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Abstract: Different kinds of radiative transfer models, including a relative sunshine-based model
(BBM), a physical-based model for tropical environment (PBM), an efficient physical-based model
(EPP), a look-up-table-based model (LUT), and six artificial intelligence models (AI) were introduced
for modeling the daily photosynthetically-active radiation (PAR, solar radiation at 400–700 nm),
using ground observations at twenty-nine stations, in different climatic zones and terrain features,
over mainland China. The climate and terrain effects on the PAR estimates from the different
PAR models have been quantitatively analyzed. The results showed that the Genetic model had
overwhelmingly higher accuracy than the other models, with the lowest root mean square error
(RMSE = 0.5 MJ m−2day−1), lowest mean absolute bias error (MAE = 0.326 MJ m−2day−1), and
highest correlation coefficient (R = 0.972), respectively. The spatial–temporal variations of the annual
mean PAR (APAR), in the different climate zones and terrains over mainland China, were further
investigated, using the Genetic model; the PAR values in China were generally higher in summer
than those in the other seasons. The Qinghai Tibetan Plateau had always been the area with the
highest APAR (8.668 MJ m−2day−1), and the Sichuan Basin had always been the area with lowest
APAR (4.733 MJ m−2day−1). The PAR datasets generated by the Genetic model, in this study, could
be used in numerous PAR applications, with high accuracy.

Keywords: photosynthetically-active radiation; physical models; artificial neural network; climate
zones; terrain features

1. Introduction

Solar radiation is the most important energy sources, driving the sources and sinks of energy
between the earth surface and atmosphere [1]. Ninety-nine percent of the solar energy concentrated
in the wavelength of 0.25 µm–4.0 µm, which can be divided into three broadbands—ultraviolet
spectrum (0.25–0.40 µm), visible spectrum (0.40–0.70 µm), and near infrared spectrum (0.70–4 µm).
Among them, almost 45% of the solar radiation concentrated in the visible spectrum, namely
photosynthetically-active radiation (PAR) [2]. PAR is of vital importance in many biological and
physical processes, such as chlorophyll synthesis and plant photosynthesis [3–5]. Thus, in a large
number of studies accurate observations and estimations of the PAR at the given location, are
required [6,7], including concentrating solar power (CPV), meteorology, agriculture, land surface
ecosystem, and sustainable development. However, due to the difficulties in calibration, construction,
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and maintenance of observation platform, in situ PAR stations are relatively sparse for PAR applications,
especially in the mountains and remote areas.

In China, the Chinese Ecosystem Research Network (CERN) was established in 2005, to cover
the different terrestrial ecosystems, providing high-quality PAR measurements. However, CERN only
consisted of about forty field stations, which cannot meet the requirements of large-scale ecological
and meteorological studies. PAR can be estimated from surface solar radiation (SSR) at radiation
stations, using empirical conversion factors. However, the number of SSR stations was relatively
smaller, in comparison with meteorological stations. A lot of PAR products have been calculated
using ground measurements and satellite signals [8], such as PAR products from the International
Satellite Cloud Climatology Project (ISCCP) [9,10], long-term PAR records obtained by the Total
Ozone Mapping Spectrometer (TOMS) [11], and the PAR records obtained by the Moderate Resolution
Imaging Spectroradiometer (MODIS) [12]. However, the accuracy, spatial-temporal continuities, and
resolutions of these PAR products cannot meet the requirements for PAR applications.

Many attempts have been made to estimate PAR using meteorological measurements and
satellite images. These models could be roughly divided into statistical models and physical models.
The statistical models assumed the ratio of PAR to SSR (RPAR) as a constant value, for example,
Moon [13] found that RPAR was approximately 0.44. However, McCree [14] considered that RPAR
would change under various climate conditions. The RPAR under a clear-sky condition was in the
range of 0.47–0.52, while the RPAR under a cloudy-sky condition was from 0.5–0.58. Incorporating
the atmospheric attenuators, such as cloud fraction, cloud optical depth, aerosol optical depth, and
total ozone amount, a lot of statistical models have been developed for simulating PAR, for example,
Janjai et al. [15] developed a statistical model to estimate PAR using the cloud index, aerosol optical
depth, precipitable water, total ozone column, and the solar zenith angle. The model performance
showed that the R2 was 0.96, root mean square difference (RMSD) was in the range of 7.3–7.9%, mean
bias difference (MBD) ranged from −4.5% to 3.5%. Yu et al. [16] compared ten empirical models for
estimating PAR, using ground measurements, the quadratic function model, taking into consideration
the solar zenith angle and clearness index, performed better than the other models. Tan and Ismail [17]
made a comparative study on the three empirical PAR models in Singapore, the model incorporating
SSR, and the clearness index showed better accuracy than the other models. Despite the effectiveness
of statistical PAR models, the relatively sparse SSR measurements would limit the application of the
above models in remote and mountainous areas.

Taking into consideration the extinction processes in atmosphere, such as ozone absorption,
Rayleigh scattering, and aerosol extinction, the physical models could retrieve PAR, with a strict
theoretical basis. Physical models could be roughly divided into broadband and spectral models.
Dividing the solar spectrum into several small ranges, the spectral models could estimate PAR with
high spectral resolutions. Many spectral models have been developed for estimating PAR [18,19].
Despite the high spectral resolutions, these models were subjected to poor computational efficiencies.
Compared with the spectral models, broadband models divided the solar spectrum into some relatively
wide ranges. A lot of broadband models have been developed for retrieving PAR with a high accuracy
and computational efficiency [20,21]. However, these models were limited to sparse meteorological
stations. Along with surface meteorological measurements, satellite remote sensing provided an
efficient way to retrieve PAR, with high spatial and temporal resolutions, at regional and global scales.
Satellite signals derived from numerous polar orbiting satellites (for example, the Moderate Resolution
Imaging Spectroradiometer (MODIS), Aura, and MSG2) and geostationary satellites (for example,
the Geostationary Operational Environmental Satellites (GOES), Oceansat-1, the Multi-Functional
Transport Satellite (MTSAT), and the GMS5) have been applied for PAR estimation. Among them,
MODIS products were the most widely used products for retrieving PAR, due to its high spatial
resolutions and spectral resolutions [22–25]. Despite the effectiveness of the satellite-based PAR
models, they were subjected to some limitations, such as calibration accuracy, cloud screening effects,
and the uncertainties of surface reflection [26].
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Meanwhile, the artificial intelligence (AI) models, such as support vector machine regression
(SVM), artificial bee colony (ABC), and artificial neural network (ANN) have been widely applied for
estimating PAR around the world, in recent years. Among them, ANN was the most frequently used
method for retrieving PAR, with a satisfied accuracy [27]. López et al. [28] developed a feed-forward
multilayered perception neural network (MLP) for PAR estimation, using meteorological measurements.
Pankaew et al. [29] proposed a model in Thailand, using the cosine of the solar zenith angle (θ), cloud
index, water vapor, and the aerosol optical depth (AOD). The result showed that the RMSE between
the estimated and the measured PAR at Chiang Mai, UbonRatchathani, NakhonPathom, and Songkhla
stations were 10.9%, 9.3%, 8.7%, and 9.8%, respectively. Yu and Guo [30] conducted a comprehensive
comparative study on the performances of the six MLP models and four statistical models proposed
by Alados and Alados-Arboledas [31], the result indicates that the MLP models performed better
than the statistical models. Wang et al. [27] further compared three ANN models in different climate
zones, across China, including the MLP, the Generalized Regression Neural Network (GRNN), and
the Radial Basis Neural Network (RBNN). The results revealed that MLP and RBNN showed better
performances than GRNN. However, these AI models were limited to inherent drawbacks, such as the
intrinsic disadvantages of revealing the explicit physics of the atmospheric radiative transfer processes
in the atmosphere, and the slow convergence speed. These AI models should be further improved by
combining them with other optimization algorithms.

