC data, i.e., R2 = 0.7 for LaSRC and R2 = 0.75 for FLAASH (Figure 9). This implicates that the band
ratio model is less subject to errors in the atmospheric correction (e.g., inaccurate estimations of aerosol
type). Figure 9 further indicates that the deviations from the linear fits become larger in water types where
ρw(655) > ρw(562), i.e., sediment-dominated scattering waters, and that the sensitivity of the band-ratio
model to uncertainties in different processors is similar for (ρw(655)/ρw(562)) < 0.9 as the linear fits converge
towards smaller fractions.
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Figure 8. Scatterplots of regression results between in situ ρw(λ) and retrieved ρw(λ) corresponding to
L8 visible (a–d) and NIR (e) bands from FLAASH and LaSRC showing detail the uncertainties of these
two atmospheric correction methods on each band’s retrieved reflectance, compared to the above-water
measured reflectance. Note the differences in the ranges/scales of x- and y-axes.

Table 3. The performance statistics, associated with the derived surface reflectance products compared
to ρw corresponding to L8 visible bands (N = 30).

Methods Band (nm) Bias R2 RMSE Slope y-Intercept

FLAASH

ρw(443) 0.072 0.31 0.006 0.229 −0.008
ρw(482) 0.075 0.37 0.018 0.365 −0.011
ρw(562) 0.129 0.23 0.032 0.028 0.097
ρw(655) 0.1 0.09 0.026 0.132 0.118
ρw(865) 0.055 0.36 0.013 1.017 0.046

ρw(655)/ρw(562) 0.374 0.75 0.057 0.525 0.486

LaSRC

ρw(443) 0.058 0.30 0.006 0.318 −0.015
ρw(482) 0.065 0.41 0.017 0.929 −0.048
ρw(562) 0.099 0.27 0.022 0.213 0.111
ρw(655) 0.078 0.12 0.021 0.124 0.118
ρw(865) 0.05 0.26 0.013 0.766 0.061

ρw(655)/ρw(562) 0.262 0.70 0.037 0.302 0.659

DOS

ρw(443) 0.04 0.31 0.008 0.650 0.180
ρw(482) 0.047 0.41 0.009 0.324 0.155
ρw(562) 0.079 0.27 0.018 0.168 0.141
ρw(655) 0.064 0.12 0.017 0.103 0.136
ρw(865) 0.045 0.26 0.012 0.698 0.079

ρw(655)/ρw(562) 0.17 0.54 0.030 0.169 0.744
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exhibit highest agreements with in situ measurements, and they are readily available via the 
EarthExplorer [45]; therefore, we apply this empirical model (Equation (3)) to arrive at the spatial 
distributions of SSC along the Red River. we further evaluated L8SR products retrieved from six 
cloud-free L8 scenes (Table 1) acquired in the wet (November/August) and dry seasons 
(December/January). Figure 10 shows the spatial distributions of estimated SSC in the Red River 
waters in space and time. The estimated SSC in the Red River water ranged from 4.0 mg/L to 200 
mg/L (mean value of 85 mg/L) in the rainy season, which is twice as high as in the dry season (from 
4.5 mg/L to 60 mg/L; mean value of 43 mg/L). Regarding its spatial distribution, the SSC was found 
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3.3. Mapping SSC in the Red River Using L8SR

Since the derived B4/B3 model (Equation (3)) from the standard L8 USGS products (L8SR) exhibit
highest agreements with in situ measurements, and they are readily available via the EarthExplorer [45];
therefore, we apply this empirical model (Equation (3)) to arrive at the spatial distributions of SSC along
the Red River. we further evaluated L8SR products retrieved from six cloud-free L8 scenes (Table 1)
acquired in the wet (November/August) and dry seasons (December/January). Figure 10 shows the
spatial distributions of estimated SSC in the Red River waters in space and time. The estimated SSC in
the Red River water ranged from 4.0 mg/L to 200 mg/L (mean value of 85 mg/L) in the rainy season,
which is twice as high as in the dry season (from 4.5 mg/L to 60 mg/L; mean value of 43 mg/L).
Regarding its spatial distribution, the SSC was found to be higher in the Thao River; in particular,
towards the north bank of the Red River (Figure 10). The SSC is, however, lower in the Lo River and
the Da River in both seasons (Figure 10). The trend in the distribution can be seen in all the maps,
but much more evidently in the estimated SSC in the wet season (Figure 10 top row).
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Figure 10. The SSC distribution in the Red River surface waters (the river section includes the confluence of
three major tributaries: Thao, Da, and Lo rivers) empirically derived (Equation (3)) from Landsat-8 images.
Three maps at the top of the figure were generated from three L8 scenes acquired in the rainy season (August).
The three maps at the bottom of the figure were generated from three L8 scenes acquired in the dry season
(December to early January).
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The spatial distribution of SSC in Figure 9 indicates that the Thao River is a major source of
suspended sediment for the Red River. This result is in agreement with the suspended sediment
budget estimated from daily field monitoring and water discharges at the hydro-climatic stations,
namely, Yen Bai and Lao Cai on the Thao River, Hoa Binh on the Da River, Vu Quang on the Lo
rivers, and Son Tay, Ha Noi on the Red River [41], and the preceding studies [13,36]. The Da River
was recognized as the primary source of suspended load for the Red River in the period of 1958 to
1995 [54,55]; however, this study suggests that the Da River is no longer a major source for the Red
River compared to the Thao River. The impact of the hydropower dam systems on the Da River and the
Lo River on the suspended load capacity of the Red River, which has been demonstrated in previous
studies [13,36,38], has also been verified using L8 images. In particular, the Thao River, within the
Vietnamese territory, has the smallest catchment area (12,000 km2) compared to that of the Lo River
(22,000 km2) and the Da River (26,800 km2) but it provides the largest suspended sediment source to
the Red River, compared to the other two. This is a consequence of sediment impoundment in the
hydropower-dams on the Da River (seven operating dams) and the Lo River (nine operating dams).
The SSC in the Lo River water is rather low compared to the other two tributaries, the Thao River and
the Da River, in both seasons, illustrating the minor role of Lo River in providing suspended load
for the Red River [36]; although the Lo River has a large catchment area that has been excessively
exploited for agriculture and other long-term surface erosion activities.

