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Abstract: The forecasting and reconstruction of oceanic dynamics is a crucial challenge. While model
driven strategies are still the state-of-the-art approaches in the reconstruction of spatio-temporal
dynamics. The ever increasing availability of data collections in oceanography raised the relevance
of data-driven approaches as computationally efficient representations of spatio-temporal fields
reconstruction. This tools proved to outperform classical state-of-the-art interpolation techniques
such as optimal interpolation and DINEOF in the retrievement of fine scale structures while still
been computationally efficient comparing to model based data assimilation schemes. However,
coupling this data-driven priors to classical filtering schemes limits their potential representativity.
From this point of view, the recent advances in machine learning and especially neural networks
and deep learning can provide a new infrastructure for dynamical modeling and interpolation
within a data-driven framework. In this work we adress this challenge and develop a novel
Neural-Network-based (NN-based) Kalman filter for spatio-temporal interpolation of sea surface
dynamics. Based on a data-driven probabilistic representation of spatio-temporal fields, our approach
can be regarded as an alternative to classical filtering schemes such as the ensemble Kalman filters
(EnKF) in data assimilation. Overall, the key features of the proposed approach are two-fold: (i) we
propose a novel architecture for the stochastic representation of two dimensional (2D) geophysical
dynamics based on a neural networks, (ii) we derive the associated parametric Kalman-like filtering
scheme for a computationally-efficient spatio-temporal interpolation of Sea Surface Temperature
(SST) fields. We illustrate the relevance of our contribution for an OSSE (Observing System Simulation
Experiment) in a case-study region off South Africa. Our numerical experiments report significant
improvements in terms of reconstruction performance compared with operational and state-of-the-art
schemes (e.g., optimal interpolation, Empirical Orthogonal Function (EOF) based interpolation and
analog data assimilation).

Keywords: data assimilation; dynamical model; Kalman filter; neural networks; data-driven
models; interpolation

1. Introduction

The spatio-temporal high resolution monitoring of sea surface geophysical parameters
(e.g., temperature, salinity, ocean colour) is of key interest for a variety of scientific fields [1-3].
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Direct observations of these geophysical tracers are provided by satellite remote sensing observations
and in-situ networks. However, due to sensors characteristics (e.g., space-time sampling, sensor type)
and their sensitivity to the atmospheric conditions (e.g., rain, clouds), only partial, with potentially high
missing data rates, and possibly noisy observations are available. As a consequence, providing high
resolution gape free spatio-temporal fields, in both space and time, based on these observations
have long been a crucial challenge that motivated the development of several spatio-temporal
interpolation tools.

Within the satellite ocean community, Optimal Interpolation (OI) is a standard technique
used in several operational products [4-10]. Given a covariance model of spatio-temporal
dynamics, the interpolated field results from a linear combination of the observations. In general,
stationary covariance hypotheses are considered, which prove relevant for the reconstruction of
horizontal scales above 100 km. Fine scale components in the other hand may hardly be retrieved with
such approaches and a variety of research studies aim to improve the reconstruction of high-resolution
components of spatio-temporal fields.

Empirical Orthogonal Function (EOF) based interpolation is an other category widely used in
geosciences [11-13]. It relies on a Singular Value Decomposition (SVD) to compute an EOF basis,
the field is then reconstructed by projecting the observations on the EOF subspace until a convergence
criterion is reached [14]. Unfortunately, dealing with high missing data rates decreases the encoded
variability in the EOF components witch results in smoothing fine scale structures.

Data assimilation is the state-of-the-art framework for the reconstruction of dynamical systems
from partial observations based on a given numerical model [15,16]. Statistical data assimilation
schemes, especially ensemble Kalman filters, have become particularly popular due to their trade-off
between computational efficiency and modeling flexibility. Unlike Ol and EOF based techniques,
these schemes explicitly rely on dynamical priors to address interpolation issues resulting in better
representation of fine scale components. However, When dealing with sea surface dynamics,
the analytical derivation of these priors involves simplifying assumptions which may not be
satisfied by real observations [17]. By contrast, realistic analytical parameterizations may lead
to highly computationally-demanding numerical models associated with modeling and inversion
uncertainties [18], which may limit their relevance for an application of the interpolation of a single
sea surface tracer.

