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Abstract: The characteristics of the improved Atomic Frequency Standard (AFS) operated on the
latest BeiDou-3 experimental satellites are analyzed from day-of-year (DOY) 254 to 281, of the
year 2017, considering the following three aspects: stability, periodicity, and prediction precision.
The two-step method of Precise Orbit Determination (POD) is used to obtain the precise clock offsets.
We presented the stability of such new clocks and studied the influence of the uneven distribution of
the ground stations on the stability performance of the clock. The results show that the orbit influence
on the Medium Earth Orbit (MEO) clock offsets is the largest of three satellite types, especially
from 3× 103 s to 8.64× 104 s. Considering this orbit influence, the analysis shows that the Passive
Hydrogen Maser (PHM) clock carried on C32 is approximately 2.6× 10−14 at an interval of 104, and
has the best stability for any averaging intervals among the BeiDou satellite clocks, which currently
achieves a level comparable to that of the PHM clock of Galileo, and the rubidium (Rb) clocks of
Global Positioning System (GPS) Block IIF. The stability of the improved Rb AFS on BeiDou-3 is
also superior to that of BeiDou-2 from 3× 102 s to 3× 103 s, and comparable to that of Rb AFS on
the Galileo. Moreover, the periodicity of the PHM clock and the improved Rb clock are presented.
For the PHM clock, the amplitudes are obviously reduced, while the new Rb clocks did not show a
visible improvement, which will need further analysis in the future. As expected, the precision of the
short-term clock prediction is improved because of the better characteristics of AFS. The Root Mean
Square (RMS) of 1-h clock prediction is less than 0.16 ns.
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1. Introduction

The BeiDou-2 constellation presently consists of 14 active satellites and can be grouped into the
following three types: five Geostationary Orbit (GEO) satellites, six Inclined Geostationary Orbit
(IGSO) satellites, and three Medium Earth Orbit (MEO) satellites [1]. All of them are operated on
Rb Atomic Frequency Standard (AFS) [2]. According to the three-step strategy, the BeiDou-3 that
was under construction was planned to complete the constellation consisting of 35 satellites, and to
provide global service for users around the world [1,3,4]. Therefore, by the end of February 2016, China
had launched five experimental satellites for validating the BeiDou-3 performance, including two
IGSOs (C31 and C32) and three MEOs (C33, C34, and C35). Unfortunately, the signal of C35 cannot be
obtained by the ground receivers because of technical reasons [5].

The new generation of experiment satellites have several improvements over the older BeiDou-2
satellite [6]. First, it can broadcast new types of signals, B1C (1575.42 MHz) [7], B2a (1176.45 MHz) [8],
and B2b, to improve the compatibility and interoperability with other navigation satellite systems.
Second, the BeiDou-3 experiment satellites are equipped with the improved rubidium (Rb) AFS
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(C31, C33, and C34) and the Passive Hydrogen Maser (PHM) (C32 and C35) produced by China’s own
technology. Third, Inter-Satellite Links (ISL), one of the most important ingredients for global BeiDou
system design, is used to enable autonomous navigation. The detailed information of the BeiDou-3
experiment satellites is shown in Table 1.

Table 1. On-broad clock type of BeiDou-3 experimental satellites on 1 October 2017. PHM—passive
hydrogen maser.

Pseudo Random Noise (PRN) Type Launch Date Clock

C31 IGSO01-S 2015.03.30 Rb
C32 IGSO02-S 2015.09.30 PHM
C33 MEO01-S 2015.07.25 Rb
C34 MEO02-S 2015.07.25 Rb
C35 MEO03-S 2016.02.01 PHM

With the above-mentioned characteristics in mind, researchers have been able to further
their studies. Chen et al. confirmed that ISL contributes enormously to the space signal accuracy,
in particular, when the satellites are not tracked by a regional network [6]. Zhang et al. presented
an initial assessment of the new-generation signals and of the initial results of single epoch relative
positioning [9]. Tan et al. showed the initial results of the precise orbit determination with nine
stations [10]. Xie et al. evaluated the multipath effect and the performance of the precise orbit and
clock determination [11]. Zhao, et al. proved that the best orbit determination solution for BeiDou-3e is
obtained with five-parameter Extended CODE Orbit Model (ECOM) and a three-day arc [12]. Wu et al.
elaborated on a brief introduction of PHM design, and also analyzed the performance of both PHM
and the improved Rb AFS on-board clock [13].