Great efforts have been made to estimate PAR in China. Zhang et al. [32] calculated the RPAR
in the Tibet Plateau (about 0.439). Xie et al. [33] developed an empirical model for predicting PAR,
using MODIS products, the results showed that the R2 between the estimated and the measured
PAR in Yuncheng was 0.855. Wang et al. [3] proposed an empirical model for PAR estimation in
China, during 1961–2012, the estimates showed good agreements with the PAR measurements at
CERN stations. Tang et al. [34] reconstructed the daily PAR over China in the past fifty years, using
Qin’s PAR model [35], the MBE, RMSE, and R2 were 2.4 Wm−2, 14 Wm−2, and 0.92, respectively.
Tang et al. [8] developed an efficient physical-based parameterization to derive the PAR, using the
MODIS atmosphere and land products, based on a clear sky transmittance model [35] and a cloud
transmittance parameterization [36]. The RMSE between the estimates and the measurements was
40 Wm−2 and 15 Wm−2, for instantaneous and daily scales, respectively. Meanwhile, a lot of PAR
models using the LUT method have also been developed in China [37,38], for revealing the spatial
and temporal variations of PAR in China. Hu et al. [39] found that the highest PAR in China was in
the Qinghai-Tibet Plateau with an RPAR of 1.83 (1.68–1.98). Wang et al. [3] reconstructed the seasonal
variations of PAR and RPAR in China, during 1955–2011, the result showed that the annual mean PAR
and RPAR were 22.39 mol m−2day−1and 1.9, respectively. Further comprehensive studies should be
conducted to evaluate the model performances in various ecological zones, climate zones, and terrains,
and then the spatial and temporal variation of PAR should be reconstructed with high accuracy and
robustness, in China.

This study tried to compare the performances of the ten selected PAR models, including the
relative sunshine-based broadband model (BBM), the physical-based model for tropical environment
(PBM), the efficient physical-based model (EPP), and the look-up-table method (LUT), back propagation
neural network (BP), adaptive neuro fuzzy inference system (ANFIS), least squares support vector
machine (LSSVM), genetic algorithm (Genetic), M5 model tree (M5Tree), and the multivariate
adaptive regression splines (MARS). Daily PAR measurements at twenty-nine CERN stations across
China, during 2005–2014, in different climate zones and terrains, were used to evaluate the model
performances. The climate and terrain effects on the PAR estimates from the different PAR models
have also been quantitatively analyzed. Daily meteorological measurements at eight hundred and
thirty-nine Chinese Meteorological Administration (CMA) stations, aerosol optical depth (0.55 nm)
retrievals from the Modern-Era Retrospective analysis for Research and Applications, Version 2
(MERRA-2) datasets, and satellite signals from MODIS and MTSAT were also used as model inputs for
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estimating PAR in China. The spatial and temporal variations and related causes of PAR in different
climate zones and terrain features, across China, were further analyzed in detail.

2. Materials and Methods

2.1. Sites and Data

2.1.1. Observation Data

Daily PAR measurements at twenty-nine CERN stations, throughout China, were used for the
model calibrations and validations. Figure 1 shows the spatial distributions of the CERN and CMA
stations used in this study. Table 1 shows the general climatic patterns of these CERN stations,
Figure 2 also presents the annual mean air temperature, relative humidity, air pressure at sea-level
and the sunshine duration (the hours when solar irradiance is greater than 120 Wm−2) in China.
It was clear that these CERN and CMA stations spread across most areas of China, with complicated
geomorphology and distinctive climatic features.

Table 1. The statistical indicators representing the meteorological patterns of the Chinese Ecosystem
Research Network (CERN) stations.

Statistics a (m) pre
(mm)

ps
(hpa) rh sh

(h/day) at (◦C) ws
(m/s)

vis
(km)

trise
(h) tset (h)

Max 3688 263 1044.3 1 15.1 36.4 20.3 41.25 10.09 22.11
Min 3 0 638 0.05 0 −35.1 0 0.06 3.68 15.60
Std 977.26 8.65 91.46 0.19 4.08 11.99 1.33 7.92 1.13 1.16

Mean 754.79 2.28 939.45 0.65 6.25 13.18 2.09 18.37 6.65 18.70

a is altitude, pre—precipitation, ps—surface pressure, rh—relative humidity, sh—sunshine duration, at—air
temperature, ws—wind speed, vis—visibility, trise—sunrise time, tset—sunset time.
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2.1.2. Satellite Products

The MODIS atmosphere and land products and the MTSAT data were used to derive the input
parameters for the PAR models in this study. Atmospheric parameters, including liquid water and
ice cloud optical depth (CPO), total column ozone amount (Ioz), total column precipitable water (w),
liquid water path and ice water path (CWP), effective particle radius for liquid water clouds and
ice water clouds (re), cloud fraction (TCP), solar zenith angle (θ), aerosol optical depth (aod) and
surface pressure (PS) were derived from the MOD04/MYD04, MOD06/MYD06, and MOD07/MYD07.
The ground albedo (α) was derived from the MOD09CMG and MYD09CMG. The top of atmosphere
albedo (pg) was derived from the MTSAT data. Detailed information for MODIS and MTSAT products
are presented in Table 2.

Table 2. Basic information about Moderate Resolution Imaging Spectroradiometer (MODIS) and
Multi-Functional Transport Satellite (MTSAT) products used in this study.

Data Set Name Parameters Spatial Resolution Temporal Resolution

MTSAT (VIS) Earth-atmospheric albedo 0.05 degree Hourly

MOD04/MYD04 Aerosol optical depth (AOD) 5 km Daily

MOD06/MYD06

Cloud phase optical thickness
(CPO), solar zenith angle (θh), cloud
water path (CWP), effective particle
radius (re), cloud fraction (TCP)

1 km Daily

MOD07/MYD07 Precipitable water vapor (w), total
zone amount (Ioz) 5 km Daily

MOD09CMG/
MYD09CMG Surface albedo (ρg) 0.05 degree Daily
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2.1.3. Terrain and Climate Division Data

The climate and terrain regionalization data were provided by the Resource and Environment
Science Data Center of Chinese Academy of Sciences (http://www.resdc.cn). Figures A1 and A2
shows the climate zones and terrain features in China. There were four humidity zones, ten temperate
zones, and fifty topographic zones, over mainland China.