Recently, data-driven approaches [11,19] have emerged as relevant alternatives to model-driven
schemes. They take benefit from the increasing availability of remote sensing observations and
simulation data to derive computationally efficient [20] dynamical priors. Analog methods are one
of the first data-driven techniques developed within a data assimilation framework [19]. In our
recent study [20-22], we proved the relevance of such data-driven approache when addressing the
spatio-temporal interpolation of sea surface geophysical tracers. Combining analog data assimilation
(AnDA) with a patch-based representation have shown great results with respect to the state-of-the-art
Ol and EOF-based schemes. However, the parametrization of the proposed framework involves tuning
several parameters principally due to the data-driven formulation of the dynamical prior based on
analog forecasting. The implementation of this dynamical prior in an ensemble filtering scheme also
limits the representativity of the model as a trad-off between the method’s parameters and the ensemble
size need to be addressed carefully to decrease the computational complexity of the assimilation
method. From this point of view, several works [23,24] tried to formulate stochastic representations
of dynamical operators for their optimal use in sequential filtering schemes. Methods based on prior
knowledge of the variability of dynamical models have already been addressed to infer probabilistic
representations. However, such techniques are limited to systems with available dynamical priors.
Complex dynamical models in the other hand may require complex priors which may be unavailable
or hard to derive.

In the last years, Neural Networks have enriched the state-of-the-art in probabilistic modelling.
This is principally due to the advances in deep learning models which allow better understanding of
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complicated systems. Probabilistic representations such as structured inference [25] and deep Gaussian
processes [26] have rapidly became very popular in applications such as generative modeling and
dynamical inference. From this point of view the stochastic modelization of spatio-temporal fields is
an interesting open challenge that may benefit from these advances and can allow the representation
of complex stochastic dynamics without any prior knowledge regarding our system.

In this paper, we investigate data-driven interpolation approaches within a statistical data
assimilation framework. We aim to derive stochastic data-driven representations of complex
geophysical tracers. Among other representations [27] Neural networks are particularly appealing
due to their efficient trad-off between modeling abilities and interpretability of the learnt models.
This models have rapidly become the state-of-the-art in machine learning for a wide range of
applications, including inverse imaging issues [28]. Recent applications to the assimilation of
low-dimensional dynamical systems [27] and to the forecasting of geophysical dynamics [29,30]
have been developed. However, to our knowledge, the design of neural-network-based assimilation
models for the spatio-temporal interpolation of geophysical dynamics remain an open challenge,
which may greatly benefit from the ability of deep learning models to capture computationally-efficient
representations from available ocean observation and simulation datasets. In this study, we address
this challenge and propose a novel NN-based Kalman filtering scheme applied to the spatio-temporal
interpolation of satellite-derived sea surface temperature. We aim to propose a parametric data driven
framework that embed a stochastic representation of spatio-temporal dynamics. this architecture
conveys a probabilistic representation through the prediction of a mean component and a covariance
pattern. The latter may be regarded as a NN-based representation of the covariance patterns issued
from Monte Carlo approximations in ensemble assimilation schemes [31]. Our model may then be
directly exploited in sequential filtering schemes which allows us to overcome both issues encountered
in analog data assimilation and parametric stochastic representations based on prior knowledge in
terms of numerical complexity and availability of dynamical priors. Overall, the methodological
contributions of this work are two-fold: (i) we propose a new probabilistic NN-based representation
of 2D geophysical dynamics, (ii) we derive the associated NN-based Kalman filtering scheme for
spatio-temporal interpolation issues. We demonstrate the relevance of these contributions with respect
to state-of-the-art approaches [5,11,22] for the spatio-temporal interpolation of satellite-derived SST
fields in a case study region off South Africa. This region involves complex fine-scale SST dynamics
(e.g., fronts, filaments) which can’t be retrieved using classical state-of-the-art techniques.