Currently, there are two main methods to estimate the precision satellite clock offsets, called
Two-Way Satellite Time and Frequency Transfer (TWSTFT), and Orbit Determination and Time
Synchronization (ODTS). The BeiDou official clock products in the broadcast ephemeris are estimated
by the former method [14,15], and the performance of the BeiDou-3 experimental clock that was
obtained in this way has been fully discussed in the literature [13]. However, this method has
some drawbacks. The clock offsets obtained by TWSTFT are calculated independently without orbit
information, and as a result, they are not coupled with the orbit solution like the ODTS method is.
For this reason, the high-precision clock products obtained by ODTS are the main products, such as
the International Global Navigation Satellite System (GNSS) Service (IGS) products, that are used by
general users. Therefore, the characteristics of such clock products need to be further studied.

This paper focuses on the characteristics of the improved Rb AFS as well as the PHM deployed
by the BeiDou-3 experiment satellites. The precise clock products are obtained though the strategy of
two-step method of orbit determination. The stabilities of the onboard clocks of both the BeiDou-3
and BeiDou-2 satellites, as well as GPS, GLObal NAvigation Satellite System (GLONASS), and Galileo
satellites are evaluated using the Overlapping Allan Deviation (OADEV). In view of the limited
number of tracking stations for BeiDou-3, a controlled trial using the current BeiDou-2 satellites is set
up to figure out the impact of the performance of the clock offsets estimated by global stations and
regional stations. Moreover, the frequency characteristics of the BeiDou-3 satellites are discussed with
Non-Uniform Fast Fourier Transform (NUFFT), and the results of the prediction are presented in order
to verify the clock characterization.

2. Data Collection

The BeiDou clock offset is one of the products of the Precise Orbit Determination (POD)
calculated from a modified version of the Positioning and Navigation Data Analyst (PANDA) software
developed by Wuhan University, China [16]. International GNSS Monitoring and Assessment System
(iGMAS) [17] and IGS Multi-GNSS Experiment (MGEX) tracking network stations are used to collect
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BeiDou-3 observations for the time span day-of-year 254 to 281, of the year 2017. The distribution of
the tracking stations is shown in Figure 1. The green dots represent the selected global stations, which
can be capable of tracking the BeiDou-2 satellites. The red dots represent the regional stations, which
are mainly distributed in the Asia Pacific region and have access to the BeiDou-3 signal. As a result,
there is a loss percentage from about 11% to 15% of the BeiDou-3 MEO satellites in the calculated clock
offsets, because of the insufficient measurements.
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Figure 1. Distribution of the tracking stations used in this study. Stations capable of tracking BeiDou-3
observations are marked in red. The other stations are marked in green.

We calculated the global and regional clock offsets from the global stations and regional stations,
respectively. If not explicitly stated, the global clock offsets have been selected for the following
analyses. Note that the red stations can only receive and identify the B1 and B3 signal both adopted in
BeiDou-2 and BeiDou-3. Therefore, the following characteristics of the BeiDou clocks are analyzed
based on the B1 and B3 signal.

The two-step method to determinate the BeiDou orbit and clock could be described as follows:
To begin with, the parameters that are same as those of the BeiDou system, such as the station
coordinates, receiver clocks, and tropospheric delay, are estimated from the GPS observations using
precise point positioning. Then, these parameters are fixed so as to determine the BeiDou satellite
orbit and clock [18,19]. The Phase Center Offset (PCO) and Phase Center Variation (PCV) correction
provided by Wuhan University are used for BeiDou-2 satellites [20], while only the PCO correction
provided by the Operation Control Department (OCD) is used for the BeiDou-3 experiment satellites.
The details of the POD processing strategy can be found in Table 2.

Table 2. Processing strategy for the POD.

Correction Model

Observation type Code and carrier observations of B1 and B3
Measurements combination Ionosphere-free combination
Elevation cutoff 10◦

Sampling rate 300 s
Weight A priori precision of 0.002 m and 0.2 m for phase and code observables, and

elevation-dependent weighting factor
Station coordinates Estimated in step one and fixed in step two
Receiver clocks Estimated in step one and fixed in step two
Inter system biases Estimated in step two
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Table 2. Cont.