2.2. Photosynthetically-Active Radiation Models

2.2.1. Physically-Based Models

BBM

The BBM model is a physical-based broadband model, which was developed by Qin et al. [35],
based on the clear-sky spectral transmittance parameterization. Considering the major radiative
extinction processes between the surface and the atmosphere, the BBM model has been proved to be
an efficient PAR model, with a high accuracy, at seven Surface Radiation Budget Network (SURFRAD)
stations and seven hundred and sixteen CMA stations, which is expressed as following equations:

Rall = τcRclr (1)

Rclr = Rclr
b + Rclr

d (2)

τc = 0.2495 + 1.1415r + 0.3910r2 (3)

where Rall is the daily PAR under all-sky conditions, and Rclr means the daily PAR under clear sky
conditions. Rclr

b and Rclr
d are the beam and diffuse PAR under clear sky conditions, respectively.

τc means the transmittances due to cloud scattering and absorption; r represents the relative sunshine
duration. Rclr

b and Rclr
d can be calculated using following equations:

Rclr
b = R0(d0/d)2(sinθ)τb (4)

Rclr
d = R0(d0/d)2(sinθ)τd (5)

where θ is the solar zenith angle (degree); d0/d is the eccentricity correction factor for the mean
sun-earth distance; R0 is the spectral irradiance (400–700 nm) at the mean distance between the earth
and the sun in PAR band. τb is the beam transmittance in clear sky conditions; τd is the diffuse
transmittance in clear sky conditions. τb and τd can be calculated as follows:

τb ≈ τgτRτwτoτa (6)

τd ≈ 0.5τgτwτo(1− τRτa) (7)

where τg, τR, τw, τo, and τa are the transmittances for the mixed gasses absorption, Rayleigh scattering,
water vapor absorption, ozone absorption, and the aerosol extinction, respectively.

Where τg, τR, τw, τo, and τa represent the transmittances for mixed gasses, Rayleigh transmittance,
water vapor, ozone, and aerosol, respectively, which can be calculated from:

τR = exp[−0.14057(m′)0.88384
] (8)

τw = exp[−0.00021(mw)0.70991] (9)

τo = exp[−0.005218(ml)0.96054] (10)

τo = exp[−2.18157(mβ)0.93988] (11)

τg ≈ 1 (12)

http://www.resdc.cn
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where m represents the relative air mass; m′ means the pressure-corrected relative air mass; w is the
precipitable water vapor (cm); l is the ozone thickness (cm); and β is the Ångström turbidity coefficient.

PBM

This PBM model is a physical-based PAR model taking into consideration the physical
relations between PAR and the earth-atmospheric albedo with absorption and scattering atmospheric
constituents [22]. The instantaneous PAR at the Earth’s surface in PBM, was obtained from:

ISUR =
ITOA[1− ρB − (1− τo)− τo(αw + αaer + αg)]

(1− ρg) + ρg(αw + αaer + αg) + ρg(1− αw − αaer − αg)(1− τo)
(13)

where ρB is the earth-atmospheric albedo in the PAR band; ρg is the surface albedo; τo means the ozone
transmittance; αw, αaer, and αg denote the absorption coefficients of water vapor, aerosols, and mixed
gasses, respectively; ITOA is the extraterrestrial solar irradiation at the top of atmosphere in the PAR
band, which could be calculated using following equation:

ITOA = Rc[1 + 0.033 cos(2πdn/365)]cosθ (14)

where Rc is the solar constant in the PAR band; dn means the day number since the first day of the
year; θz is the solar zenith angle. The ozone transmittance τo, absorption of water vapor (αw), and
mixed gasses (αg) were calculated, using

τo =

∫ 0.7um
0.4um Ioλτoλdλ∫ 0.7um

0.4um Ioλdλ
(15)

aw = 1−
∫ 0.7um

0.4um Ioλτwλdλ∫ 0.7um
0.4um Iwλdλ

(16)

ag = 1−
∫ 0.7um

0.4um Ioλτgλdλ∫ 0.7um
0.4um Igλdλ

(17)

where Ioλ is the extraterrestrial solar irradiance; τoλ, τwλ, and τgλ are the spectral transmission
coefficient for ozone, water vapor, and mixed gasses, respectively.

τoλ = exp(−koλlmr) (18)

τgλ = exp[−1.41kgλma/(1 + 118.93kgλma)] (19)

τwλ = exp[−0.2385kwλmr/(1 + 20.07kwλwmr)
0.45] (20)

where koλ, kwλ and kgλ denotes the spectral extinction coefficient for ozone, water vapor, and mixed
gasses, respectively; ma represents the air mass; mr represents the relative air mass; l means the total
ozone amount (cm); and w is the precipitable water vapor (cm).

w = 0.8933 exp(0.1715
rhps

T
) (21)

where rh is the relative humidity; ps means the surface pressure (mbar); and T means the air
temperature (K).
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The absorption and scattering (Daer) of aerosol was calculated using Equation (23). αaer

was partitioned from Daer, the detailed descriptions for the estimation of αaer could be found in
Reference [40,41].

Daer = 1−
∫ 0.7um

0.4um Ioλτaerλdλ∫ 0.7um
0.4um Ioλdλ

(22)

where τaerλ is aerosol transmission coefficient, calculated as

τaerλ = exp(−βλ−αma) (23)

β is the Ångström turbidity coefficient and α denotes the wavelength exponent. β was calculated
as follows:

β = 0.589− 0.068VIS + 0.0019VIS2 (24)

where VIS is the visibility (km). It must be noted that Equation (25) was not correct in some situations,
for example, when VIS was 15, 16, 17, 18, 19, 20, and 21 km, β was −0.0035, −0.0126, −0.0179,
−0.0194, −0.0171, −0.011 and −0.0011, respectively. Thus, we introduced the formula below for the β

estimation [42], which was expressed as follows

β = (0.025 + 0.1 cosθ)exp(−0.7z/1000) (25)

where θ is the latitude and z means the surface elevation.

EPP

This physical-based parameterization (EPP) was proposed by Tang et al. [8], based on the BBM
and the cloud parameterization developed by Sun et al. [40]. PAR could be calculated using the
following equation:

Rall =
(1− Cw − Ci)Rclr + CwRwc + CiRic

1− ρa,allρg
(26)

where Cw and Ci are the cloud fractions for water cloud and ice cloud, respectively. Rclr, Rwc, and Ric
represent PAR in clear sky conditions, water cloudy sky conditions, and ice cloudy sky conditions,
respectively; ρg is the surface albedo; ρa,all denotes the atmospheric spherical albedo, which was
calculated as follows

ρa,all = (1− Cw − Ci)ρa,clr + Cwρa,wc + Ciρa,ic (27)

where ρa,clr, ρa,wc, and ρa,ic are the atmospheric spherical albedo for clear sky conditions, water cloudy
sky conditions, and ice cloudy sky conditions, respectively. Rclr, Rwc, and Ric could be calculated using
following equations:

Rclr = R(τclr
b + τclr

d ) (28)

R = R0(d0/d)2µ (29)

Rwc = Rclrτwc (30)

Ric = Rclrτic (31)

where τb and τd are beam and diffuse transmittance, respectively; τwc and τic denote the global
transmittance for water cloud and ice cloud, respectively.