In this study, the Red River reflects a typical characteristic of tropical river systems, where most of the
suspended load is discharged during the rainy season [10]. This trend is observed in Figure 10 through
two features: (a) the wider reach in the rainy season, corresponding to a high amount of run-off water
discharge, (b) the higher SSC levels corresponding to high suspended sediment discharge. Similarly, with the
smaller area of water surface in the dry season, a lower SSC level is found (correlation coefficient, R, of total
surface water area, and mean value of SSC in six maps within Figure 9 is 0.85). Obviously, run-offs and the
accompanied top-soil erosion of materials is a major factor that controls the distribution and variation of
SSC in the Red River water in space and time.

4. Discussion

The remote sensing algorithms developed for SSC retrievals have long been utilized for various
science and application areas [6]. The models for estimating SSC can be clustered into two groups:
(a) statistical techniques such as machine learning and (b) empirical methods based on the relationship
between SSC and water-leaving reflectance [52]. As recognized by previous studies, algorithms for SSC
retrievals based upon SSC-reflectance relationships are more robust than those derived from statistical
models [28]. Unlike coastal waters and lake waters, which mostly contain mineral particles and organic
matters, suspended sediment in river waters is composed of several components, such as mineral
particles, organic substances, pollutants, and sewage effluent, which result from erosion, transport,
and deposition processes occurring within the catchments. As a consequence, the optical properties
of river waters vary, depending on the response of the optical active constituent of the water column
(e.g., mineral particles, CDOM or Chl, listed in Table 2).

Preceding studies have indicated that the suitability of the L8’s NIR band retrieved reflectance [28,52]
or in situ ρw(860) [53] for estimating SSC in river water. The high correlations in in situ ρw(865) and
SSC obtained from the Red River in the two different surveyed times (Table 2) also confirm the high
potential of the L8 NIR band reflectance for estimating SSC in the river water. However, the use of a single
band algorithm for a SSC estimate is challenging, due to the effects of the atmosphere on the water-leaving
reflectance in visible/NIR region [28], and of the sediment type and particle size on water-leaving reflectance,
particularly in highly turbid waters [53]. In Figure 8e, we demonstrate the large uncertainties in the retrieved
ρw(865), which may lead to the overestimation of SSC in the Red River. To further provide evidence on
the effects of atmosphere, the in situ and retrieved ρw at each site (n = 30) are compared in Figure 11.
The retrievals in the ρw(443), ρw(482), and ρw(865) are often overestimated. The retrievals in the green and
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red channels, on average, follow the same pattern, however, they fail to capture the associated dynamic
ranges, implicating uncertainties in estimated SSC level when using single-band methods (Figure 11c,d).
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Figure 11. Comparisons of in situ ρw and retrieved ρw, corresponding to L8 visible and NIR bands (a–e)
obtained via three atmospheric correction methods: FLAASH, DOS, LaSRC. While the retrieved ρw

indicate significant biases with respect to the situ ρw, the retrieved ρw(655)/ρw(562) (f) demonstrates
that this spectral band-ratio are less susceptible to uncertainties in the atmospheric correction.

Furthermore, the use of the spectral band-ratio in estimating water constituents has proven to
reduce the dependency on the suspended sediment type and particle size [39]. Figure 8 shows the
comparison of the spectral band ratios retrieved using different atmospheric correction methods.
According to R2 values, the uncertainties in the single-band reflectance in the green (R2 = 0.18 to
0.27) and the red (R2 = 0.09 to 0.17) regions have been improved by using these two-band ratios
(R2 = 0. 54 to 0.75). The appropriateness of the band ratio of red-green used to develop algorithm
for estimating SSC agrees with empirical and semi-analytical spectral reflectance models for SSC
estimates [56], and confirms that the band ratio of red-green is the best predictor variable for estimating
SSC in dynamic waters using the statistical modelling method.