Correction Model

Tropospheric delay Saastamoinen model [21], global mapping function [22], and two-hourly
Zenith Tropospheric Delays (ZTD) without gradients, which are obtained in
step one and fixed in step two

Phase wind up Corrected [23]
Tide displacement Solid Earth tide, pole tide, and ocean tide loading; according to

International Earth Rotation Service (IERS) Conventions 2010 model [24]
Relativity effect IERS Conventions 2010 model [24]
Geopotential EIGEN_GL04C up to 12 × 12 degrees and orders
N-body gravitation Jet Propulsion Laboratory (JPL) DE405 ephemeris model
Solar radiation ECOM five-parameter model [25]

Because there are no precise clock products for the experimental satellites, the overlapping arcs
of the three-day POD solutions are used to evaluate the precision of the so-called twice difference
method [26], which can be expressed as follows:

C(i) =
1
m

m

∑
s=1

δts
2(i)− δts

1(i) (1)

∆s(i) = δts
2(i)− δts

1(i)− C(i) (2)

SD =

√
1
n

n

∑
i=1

(
∆s(i)− ∆s

)2
(3)

where δts
1(i) and δts

2(i) are the two clock offsets of the overlapping arcs of satellites, s, at the epoch, i,
and ∆s(i) is the difference of the clock offset after eliminating the average bias C(i) calculated by m
satellites between these two overlapping arcs. The Standard Deviation (SD) of n epochs is computed
from Equation (3), where ∆s is the mean of ∆s. The precision of the two-day overlapping clock offsets
calculated by two consecutive three-day solutions is shown in Figure 2. Compared with the result from
the regional stations, the precision of the BeiDou-2 MEO satellites estimated by the global stations has
visibly improved from 40% to 60%. Therefore, it can be inferred that in the future, the precision of C33
and C34 will be gradually improved through establishing more tracking stations and optimizing the
ISL technology.
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3. Pre-Processing for Clock Offset

The pre-processing quality of the original clock offsets determines the reliability of the on-board
clock characteristics. In general, there are three types of anomalies in a set of raw clock offsets, which
are the outliers, jumps, and gaps. For the outliers and jumps, the median detection method is applied.
First, the phase data in the time domain is converted into frequency data. Second, for the obvious
frequency drifts of the BeiDou clocks (shown below), from the authors’ experience, the clock offsets
are segmented into a single day, and the frequency data of each day is individually detected by the
median method.
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A deviation limit in terms of the median absolute deviation (MAD) is described as follows [27],

MAD = Median
(
|yi −Median(yi)|

0.6745

)
(4)

where yi is the clock frequency series, Median(yi) is the median value of yi, and the factor 0.6745 makes
the MAD equal to the standard deviation for the normally distributed data. Here, a three times MAD
is adopted as a deviation limit for judgment. The anomalies—jumps, outliers, and mixed jumps and
outliers—in the original clock offsets are plotted in Figure 3. It can be the concluded that one outlier of
the frequency demonstrates a clock jump in the phase sequence, two outliers signify that there is a
phase outlier in the time domain, and three or more outliers indicate that there may be the potential for
both clock offset jumps and outliers. We found no difficulty in detecting and removing the clock offset
outlier shown in a(2) as well as fixing the clock offset jump shown in a(1) with a linear fitting. As for
the mixed cases of a(3), three clock offset outliers related to the four frequency outliers shown in b(3)
were detected and removed. Thereafter, we recalculated the new frequency sequence and determined
whether there was a need to fix the clock jump, like for a(1). The time series of the clock frequency
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after pre-processing is plotted in Figure 4. The frequency amplitudes of the experimental satellites
clocks are smaller than those of the BeiDou-2 satellites, and the obvious abnormalities of C04 result in
the poor stability reflected in the following analysis.Remote Sens. 2018, 10, x FOR PEER REVIEW  6 of 14 
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4. Stability Analysis

The stability of the on-broad clock is critical to the quality of the GNSS measurements, influencing
the application of navigation system. To this end, the OADEV is used to characterize the stability of the
new PHM and the improved Rb AFS operated on the BeiDou-3 [27]. We refer to the computing strategy
proposed in the literature [28], so that it can better reflect the stability of the clock sequence with the
missing data. In terms of the phase data xi, it can be estimated from a set of N time measurements,
as follows:

σy(τ) =

√√√√ 1
2(N − 2m)τ2

N−2m

∑
i=1

[xi+2m − 2xi+m + xi]
2 , xi+2m 6= 0, xi+m 6= 0, xi 6= 0 (5)

where τ = mτ0 is the averaging time interval, m is the averaging factor, and τ0 is the basic interval.
All of these clock offset sequences have been detrended by removing a daily quadratic trend. In the
following discussion, we evaluated the stability of the BeiDou-3 experimental satellites. Then, we
analyzed the estimated clock offsets based on the BeiDou-2 global stations and regional stations. After
that, the OADEVs of GPS, GLONASS, and Galileo were compared in order to evaluate the frequency
stability of the new AFS carried on the BeiDou-3.