LUT

The LUT method introduced in this study was developed by Zhang et al. [24]. First, the input
parameters derived from the MODIS products were preprocessed (geometric correction, reprojection,
and calibration). Second, the first look-up table was generated to connect atmospheric condition
(visibility, cloud optical depth, water vapor amount, ozone amount, aerosol type, and cloud type, etc.)
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to the top of the atmosphere radiance (ITOA). Then, the second look-up table was generated to connect
the atmospheric condition to PAR. At last, the surface PAR was calculated using the look-up Tables 1
and 2. In this study, GLASS (Global land surface satellite) PAR datasets generated by Zhang et al. [24]
were used for the PAR validation, across China (http://glass-product.bnu.edu.cn).

2.2.2. The AI models

BP

The BP model is the most widely used AI models for estimating a solar radiation, with a strong
learning ability and high accuracy [27]. The basic schematic architecture of the BP neural network
was illustrated in Figure 3a. The BP model was formed by the input layer, the hidden layer, and the
output layer. Each layer consisted of some neurons connected to each other. The basic idea of BP is to
find a function that best maps a set of input parameters to the correct output values, using a gradient
descent optimization algorithm, which minimizes the mean square error between the network’s actual
output and the expected output values. In this study, six parameters (rh, at, ps, sd, a, dn) that were
closely correlated with the PAR values were set as input parameters for the BP model; daily PAR
measurements were set as the model output parameter. The PAR values could be calculated using
following equation:

Fg = Z

(
N

∑
i=1

wi(t)xi(t) + nb

)
(32)

where Fg is the estimated PAR; Z(.) means the hidden transfer function; wi(t) means the weight; xi(t)
means the input parameters indiscrete time space; and b means the neuronal bias.
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Figure 3. The general structures of the back propagation (BP) network, the adaptive neuro fuzzy
inference system (ANFIS), the least squares support vector machine (LSSVM), and the Genetic algorithm
model; (a) BP, (b) ANFIS, (c) LSSVM, and (d) Genetic.
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ANFIS

The ANFIS is a hybrid intelligence system integrating the self-learning ability of the ANN and the
reasoning ability of fuzzy logic [41]. The general structure of the ANFIS model is shown in Figure 3b.
The ANFIS model establishes the appropriate membership function of the input and the output
variables, by a set of fuzzy If-Then rules and forms output functions [42]. The rh, at, ps, sd, a, and dn

were the input parameters for the ANFIS, the measured PAR value was the output value for ANFIS.
There were five layers for ANFIS, including fuzzification, rules, normalization, defuzzification, and
summation in this study.

LSSVM

LSSVM is a powerful AI model for solving nonlinear regression evolved from the Support Vector
Machine (SVM) [43]. The procedure of LSSVM in this study is shown in Figure 3c. Given a set of inputs
ai (meteorological parameters) and output yi (PAR values), the LSSVM could reveal the nonlinear
relationship between the input and the output values. The nonlinear function of LSSVM could be
briefly expressed as:

f(a) = ωTδ(a) + bt (33)

whereω, δ, and bt are the m-dimensional weight vector, mapping function, and bias term, respectively.
In this study, daily rh, at, ps, sd, a, dn and PAR records at twenty-nine CERN stations were used for
training and testing the LSSVM model. More detailed information about the LSSVM model could be
found in Kisi [44].

Genetic

The Genetic algorithm is a heuristic algorithm inspired by the process of natural selection that
belongs to the larger class of evolutionary algorithms [45]. The Genetic algorithm is commonly used to
generate high-quality solutions to optimization and search problems. The Genetic model was used to
improve the model accuracy for predicting the PAR values. The Genetic models for estimating PAR
were conducted as the following setups (Figure 3d):

(1) Initialize the random population: The basic structure of the BP neural network in this study
was 6–10-1 (Figure 3a) with six input layers, ten hidden layers, and one output layer. Thus,
the number of weights was 6 × 10 + 10 × 1 = 70; the number of thresholds was 10 + 1 = 11. So,
the encoding length was 70 + 11 = 81.

(2) Selection operation: The new individuals with the high-fitness values would be selected from
old individuals using a roulette selection method. The selection probability for individuals were
calculated as the following equation:

gi = a/ai (34)

Pi = gi/
n

∑
j=1

gi (35)

where Pi is the selection probability; gi is the fitness value, which could be calculated as:

gi = c1(
N

∑
j=1

abs(yi − oi)) (36)

where N is the number of input layers of Genetic; yi is the i-th expected output value; oi is the i-th
predicted output values.
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(3) Crossover operation: The crossover operation was conducted using the arithmetic
crossover algorithm:

acj = acj(1− b) + adjc2
adj = adj(1− b) + acjc2

}
(37)

where acj and adj are the c-th and d-th chromosome at j position, respectively; c2 is a constant
with the range of 0–1.

(4) Mutation operation: The mutation operation was conducted using following equations:

aij =

{
aij + (aij − amax) ∗ f (g)r > 0.5
aij + (amin − aij) ∗ f (g)r ≤ 0.5

(38)

f (g) = rr(1− g/Gmax)
2 (39)

where amax and amin are the maximum and minimum values for ai,j, respectively; r is a random
number [0,1]; rr is the random number; g is the number of iterations; and Gmax is maximum
evolution times.

M5Tree

The M5Tree was first developed by Quinlan [46], based on a binary decision tree. The M5Tree
could be used to reconstruct the quantitative relationship between the input and the output values. The
M5Tree contains three steps [47,48]: (1) Splitting data into subsets to create decision trees; (2) generating
the model tree; (3) building the linear regression model. In this study, the rh, at, ps, sd, a, dn, and the
PAR measurements were used for training and testing M5Tree model for predicting the PAR values.

MARS

MARS is a non-parametric regression technique, which could be used to predict the values
of a continuous dependent or outcome variable from a set of independent or predictor variables,
without any assumption about the underlying functional relationship between the dependent and the
independent variables [49,50]. The MARS model for estimating PAR is given as:

Y = α+
M

∑
m=1

βmhm(X) (40)

where Y is the estimated PAR values as a function of the input parameters (rh, at, ps, sd, a, dn); βm is
the weight; hm(X) is the basis functions; X is the input parameters. Further details of MARS can be
found in Sharda et al. [51].