This paper is organized as follows. Section 2 reviews data assimilation schemes. Section 3
describes the proposed neural-network-based data assimilation framework. Section 4 presents the SST
dataset used in our experiments as well as the parametrization chosen for the proposed model and
benchmark techniques. Section 5 presents the results of the numerical experiments. We further discuss
our contributions in Section 6.

2. Problem Statement and Related Work

Regarding ocean remote sensing data, spatio-temporal interpolation issues (also referred to as
data assimilation in geoscience) can be regarded as the reconstruction of some hidden states from
partial and/or noisy observation series [31]. Data assimilation techniques usually involve a state-space
evolution model [31]:

X1 = F(xt) + 17t @
Y1 = H(xep1) + e )
where t € {0, ..., T} represents the temporal resolution of our time series and F the dynamical model

describing the temporal evolution of the physical variables x. The observation model H links the
observation y to the physical variable x. #; and €; are random processes accounting for the uncertainties
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in the dynamical and observation models. They are usually defined as centered Gaussian processes
with covariances Q; and R; respectively.

From a probabilistic point of view, the spatio-temporal interpolation problem can be seen
as a Bayesian filtering problem where the main goal is to evaluate the conditional probabilities
p(x¢t11|y1, .-, vt) (prediction distribution of the state x;;1 given observations up to time t) and
p(xt+1|y1, - Yt,, Yi+1) (posterior distribution of x;1 given observations up to time ¢ + 1). Under certain
assumptions over the state space model (the dynamical and observation models are linear with
Gaussian uncertainties), the prediction and posterior distributions are also Gaussian and can be
written as:

P(Xt+1|y1,--~,}/t) = N(xt_ﬂfzt_ﬂ) ©)
p(xt+1|y1,--.,yt+1) = N(x;:-lfzg:-l) @)

with the means and covariances computed for each time f using the well known Kalman recursion

Xq = FxtJr 5)
= FEFT+ Q) (6)
X = xq + Kealyen — Hepaxg 4] )
i =2 — K Hea 2, ®)
with
Ky = Z;—i—lHﬁrl [Ht+12;+1HtT+1 + R )

Here F and H;; corresponds respectively to some linear dynamical and observation models.
The superscript (-) refers to the forecasting of the mean of the state variable x,_; and of its
covariance matrix X, ; given observations up to time ¢ but without the new observation at time
t + 1. The superscript (+) refers in the other hand to the mean of the state variable x;jrl and of
the covariance matrix Zttl given all observations up to time ¢t + 1. They are referred to as the
assimilated mean and covariance. K;;; is the Kalman gain. Kalman filters provide a sequential
formulation of the Optimal Interpolation (OI) [15] which may also be solved directly knowing the
space-time covariance of processes x and y. For non-linear and high-dimensional dynamical systems,
the Probability Density Functions (PDFs) are not Gaussian anymore and the above Kalman recursion
does define their means and covariances. Ensemble Kalman methods have been proposed to address
these issues. The ensemble Kalman filter and smoother [31] are the first sequential filtering techniques
used reliably in the reconstruction of geophysical fields. The key idea here is to approximate the
forecasting mean x, ; and covariance X ; by a sample mean and covariance matrix computed by
propagating an ensemble of M members, {xi;l }M , using the dynamical model F.

X =F(xt,i€{0,.,N}) (10)