4.1. Comparison with Regional Solution

The OADEVs of the BeiDou regional and global clock offsets are shown in Figure 5. The four plots
in Figure 5, from left to right and from top to bottom, are the OADEV graphs of GEO, IGSO, MEO, and
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BeiDou-3, respectively. The subscripts “G” and “R” in the legends represent the global solution and
regional solution. The two auxiliary lines, 1/

√
τ and 1/τ, correspond to the white phase noise and

white frequency noise, respectively.
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As it is depicted in the bottom right plot, the stability for the experimental satellites of the global
solution are similar to that of the regional solution, because of using of the same tracking stations,
(i.e., the red stations plotted in Figure 1). For the new PHM carried on C32, the two distinctly sharp
minima that occurred near the 8.64× 104 s and 1.728× 105 clearly reflect the presence of a 24-h period
signal. Between 0 s and 8.64× 104 s, there are two other steep minima that may be caused by the signal
superposition of the 12-h and 8-h cycles related to the orbit period, according to the detail frequency
analysis in the latter part. The frequency stability of C32 is approximately 2.6× 10−14 at an interval of
104, and 1.4× 10−15 at interval of 8.64× 104. Nevertheless, C32 equipped with PHM has undoubtedly
the lowest OADEV for any of the averaging intervals. The improved Rb AFS on C31 shows a better
performance than the corresponding BeiDou-2 IGSO satellites. The rest of the MEO satellites (C33 and
C34) that are equipped with improved Rb clocks are also superior to BeiDou-2 in the interval of 3× 102

s to 3× 103 s. The OADEVs of the BeiDou-3 clock show a white phase noise behavior from averaging
intervals of 3× 102 s to 3× 103 s. This is a good supplement to the stability analysis of the TWSTFT
method in this interval range, where the real clock stability is buried in the K-band measurement
noise [13].

Furthermore, according to Figure 5, for BeiDou-2, the number and distribution of the tracking
stations have an impact on the estimated OADEV of the different types of satellites. Especially, the
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bumps shown in MEO regional clock offsets are notably flattened from 3× 103 s to 8.64× 104 s in
global clock offsets. Considering that the orbital error affects the stability between 103 s and 105 s [14],
we believe that the stability of the BeiDou-3 MEO satellites shown in the figure should be different
from the actual results. That is, the curve at 104 s should be smoother like the BeiDou-2 global solution
in bottom left plot. In the same way, the bumps of the BeiDou-3 IGSO satellites at the interval of 104 s
are larger than that of the BeiDou-2 IGSO satellites. Therefore, the clock stability of the BeiDou-3
experimental satellites is more affected by the orbit error because of the limited number and the uneven
distribution of the stations.

In addition, there are some anomalies in Figure 5. The frequency abnormalities in Figure 4
can explain the poor stability of C04. The abnormal fluctuation of C11 is consistent with the
literature [12,29], and the bump here is smoother than that from the literature [12].

4.2. Comparison with Other Global Navigation Systems

In order to compare the frequency stability with the GPS, GLONASS, and Galileo, the OADEV of
each of them has been presented with a time span from DOY 254 to DOY 281, of the year 2017. The IGS
final product has been selected for estimating the OADEV of the GPS, and the GBM final product has
been selected for GLONASS and Galileo. The satellites chosen here represent the general performance
of this type of satellite or atomic clock. The results of the Allan deviation are depicted in the Figure 6.
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Although the pronounced bumps stand out at an average interval of 1.1× 104 s, it is not difficult
to find that the Rb AFS on Block IIF has a competitive performance among the PHM clock of BeiDou
and Galileo. However, in spite of the worse performance, between 300 s and 1× 104 s, the old Rb
clocks on Block IIR and Block IIR-M have no obvious fluctuations and are more stable than Block IIF
between the interval of 104 s and 105 s.