2.3. Preprocesses for PAR Measurements

The equipment and operation-related errors would degrade the accuracy of the PAR
measurements. In this study, the quality control process for the PAR measurements at the CERN
stations was conducted following two principles: (1) The ratio between PAR (mol m−2 s−1) and SSR
(MJ m−2day−1) must be in the range of 1.3–2.8 mol MJ−1; (2) each measured PAR should not exceed the
PAR at the top of the atmosphere (G0), at the same geographical location. Moreover, the instantaneous
PAR is typically expressed as the photon flux density (mol m−2 s−1) [3,27]. Dye [52] considered that
the ratio of energy flux density to the photosynthetic photon flux density was 1/4.57 (MJ mol−1).
Therefore, in our study, the unit of PAR measurement was unified to the energy flux density by
multiplying 1/4.57.
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2.4. The Statistical Indicators Representing Model Accuracy

In this study, a total of 70% of the database, during the whole study period, were used to train these
PAR models, and the remaining datasets were used for testing these models. The model accuracies
were validated using the following statistical indicators: The mean absolute bias error (MAE), the mean
bias error (MBE), the root mean square error (RMSE), and the correlation coefficient (R):

RMSE =

√√√√( N

∑
i=1

(Pest,i − Pobs,i)
2

)
/N (41)

MAE =

(
N

∑
i=1

∣∣(Pest,i − Pobs,i)
∣∣)/N (42)

MBE =

(
N

∑
i=1

(Pest,i − Pobs,i)

)
/N (43)

R =
(∑N

i=1 (Pest,i − Pest,i)(Pobs,i − Pobs,i))

∑N
i=1 (Pest,i − Pest,i)∑N

i=1 (Pobs,i − Pobs,i)
(44)

where N is the sample number; Pest and Pobs represent the estimated and observed PAR, respectively;
Pest and Pobs represent mean values of the estimated and the observed PAR, respectively.

3. Result and Discussion

3.1. Validation of Daily PAR Estimations at CERN Stations

The model accuracies of these ten PAR models were evaluated at twenty-nine CERN stations over
mainland China. More than twenty-five thousand six hundred and sixty-six data samples were used
for the training phases of six AI models. Figure 4 shows the model performance of these AI models,
in the training phases. All the estimated PAR showed good agreements with the PAR measurements.
Among these AI models, the Genetic model performed superior to the other AI models. Then, another
eleven thousand data samples were used to validate the model performance of all ten PAR models that
were used in this study. Figure 5 illustrates the statistical indicators representing model accuracies of all
PAR models. All methods produced PAR estimates that positively correlated with the measurements
at the CERN stations. The R values for the BBM, EPP, PBM, LUT, BP, ANFIS, M5Tree, Genetic, MARS,
and LSSVM were 0.947, 0.872, 0.900, 0.787, 0.955, 0.970, 0.967, 0.987, 0.955, and 0.961, respectively.
All AI models (BP, ANFIS, M5Tree, Genetic, MARS, and LSSVM) showed overwhelming superiority
than the BBM, EPP, PBM, LUT, owing to their strong learning. The RMSE for the BBM, EPP, PBM,
LUT, BP, ANFIS, M5Tree, Genetic, MARS, and LSSVM were 1.175, 1.565, 2.593, 1.975, 0.912, 0.748,
0.799, 0.5, 0.907, and 0.903, respectively; The MAE for the BBM, EPP, PBM, LUT, BP, ANFIS, M5Tree,
Genetic, MARS, and LSSVM were 0.976, 1.310, 2.202, 1.463, 0.731, 0.557, 0.595, 0.326, 0.743, and 0.643,
respectively. The Genetic model showed better performances than the other PAR models, with the
highest R (0.973) and the lowest RMSE (0.5 MJ m−2day−1) and MAE (0.326 MJ m−2day−1), due to
the optimization of the weight and threshold of the neural network. Affected by the cloud cover and
changing weather conditions, parameters derived from MODIS level 2 products and the MTSAT data
for the EPP were not always accessible at all CERN stations. Thus, the PBM yielded the largest errors
with the highest RMSE (2.593 MJ m−2day−1) and MAE (2.202 MJ m−2day−1).

Taylor diagrams were introduced to visualize the model accuracies. Figure 6 shows the Taylor
diagrams used to visualize the model accuracies for all PAR models in each month of the year,
respectively. It was clear that the model accuracies for all models were subject to seasonal climatic
characteristics. The physical models (BBM, EPP, PBM and LUT) showed better performances in
winter than those in summer, due to the abundant water vapor and large cloud cover in summer.
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The smallest RMSE for all physical-based models were in January, the smallest MAE were also in
January; the largest RMSE for all physical-based models were also in June, the largest MAE were
in June. In contrast, the estimated PAR by the AI models (BP, ANFIS, M5Tree, MARS, Genetic and
LSSVM) showed better agreements with the PAR measurements in each month, due to their strong
adaptability to the fluctuation of input parameters. The model performances for the Genetic model,
throughout the year, were more stable than the other models, the largest RMSE (0.679 MJ m−2day−1)
and MAE (0.460 MJ m−2day−1) for the Genetic were found in April; the smallest RMSE (0.239 MJ
m−2day−1) and MAE (0.153 MJ m−2day−1) were found in July. PBM was not as accurate as other PAR
models for estimating PAR values throughout a year, with distinct seasonal variations, and had high
RMSE and MAE values, in each month.
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Figure 7 illustrated the spatial distributions of the mean values of the statistical indicators
representing model accuracies for all PAR models at CERN stations. Relatively larger errors were
mainly observed in the plateau zones, due to the strong heating atmosphere there, for example,
the mean RMSE, MAE, R and MBE for all PAR models at Lhasha (LSA), in the Qinghai-Tibetan
Plateau, were 1.456 MJ m−2day−1, 1.042 MJ m−2day−1, 0.804, and −0.528 MJ m−2day−1, respectively;
the mean RMSE, MAE, R and MBE for all PAR models at Gongga (GGF), in the Qinghai-Tibetan
Plateau, were 1.730 MJ m−2day−1, 1.194 MJ m−2day−1, 0.800, and −0.714 MJ m−2day−1, respectively;
the mean RMSE, MAE, R and MBE for all PAR models at Ailao (ALF), in the Yunnan-Guizhou
Plateau, were 1.458MJ m−2day−1, 0.966 MJ m−2day−1, 0.851, and −0.549 MJ m−2day−1, respectively.
The model deviations were also large in the tropical zones, for example, the mean RMSE, MAE,
R and MBE for all PAR models at Xishuangbanna (BNF) (tropical zone) were 1.427 MJ m−2day−1,
0.954 MJ m−2day−1, 0.826, and −0.465 MJ m−2day−1, respectively. In contrast, owing to the dry air
conditions, relatively lower estimation errors were observed in Northwestern China, for example, the
RMSE, MAE, Rand MBE for all PAR models at AKA, in the Tarim Desert, were 1.132 MJ m−2day−1,
0.806 MJ m−2day−1, 0.937, and −0.259 MJ m−2day−1, respectively; the RMSE, MAE, R and MBE for
all PAR models at Cele (CLD), in the Tarim Desert, were 1.206 MJ m−2day−1, 0.870 MJ m−2day−1,
0.918, and −0.284 MJ m−2day−1, respectively. The smallest model deviations were observed in Haibei
(HBG) and Shapotou (SPD), in the Alashan and the Hexi corridor; the RMSE, MAE, R and MBE, for
the HBG, were 1.152 MJ m−2day−1, 0.881 MJ m−2day−1, 0.909 and −0.211 MJ m−2day−1, respectively;
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the RMSE, MAE, R and MBE, for the SPD, were 1.288 MJ m−2day−1, 0.917 MJ m−2day−1, 0.924, and
−0.250 MJ m−2day−1, respectively.Remote Sens. 2018, 10, x FOR PEER REVIEW  14 of 28 
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Figures 8 and 9 showed the statistical indicators representing the model accuracies for all PAR
models, at different CERN stations. All AI models showed better model accuracies than the BBM,
EPP, PBM and LUT, owing to their strong adaptability to the fluctuations of the input parameters.
The ranges of RMSE for the BBM, EPP, PBM, LUT, BP, ANFIS, M5Tree, Genetic, MARS, and LSSVM at
the CERN stations were 1.027~1.625, 1.186~2.177, 1.938~4.074, 1.168~2.563, 0.675~1.120, 0.504~0.978,
0.515~1.089, 0.324~0.664, 0.690~1.091, and 0.455~1.299 MJ m−2day−1, respectively. The ranges of
MAE for the BBM, EPP, PBM, LUT, BP, ANFIS, M5Tree, Genetic, MARS, and LSSVM at the CERN
stations were 0.819~1.434, 0.992~1.836, 1.504~3.822, 0.933~1.996, 0.540~0.904, 0.382~0.743, 0.392~0.831,
0.215~0.448, 0.571~0.903, and 0.339~0.928 MJ m−2day−1, respectively. The ranges of R for the
BBM, EPP, PBM, LUT, BP, ANFIS, M5Tree, Genetic, MARS, and LSSVM at the CERN stations were
0.851~0.978, 0.662~0.961, 0.705~0.947, 0.302~0.919, 0.924~0.971, 0.925~0.982, 0.930~0.981, 0.969~0.992,
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0.893~0.974, and 0.895~0.985, respectively. The ranges of MBE for the BBM, EPP, PBM, LUT, BP,
ANFIS, M5Tree, Genetic, MARS, and SVM at the CERN stations were −1.434~0.220, −1.694~1.045,
−3.822~−1.382, −0.539~1.701, −0.194~0.409, −0.309~0.259, −0.565~0.122, −0.048~0.06, −0.4~0.288,
and −0.642~−0.02 MJ m−2day−1, respectively.Remote Sens. 2018, 10, x FOR PEER REVIEW  15 of 28 
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PAR models.