It is important to recognize that the river is a very dynamic system, which contains water, sediment,
aquatic organisms, and other discharged materials on the way from the headwaters toward the sea [57].
The spot-sampling of SSC and water volume along the Red River, as part of the hydrological monitoring
network, may help one to predict the river suspended load, but it is inadequate for understanding the
river system dynamics for better management [58]. The use of appropriate satellite data products in
combination with our validated regional algorithm, i.e., Equation (3), provides spatio-temporal SSC
patterns that support rapid detections of anomalies in the distribution of SSC, which may be caused by
human activities, such as flood discharging from on-river hydropower dams, and illegal river bottom
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sand exploitation. Therefore, the uncertainty of Equation (3) (normalized RMSE < 20%), which is lower
than the error that is reported by statistical modelling techniques [52], is reasonable when applying it
to the Red River. Furthermore, the wide range of SSC that is employed to develop the algorithm (from
22.4 mg/L to 178 mg/L) ensures its applicability in both dry and rainy seasons at local hydrological
stations [41]. These products will help reduce the uncertainty associated with the seasonal time-lagged
SSC level in the estimates. However, for monitoring higher SSC levels (>200 mg/L), which often
occurs in the river water during flood events, future studies including more in situ SSC and ρw in
flooded areas should be carried out in order to extend the range of SSC that is detectable by our
proposed model.

The methods outlined in this paper could be applied to map SSC in the Red River system or in
other rivers, but the specific coefficients of the algorithm (Equation (3)) needs be revised to match
the optical characteristics of the SSC present in the target river waters. For instance, the algorithm
should be re-calibrated to suit extremely turbid waters, i.e., >1000 mg/L [42], in the Red River that
may occur due to flooding, multidate heavy rains, or dam failure. On the other hand, the revisit cycle
of L8, 16 days, is not suitable for monitoring the dynamics of the Red River, particularly for river water
in the tropical regions because of frequent cloud cover. For example, during July 2017 and July 2018,
the Hoa Binh dam on the Da River (near the river confluence in our study area) discharged a significant
amount of water to ensure dam security during flood events [60,61]. However, all of the L8 scenes
acquired over the study area during July 2017 and July 2018 area were mostly covered by clouds,
with the coverage ranging from 71% to 83%. Therefore, the map reflecting the dam’s discharge is still
missing. When Landsat-9 and Sentinel-2C are launched within the 2021–2023 timeframe, combined
with existing L8 and Sentinel-2A/B [62], the revisit time will significantly be improved, i.e., near daily,
on average. Only within that timeframe, will it be possible to explore the utility of SSC retrievals
during flood events. Our upcoming work will focus on collecting in situ data across a large extent of
the Red River system and exploiting other optical satellite data for better monitoring of SSC over the
Red River system using free, open-source remote sensing data.

5. Summary and Conclusions

This study demonstrates the high possibility of L8 data products for quantifying and mapping
SSC in surface waters of a river in a tropical region with a large heterogeneity in SSC levels and
optically active water constituent proportions, the Red River. To summarize, we found that (1) SSC in
the Red River exponentially correlates with the green-red band ratio (R = 0.86), which yields retrievals
of SSC with a normalized RMSE of ~ 20 %; (2) Comparisons of water-leaving reflectances produced
from FLAASH, LaSRC, SeaDAS, and DOS atmospheric correction methods with near-concurrent in
situ ρw, revealed a lack of rigor in all of the approaches (e.g., RMSE > 0.018 in ρw (562)). Nevertheless,
it was found that the L8-derived green–red band ratio is minimally susceptible to uncertainties in the
atmospheric correction allowing for its utility for river water management. Thus, due to their ease
of access via US Geological Survey web portals, the standard land surface reflectance products were
utilized for mapping SSC; (3) Maps of SSC distribution in the Red River waters indicated that the
Thao River is the major source of sediment amongst the three tributaries in delivering suspended
loads to the Red River, and the seasonal variation in SSC is highly related to the seasonal variation
in run-offs (R = 0.85). We further conclude that these products and the methodology outlined in this
paper could be applied to map SSC in highly turbid waters, which has similar optical characteristics
and SSC range. The persistent presence of clouds in the tropical regions poses major challenges in the
utility of Landsat data for monitoring SSC. Therefore, in the future, both (publicly free) Landsat and
Sentinel-2 data generated via an identical processing chain should be explored, to gauge the use of
multi-mission, moderate-resolution satellite images for monitoring SSC in extremely turbid, tropical
riverine systems at relatively high frequency rates.
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