Galileo has launched many satellites since 2015, so E01 and E04, launched in 2016, have been
chosen to assess the AFS on these new satellites. From the bottom left plot, we can see that whether
FOC or IOV satellites show excellent stability of PHM. The stability of most PHM is superior to that
of Rb AFS, except for some satellites, such as E08 shown in figure. Moreover, there is no significant
difference between PHM clock performance on new satellites and old satellites. The OADEVs of PHM
are less than 2× 10−14 s at averaging time of 104 s and smoother than that of BeiDou-3 PHM and GPS
Block IIF Rb AFS, leading to a better clock prediction accuracy in broadcast applications. Compared
with Galileo PHM, the BeiDou PHM has a more obvious no-power-law behavior near 1.05× 104 s,
which results from the orbit error.

The majority of the GLONASS constellation currently consists of GLONASS-M satellites with a
Cesium (Cs) clock [30], but the Russia government has started to launch the enhanced GLONASS-K
series to gradually replace the existing satellites. As we can see from Figure 6, there is a correlation
between the frequency stability and satellite lifetime. The stability of the atomic clock of most of the
GLONASS satellites with shorter service times is better than that of the atomic clock of satellites with
long service times [31]. On the other hand, the frequency standard equipped on GLONASS-K1 is worse
than that of the old GLONASS-M series. Further studies on these new series of satellites are required
in order to explain the specific characteristics. The current performance of the GLONASS clock is
consistent with BeiDou-2, and better than that of the GPS Cs clock, regardless of life expectancy.

For the above analysis, it follows that the new AFS operated on BeiDou-3 has greatly improved
over the old frequency standard adopted by BeiDou-2, especially at the interval from 3× 102 s to
3× 103 s. The new PHM currently achieves a level of stability comparable to that of the PHM on
Galileo and to the Rb clocks on GPS Block IIF. Considering the orbital error affects due to the limited
number and uneven distribution of tracking stations, the stability of the improved Rb AFS on the
BeiDou-3 experimental satellites is comparable to that of the Rb AFS on Galileo, and better than that of
the rest GPS and GLONASS clocks.

5. Frequency Spectrum Analysis

NUFFT are used to further study the periodicity in the residual sequence with gaps [32,33].
An open source code downloaded from the literature [34] is used. Figure 7 shows the amplitude
spectrum BeiDou-3 of the new atomic clock frequency standard as well as the BeiDou-2 Rb frequency
standard computed by the global clock solution. The horizontal axis represents the cycles per
revolution (CPR).

Figure 7 shows the amplitude spectra of the GEO (top), IGSO (middle), and MEO (bottom) satellite
clocks. The GEO satellites have the largest frequency amplitude. There are two stronger harmonics,
24-h (1 CPR) and 12-h (2 CPR), and two lesser harmonics, 8-h (3 CPR) and 6-h (4 CPR) in the top plot.
The spectrogram of C04 is as complex as expected, and its performance is consistent with the frequency
variation shown in Figure 4.

For the IGSO satellites, the amplitude spectrum of the PHM clock carried on C32 is visibly smaller
than that of the Rb clock carried on the others IGSO satellites. According to the existing research [29],
the IGSO satellites of BeiDou-2 have three obvious cycles (i.e., 24-h (1 CPR), 12-h (2 CPR), and 8-h
(3 CPR)). However, there is no obvious 24-h period in C32 detected by NUFFT. Presently, it is hard
to explain this phenomenon with insufficient measurements of BeiDou-3. On the other hand, C31
shows two strong harmonics of 24-h and 8-h, and a lesser harmonic of 12-h, similar to the BeiDou-2
IGSO satellites.
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The bottom plot of Figure 7 shows that there are common periods of MEO satellites around 12.9-h
(1 CPR) and 6.45-h (2 CPR), and the magnitudes are smaller than that of GEO and IGSO. Also, we
found that C33 and C34 are noisier than the other MEO satellites, and they have a unique period
around 0.92 CPR. Combined with the stability analysis in Figure 6, inadequate measurements may
lead to these results.