The Genetic performed superior to other models in all CERN stations, due to its optimized weight
and threshold for the neural network. The ranges of the RMSE, MAE, R, and MBE for the Genetic,
at all CERN stations, were 0.324~0.664 MJ m−2day−1, 0.215~0.448 MJ m−2day−1, 0.969~0.992 and
−0.048~0.060 MJ m−2day−1, respectively. The largest model deviations for the Genetic were found in
the Changbaishan (CBF) with RMSE, MAE, R and MBE being 0.664 MJ m−2day−1, 0.448 MJ m−2day−1,
0.977 and −0.039 MJ m−2day−1, respectively; The smallest model deviations for the Genetic were
found in the ALF, with RMSE, MAE, R and MBE being 0.324 MJ m−2day−1, 0.215 MJ m−2day−1, 0.991,
and 0.020 MJ m−2day−1, respectively. In contrast, PBM was not accurate as the other models, at all
CERN stations. The ranges of the RMSE, MAE, R, and MBE for the PBM, at all CERN stations, were
1.938~4.074 MJ m−2day−1, 1.504~3.822 MJ m−2day−1, 0.705~0.947, and −3.822~−1.382 MJ m−2day−1,
respectively. The largest model deviations for the PBM were found in the GGF with RMSE, MAE, R,
and MBE, being 4.074 MJ m−2day−1, 3.822 MJ m−2day−1, 0.820 and−3.822 MJ m−2day−1, respectively.
The smallest model deviations for the PBM were found in the CLD with RMSE, MAE, R and MBE
being 1.938 MJ m−2day−1, 1.527 MJ m−2day−1, 0.909, and −1.479 MJ m−2day−1, respectively.

In all, the AI models were more accurate and stable than the BBM, EPP, PBM and LUT. BBM,
EPP, PBM and LUT were more susceptible to weather conditions than the AI models, which may be
attributed to the uncertainties of satellite signals caused by cloud cover and precipitable water vapor.
Compared with the AI models, larger spatial and temporal variations of statistical indicators were
observed for the BBM, EPP, PBM and LUT. The Genetic showed better accuracies and robustness than
the other PAR models, at all selected CERN stations, without significant seasonal variations, due to its
strong learning ability and optimized weight and thresholds, for the neural network.
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3.2. Validation of PAR Models in Various Climate Zones and Terrains

Many radiation extinction processes occur when solar radiation passes through the atmosphere
and is eventually reflected back to space. These extinction processes would vary with time and
locations. Temperature was directly proportional to surface solar radiation, without radiation-damping
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processes in the atmosphere. Table 3 showed the statistical errors for all PAR models in different
temperate zones over China, the largest errors were found in temperature zone in the plateau (HII),
due to the strong heating atmosphere. The mean RMSE and MAE for all models in the HII were 1.25
and 0.994 MJ m−2day−1, respectively. It was clear that the Genetic performed superior to other PAR
models, in different temperate zones, the largest RMSE (0.540 MJ m−2day−1) and MAE (0.368 MJ
m−2day−1) for the Genetic were observed in the HII, while the smallest RMSE (0.324 MJ m−2day−1)
and MAE (0.215 MJ m−2day−1) were in VII. PBM was not as accurate as the other models, in most
temperate zones.

Table 3. The root mean square error (RMSE) and mean absolute bias error (MAE) for the PAR models
in different temperate zones.

Statistics Models HII II IIE III IV V VI VII

RMSE

BBM 1.178 1.112 1.186 1.116 1.189 1.201 1.266 1.453
EPP 1.666 1.466 1.369 1.627 1.500 1.568 1.555 1.832
PBM 2.776 2.454 2.814 2.263 2.728 2.748 2.780 3.141
LUT 1.820 2.095 1.857 1.854 2.013 1.922 2.195 2.007
BP 0.918 0.963 0.876 0.973 0.823 0.873 0.902 0.675

ANFIS 0.830 0.769 0.567 0.806 0.711 0.708 0.719 0.507
M5Tree 0.817 0.819 0.663 0.858 0.828 0.743 0.754 0.515
Genetic 0.540 0.520 0.377 0.519 0.488 0.479 0.513 0.324
MARS 0.988 0.923 0.780 0.959 0.861 0.855 0.897 0.770
SVM 0.969 0.861 0.579 0.998 0.958 0.878 0.849 0.458
Mean 1.250 1.198 1.107 1.197 1.210 1.197 1.243 1.168

MAE

BBM 0.946 0.928 1.041 0.935 0.992 0.989 1.056 1.226
EPP 1.460 1.220 1.198 1.348 1.266 1.308 1.284 1.556
PBM 2.319 2.100 2.544 1.868 2.365 2.334 2.447 2.729
LUT 1.319 1.533 1.430 1.336 1.495 1.430 1.740 1.605
BP 0.724 0.769 0.735 0.789 0.653 0.710 0.710 0.540

ANFIS 0.642 0.558 0.435 0.609 0.524 0.538 0.526 0.394
M5Tree 0.617 0.602 0.518 0.648 0.604 0.564 0.557 0.392
Genetic 0.368 0.333 0.251 0.339 0.317 0.320 0.330 0.215
MARS 0.823 0.749 0.654 0.787 0.706 0.703 0.727 0.663
SVM 0.723 0.639 0.435 0.716 0.669 0.630 0.569 0.343
Mean 0.994 0.943 0.924 0.938 0.959 0.953 0.994 0.966

II for mid temperate; III for warm temperate; IV for north subtropical zone; V for the mid-subtropics; VI for the
south subtropics; VII for the edge of tropical zone; HII for temperature zone in plateau; IIE for mid tropical zone
with humid weather. The unit for RMSE and MAE: MJ m−2day−1.