1= ﬁDHlDEH (11)
Diyq = [x};l - x;rl,...xfi—l — X4 (12)
*ith = ¥ + Kealyen — Hiyaxg] (13)
Kyt =X H [Hin S HY g + R (14)
% =2 — K Hepn 2, (15)
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Besides all its advantages, EnKF techniques do not escape the curse of dimensionality.
High-dimensional systems require using large ensemble sizes M which may lead to very
high-computational complexity. The use of small ensemble sizes in the other hand may result in
undersampling the covariance matrix (the considered ensemble is not representative of our systems
dynamics) which may in turn result in poor reconstruction performance, including for instance
filter divergence and spurious long-range correlations. Proposed solutions such as inflation [32],
cross-validation [33] and localization methods [34-36] may require thorough tuning experiments.
An alternative strategy based on a model-driven propagation of parametric covariance models [23,24]
seems appealing. Using advection priors [37], it propagates parametric covariance structures,
which leads to the implementation of the classic Kalman recursion. Accounting for more complex
dynamical priors for the covariance structure is an open question, which may limit the applicability
of this approach to complex geophysical systems. Inspired by the latter parametric framework,
we aim to design an efficient sequential filtering technique for the reconstruction of geophysical
fields. Rather than considering a model-driven prior to propagate Gaussian states as in [23,24],
we investigate NN-based priors, which may be fitted from training data. The resulting NN-based
Gaussian representations provide computationally-efficient approximations of the dynamical priors
that should prevent undersampling issues within a Kalman recursion.

3. Proposed Interpolation Model

3.1. Neural-Network Gaussian Dynamical Prior

Our key idea is to exploit neural-network (NN) representations for the time propagation of
a Gaussian approximation of the distribution of the physical variable x. Compared with dynamical
priors in the assimilation model (1), which states the conditional distribution x;|x;_1, we consider
neural-network representations to extend the prediction step of the Kalman recursion (5) and (6) to
non-linear dynamics. Formally, it comes to define:

X = F(x)) (16)

= Fe(,E) 17)

with x, ; and ¥, ; the predicted mean and covariance of the Gaussian approximation of the state at
time f + 1 given the assimilated mean x;" and covariance &, at time t. Functions F, Fy, are neural
networks to be defined with parameter vectors 6 = (6, 6x). It may be noted that our parameterization
follows (5) and (6) such that the update of the mean component in (16) only depends on the mean at
the previous time step and the update of the covariance depends both on the mean and covariance at
the previous time step. Given this NN-based representation of the prediction step of the Kalman filter,
we apply the classic Kalman-based filtering under the assumption that the observation model is linear
and Gaussian.

Such a formulation does not require forecasting an ensemble to compute a sample covariance
matrix. It results in a significant reduction of the computational complexity. The same holds when
compared to the computational complexity of the analog data assimilation which involves ensemble
forecasting and repeated nearest-neighbor search.

3.2. Patch-Based NN Architecture

When considering spatio-temporal fields, the application of the model defined by (16) and (17)
should be considered with care to account for the underlying dimensionality, especially for the
covariance model. For this reason, a global representation of the spatio-temporal field is most likely to
fail due to computational limitations. Following our previous works on analog data assimilation [21,22],
we consider a patch-based representation as sketched in Figure 1 (A patchis a P x P subregion of a 2D
field with P the width and the height of the patch). This patch-based representation is fully embedded
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in the considered NN architecture to make explicit both the extraction of the patches from a 2D field
and the reconstruction of a 2D field from the collection of patches. The latter involves a reconstruction
operator which is learnt from data.

Regarding model F, the proposed architecture proceeds as follows:

* At a given time {, the first layer of the network, which is parameter-free in terms of training,
comes to decompose an input field x; into a collection of N), P x P patches xp_;, where P is
the width and height of each patch and s the patch location in the global field. Each patch is
decomposed onto an EOF basis B according to:

zpi = xp BT (18)

with zp_; the EOF decomposition of the patch xp_;. The EOF decomposition matrix 3 is trained
offline as preprocessing step; For each s € [1, ..., N,|, we predict zp, ;11 using an EOF-patch-based
model F7s. This model is implemented based on a residual architecture to mimic a numerical
integration scheme (typically, an Euler or 4th-order Runge-Kutta scheme) of an approximate
Ordinary Differential Equation (ODE) parametrized by the residual block of our residual network.
By contrast to other neural networks models, This architecture grantee the physical interpretability
of our dynamical model as stated in [27]. In order to enhance the modeling capabilities of our
approximate model, The residual block is a classic Multilayer Perceptron (MLP) network with
bilinear layers;

e The third layer is a reconstruction network ;. It combines the predicted patches
xp, ¢ = zp,B,s € .. Np} to reconstruct the output field x;. This reconstruction network
JF; involves a convolution neural network [38].