The periodicity of the clock is closely related to the orbital error. Furthermore, an obvious period
of C11 appears near 10.05 CPR, similar to the results of the authors of [12]. For the spectrum analysis
results obtained by NUFFT, the PHM clock has a great improvement, while the new Rb clock did not
show a marked improvement, which needs further evaluation and analysis using increasing tracking
stations in the future.
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6. Short-Term Clock Prediction Analysis

The short-term clock prediction results are presented here to further evaluate the stability of the
BeiDou-3 experiment satellite clocks. It has a significant meaning, considering the uneven distribution
of the tracking stations around the world. Once the satellites run out of sight of the ground stations,
the parameters of the orbit and clock will be predicted using the precise ephemeris. In this part, a
simple linear model is selected for testing the accuracy of the 1-hour prediction with a sliding window
of two hours of precise clock offsets. The previous analysis of periodicity is not considered in this
short-term prediction.

The median value and the interquartile range (IQR) of the prediction residuals are shown in
Figure 8. Thanks to the new AFS applied on experimental satellites, the IQR of C32 is less than 0.1 ns,
and the IQR of C31, C33, and C34 are less than 0.2 ns. These results mean that the degree of dispersion
of the new atomic clock prediction results is distinctly improved compared with the old ones on
BeiDou-2. For instance, the best performing C14 in the BeiDou-2 satellite is more than twice as much
as C32. The precision of the sliding linear clock prediction is listed in Table 3. The Root Mean Square
(RMS)of the new PHM and the improved Rb AFS is superior to 0.1 ns and 0.16 ns, respectively, better
than that of BeiDou-2 satellites. The improvement of the stability of the new AFS does improve the
precision of the clock prediction.
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Table 3. Precision of 1-h sliding linear prediction using 2-h clock offsets.

PRN Mean (ns) RMS (ns) PRN Mean (ns) RMS (ns)

C01 –0.013 0.321 C10 –0.016 0.404
C02 0.024 0.314 C11 0.002 0.334
C03 –0.044 0.242 C12 –0.011 0.212
C04 0.015 0.452 C13 0.008 0.449
C05 0.015 0.209 C14 –0.040 0.241
C06 –0.010 0.373 C31 –0.006 0.104
C07 –0.018 0.305 C32 –0.005 0.081
C08 0.000 0.339 C33 0.017 0.157
C09 0.014 0.232 C34 0.018 0.124

7. Conclusions

In this paper, we focus on the characteristics of the improved AFS operated on the latest BeiDou-3
experimental satellites. The two-step method of precise orbit determination is used to obtain the
precise clock offsets. Because of the low quality of the measurements caused by the small number of
tracking stations, a pre-processing method is necessarily applied to check the original clock offsets.

The stability of such new clocks is presented and compared with that of GPS, GLONASS, and
Galileo. Through the analysis of the clock stability computed from the regional and global stations,
we found that subject to the influence of the orbital errors because of the limited number and uneven
distribution of the tracking stations, the stability 3× 103 s to 8.64× 104 s fluctuates greatly and does not
reflect the real stability of the atomic clock. The results based on this show that the PHM clock carried
on C32 is approximately 2.6× 10−14 at interval of 104, and has the best stability for any averaging
intervals among the BeiDou satellite clocks. Furthermore, the rest of the improved Rb AFS on BeiDou-3
is also superior to the BeiDou-2 at interval of 300 s to 3× 103 s. For comparison with other navigation
systems, the PHM on the BeiDou-3 currently achieves a level of stability comparable to that of the PHM
clock of the Galileo and the Rb clocks of the GPS Block IIF, and the improved Rb AFS on BeiDou-3 is
comparable to that of the Rb AFS on Galileo, and better than that of the rest of the satellite clocks.

The analysis of NUFFT indicated that the PHM clock has a great improvement. The amplitude
of 12-h (2 CPR) and 8-h (3 CPR) periods is obviously reduced compared with other BeiDou-2 IGSO
satellites, and there is no obvious 24-h (1 CPR) period. However, the new Rb clock did not show a
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substantial improvement. The performance of this new Rb frequency needs further evaluation and
analysis in the future.

The improvement of the clock stability and frequency periods finally contribute to the precision
of the short-term clock prediction. For the BeiDou-3 satellites, the RMS of 1-h prediction is less than
0.16 ns.

As expected, the improved Rb clocks and PHM clock operated on BeiDou-3 show. a better
performance than the old BeiDou-2 clocks. The only regret is that there are too few stations that can
received the B1 and B3 signal of the experimental satellites. Considering that new types of signals, B1C,
B2a, and B2b, are added in BeiDou-3, there is still a lot of work to do with the clock characteristics.
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