The underlying surface properties would have significant effects on the accuracy of the PAR
estimations. In this study, seven types of underlying surfaces, including grassland, city, lake, desert,
farmland, forest, and water were considered to reveal the effects of the underlying surfaces on
the model accuracies. Table 4 shows the RMSE and MAE, in different underlying surfaces, for
all PAR models. Wetland was a land area that permanently or seasonally saturated with water,
thus, the radiation processes in wetlands were more complicated than the other ecosystems, which
made it more difficult to estimate PAR [43]. The mean RMSE and MAE in wetlands were 1.306 and
1.043 MJ m−2day−1, respectively. The surfaces in the city had considerable influences on PAR balances,
thus, modeling PAR in the city was also complicated. The mean RMSE and MAE in the city areas
were 1.229 and 0.996 MJ m−2day−1, respectively. It was obvious that the Genetic model showed
much higher accuracy than the other models in all underlying surfaces, the RMSE for the Genetic in
wetland, desert, lake, forest, farmland, city, and grassland were 0.571, 0.491, 0.485, 0.546, 0.500, 0.461
and 0.474 MJ m−2day−1, respectively. The MAE for the Genetic in the wetland, desert, lake, forest,
farmland, city, and grassland were 0.384, 0.329, 0.312, 0.369, 0.324, 0.297 and 0.305 MJ m−2day−1,
respectively. The PBM showed the poorest model performances in all underlying surfaces, the RMSE
for the Genetic in the wetland, desert, lake, forest, farmland, city, and grassland were 2.868, 2.133,
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2.433, 2.171, 2.487, 3.032 and 2.554 MJ m−2day−1, respectively; the MAE for the Genetic in the wetland,
desert, lake, forest, farmland, city, and grassland were 2.437, 1.866, 2.131, 1.668, 2.111, 2.674 and
2.243 MJ m−2day−1, respectively. In all, the underlying surface properties were indispensable factors
influencing the model accuracies, especially for the grassland and desert.

Table 4. The RMSE and MAE for the PAR models in different underlying surface.

Statistics Models Wetland Desert Lake Forest Farmland City Grassland

RMSE

BBM 1.239 1.058 1.063 1.148 1.124 1.341 1.116
EPP 1.757 1.226 1.352 1.852 1.492 1.647 1.378
PBM 2.868 2.133 2.433 2.171 2.487 3.032 2.554
LUT 1.752 2.354 2.027 1.562 2.038 2.100 1.937
BP 1.002 0.875 0.952 0.981 0.900 0.830 0.937

ANFIS 0.912 0.743 0.735 0.839 0.734 0.655 0.739
M5Tree 0.908 0.860 0.835 0.842 0.813 0.677 0.786
Genetic 0.571 0.491 0.485 0.546 0.500 0.461 0.474
MARS 1.062 0.884 0.882 0.988 0.894 0.835 0.897
SVM 0.993 0.639 1.115 1.000 0.933 0.711 0.820
Mean 1.306 1.126 1.188 1.193 1.191 1.229 1.164

MAE

BBM 1.011 0.872 0.879 0.943 0.935 1.131 0.950
EPP 1.535 1.004 1.122 1.582 1.251 1.365 1.166
PBM 2.437 1.866 2.131 1.668 2.111 2.674 2.243
LUT 1.234 1.822 1.437 1.090 1.486 1.683 1.489
BP 0.789 0.721 0.780 0.773 0.721 0.661 0.769

ANFIS 0.706 0.556 0.541 0.639 0.548 0.477 0.553
M5Tree 0.684 0.651 0.630 0.645 0.604 0.497 0.587
Genetic 0.384 0.329 0.312 0.369 0.324 0.297 0.305
MARS 0.878 0.724 0.726 0.803 0.733 0.688 0.742
SVM 0.770 0.487 0.786 0.723 0.672 0.488 0.589
Mean 1.043 0.903 0.934 0.923 0.939 0.996 0.939

The unit for RMSE and MAE: MJ m−2day−1.

3.3. Spatial and Temporal Variations of PAR in China

The annual and monthly mean PAR, during 1955–2015, were calculated to reveal the spatial
and temporal variations of PAR across China, based on the Genetic model, using meteorological
measurements at eight hundred and thirty-nine CMA stations. Figure 10 illustrates the mean PAR
values during 1955–2015, the annual PAR values presents a clear decreasing trend at the rate of
−0.003 MJ m−2day−1/year during 1955–2015. Figure 11 shows the spatial distributions of the annual
mean estimated PAR (APAR) over mainland China. Generally, the PAR was higher in Western China
than that in the Southern and Northeastern China, the Tibetan Plateau has always been an area with
the highest PAR, over mainland China, due to the small atmospheric extinction effects, the maximum
APAR was about 8.668 MJ m−2day−1 in the Tibetan Plateau. In contrast, the Sichuan Basin in Southern
China had always been an area with the lowest PAR, due to the perennial cloudy weather and strong
atmospheric extinctions [34], the annual mean PAR was about 4.733 MJ m−2day−1 in the Sichuan
Basin. The Northeastern China was also an area with low PAR, owing to the relatively short sunshine
durations and humid weather there. Figure 12 illustrates the monthly variation of PAR over mainland
China, PAR values were generally higher in the summer than that in other seasons, because of higher
solar zenith angle and longer sunshine duration, in the summer than that in other seasons. The monthly
mean PAR values from January to December were 3.676, 4.697, 6.112, 7.610, 8.570, 8.754, 8.795, 8.281,
6.965, 5.523, 4.202, and 3.468 MJ m−2day−1, respectively. The Qinghai Tibetan plateau has always been
an area with the highest monthly mean PAR values throughout the year. The largest monthly mean
PAR values for the Qinghai Tibetan plateau from January to December were 6.718, 7.975, 9.482, 10.893,
11.917, 12.550, 11.580, 10.727, 9.877, 8.762, 7.261, and 6.373 MJ m−2day−1, respectively. In contrast,
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the Sichuan Basin has always been an area with the lowest monthly mean PAR values. The largest
monthly mean PAR values in the Sichuan Basin from January to December were 1.359, 2.619, 3.616,
4.645, 5.495, 5.943, 5.516, 6.368, 4.058, 3.129, 1.656, and 0.991 MJ m−2day−1, respectively.
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4. Conclusions

The aim of this research was to make a comparative study on the model accuracies of ten models
for estimating PAR over mainland China. The performances of the Genetic model, together with other
nine PAR models, were evaluated in different climate zones and terrain features, using long-term
continuous meteorological and radiation measurements at twenty-nine CERN stations and satellite
signals. The spatial and temporal variations of PAR values, during 1955–2015, over mainland China,
were further investigated.

Generally, the AI models showed better performances than the BBM, EPP, PBM and LUT. Among
all PAR models, the Genetic performed superior to the other PAR models at all CERN stations in
terms of RMSE, MAE and R. The model performances for Genetic were more stable than the other
PAR models, throughout the year, without large monthly variations. The largest RMSE (0.679 MJ
m−2day−1) and MAE (0.460 MJ m−2day−1) for the Genetic were found in April; the smallest RMSE
(0.0.239 MJ m−2day−1) and MAE (0.153 MJ m−2day−1) were found in July.

Meanwhile, the climate and terrain effects on the PAR estimation for all PAR models were
investigated. PAR models showed different performances in different ecosystems, the largest mean
RMSE (1.306 MJ m−2day−1) and MAE (1.043 MJ m−2day−1) for all PAR models were found in
wetlands, due to the complicated radiation processes. The model deviations were also larger in city
ecosystems with RMSE and MAE of 1.229 and 0.996 MJ m−2day−1, respectively. In all, the Genetic
model performed better than the other PAR models, with strong robustness in different climate zones
and terrain features.
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The spatial and temporal variations of the annual mean PAR (APAR) value over mainland
China were further analyzed. The Tibetan Plateau had always been an area with the highest APAR
(8.668 MJ m−2day−1). In contrast, the Sichuan Basin had always been an area with the lowest APAR
values (4.733 MJ m−2day−1), across China. The PAR values in China were generally higher in the
summer than the other seasons.

Certainly, these PAR models should be tested and applied in other climate zones, terrain features,
and ecosystems, around the world. Additionally, the relationships between the PAR and natural
characteristics (such as climate patterns and terrain features) and social economic conditions (economic
development and population density), should be quantitatively analyzed in future.
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Nomenclature

Rall the daily PAR under all-sky conditions nb the neuronal bias
Rclr the daily PAR under clear sky conditions a altitude
Rclr

b the beam PAR under clear sky conditions st surface temperature
Rclr

d the diffuse PAR under clear sky conditions pre precipitation

τc
the transmittances due to cloud scattering and
absorption

ps surface pressure

r the relative sunshine duration rh relative humidity

d0/d
eccentricity correction factor for the mean
sun-earth distance

sd sunshine duration

R0
the spectral irradiance (400–700 nm) at the mean
distance between earth and sun in PAR band

at air temperature

τb the beam transmittance in clear sky conditions ws wind speed
τd the diffuse transmittance in clear sky conditions vis visibility
τwc global transmittance for water cloud trise sunrise time
τic global transmittance for ice cloud AOD Aerosol optical depth
τg transmittances for mixed gasses absorption CWP cloud water path
τR transmittances for Rayleigh scattering w Precipitable water vapor
τw transmittances for water vapor absorption Ioz total zone amount
τo transmittances for ozone absorption g Surface albedo
τa transmittances for aerosol extinction re effective particle radius
αw the absorption coefficients of water vapor TCP cloud fraction
αaer the absorption coefficients of aerosols θ solar zenith angle
αg the absorption coefficients of mixed gasses ρB Earth-atmospheric albedo

ITOA
extraterrestrial solar irradiation at the top of
atmosphere in PAR band

ω m-dimensional weight vector

ρa,all atmospheric spherical albedo δ mapping function

ρa,clr
atmospheric spherical albedo for clear sky
conditions

b bias term

ρa,wc
atmospheric spherical albedo for water cloudy
sky conditions

Pi selection probability

ρa,ic
atmospheric spherical albedo for ice cloudy
sky conditions

gi fitness value
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dn day number since the first day of the year N
is the number of input layers of
Genetic

Cw cloud fractions for water cloud yi i-th expected output value
Ci cloud fractions for ice cloud oi i-th predicted output values
Rclr PAR in clear sky conditions Z(.) hidden transfer function
Rwc PAR in water cloudy sky conditions wi(t) the weight

Ric PAR in ice cloudy sky conditions xi(t)
the input parameters indiscrete time
space

Fg the estimated PAR Rc solar constant
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Figure A1. The humidity zones and temperate zones in China (A—humid, B—semi-humid,
C—semi-arid, D—arid; I—cold temperate, II—mid temperate, III—warm temperate, IV—north
subtropical zone, V—the mid-subtropics, VI—the south subtropics, VII—the edge of tropical zone,
HI—sub-frigid zone in plateau, HII—temperature zone in plateau, and IIE—mid tropical zone with
humid weather).
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area in the eastern part of Northeast China, IIB3—the foothills of the piedmont of the Sanhe
mountain, IIA3—the piedmont plain in the eastern part of the Northeast China, IIA1—Sanjiang plain,
IIB2—southern part of the Greater Khingan Range, IIB1—Central Songliao Plain, IIC3—Eastern Inner
Mongolia high plain, IID4—Altai Mountains and the Tacheng Basin, IID3—Junggar Basin, IIC3—Eastern
Inner Mongolia high plain, IIC2—southern part of the Greater Khingan Range, IIC1—Southwestern
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Songliao Plain, IID5—Ili Basin, IID1—the Western and Hetao region of the Inner Mongolia high plain,
IIID1—the Tarim and Turpan Basin, IID2—the Alashan and the Hexi Corridor, HIID2—the North
Wing of the Kunlun mountains, IIIB3—mountain and hills in North China, IIIA1—hills in Jiaodong
and Liaodong, IIIB2—North China Plain, HID1—Alpine plateau in Kunlun, HIID1—Qaidam Basin,
IIIC1—Jinzhong-Shaanxi-Gandong Plateau, HIIC1—Qilian mountain area, IIIA1—hills in Jiaodong
and Liaodong, IIIB1—Shandong hills, IIIB4—Shanxi-Guanzhong Basin, HIID3—Alishan Mountain,
HIC1—Southern Qinghai Plateau Gully, HIC2—Qiangtang Plateau Lake Basin, IVA1—Huainan and
the middle and lower reaches of the Yangtze River, HIB1—GologNagqu hilly plateau, IVA2—the
Hanzhoung Basin, HIIAB1—the deep Alpine valley in Tibet, Sichuan Province, VA4—the Sichuan
Basin, VA2—Jiangnan and Nanling Mountains, VA3—the Guizhou Plateau, VA1—the Chiang-nan
Hilly Region, VA5—the Yunnan Plateau, VA6—South East Himalaya, VIA2—Fujian and Guangdong
Guangxi hilly plain, VIA1—mountains and plains in North Central Taiwan, VIIA1—the lowlands
in Southern Taiwan, VIIA3—the hilly Valley in Southern Yunnan, VIIA2—Hills in the Qiong Lei,
VIIIA1—Qiong Lei lowlands and the Dongsha-Xisha-Nansha, HIIC2—the Zangnan mountain area).
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