The details of the considered parameterizations for the second and third layers are given in
Section 4. To train the mean dynamical model F, we apply a two-step procedure. We first learn
the local dynamical models F%s,s € [1, ..., Ny| based on the minimization of the EOF-patch based
forecasting error. The reconstruction network F; is then optimized using the same criterion over the
global field. This training procedure allows the patch based models to be interpreted as local dynamical
models and the reconstruction network as a post-processing operator. Other training configurations
could be envisaged, we can for example train the all model according to a forecasting error over the
global field. However, this results in inconsistent patch models 7 that can’t be used in assimilation
experiments for patch reconstruction issues.

Regarding the covariance model Fy, we also consider a patch-based representation of the spatial
domain. More precisely, a block-diagonal parameterization of the covariance model Fx is addressed
by training diagonal patch-level covariance models in the EOF space. It may be noted that a diagonal
parameterization of the covariance in the EOF space forms a full covariance matrix in the original
patch space.

Each patch based covariance model ]-"g * is learnet according to a Maximum Likelihood (ML)
criterion. The associated training dataset comprises patch-based EOF decompositions of the forecasted
states according to the mean model F7s from states of the training dataset corrupted by an additive
Gaussian perturbation with a covariance structure Xy. Here, ¥ is given by the empirical covariance of
the EOF patches for the entire training dataset. Overall, for a given patch P;, we parameterize .7:5 ° the
restriction of covariance Fy, onto patch P; as:

T2 (xpot, Ept) = B (Zp,1,%0) - FL¥ (2p,1.Z0) - B (19)
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with F, 17;5 (zp, 1, Xo) the diagonal covariance model in the EOF space parametrized by a neural network
and ¥(Xp, 1, Xp) a scaling function. Among different parameterizations, a constant scaling function
¥ () = 1 led to the best performance in our numerical experiments. Regarding the diagonal covariance
model, details on its parametrizations are given in the next section.

To illustrate the relevance of the proposed block diagonal covariance matrix parametrization
(based on a patch based projection on the EOF space and illustrated for instance by Equation (19)),
we also investigate a diagonal covariance matrix model in the patch space.

3.3. Data Assimilation Procedure

Given a trained patch-based NN representation as described in the previous section, we derive
the associated Kalman-like filtering procedure. As summarized in Algorithm 1, at time step ¢, given the
Gaussian approximation of the posterior likelihood P(x;_1|yo, . .., y¢—1) with mean x," ; and covariance
%, |, we first compute the forecasted Gaussian approximation at time ¢ with mean field F(x;” ;) and
patch-based covariance Fx (x;” |, X, ;). The assimilation of the new observation y; is performed at
a patch-level. For each patch Ps, we update the patch-level mean xa/ ; and covariance Z;S/ ; using
Kalman recursion (8) with observation yp_;. We then combine these patch-level updates to obtain
global mean x; and covariance £;". Whereas we compute global mean x; using trained reconstruction
network F;, Zf just comes to store the collection of patch-level covariances. This procedure is iterated

up to the end of the observation sequence.

Algorithm 1 Patch-based NNKF reconstruction
1: procedure PB-NNKEF(F,Fx,y,R)
2: fortin[0,..., T):
3: xp «— F(x )
4 (25 ZEN,,,J — Fe(x 1,20 )

Po, b7+

5: [xXpy 47 s x;.Np,t} < ExtractPatches(x;")

6: [Py tr -eor ypr,t] < ExtractPatches(y;)

7. forsin(l,.., Np|:

8: Kp,i =25 Hp [HpEp Hp ,+ Ri] ™
9: Xﬁ,t =xp ;+Kp, lyp,+ — HPS,txﬁs,t]

10: p = Sp Kp,1Hp, i Zp

1 x; < Reconstruct([xp ,, ..., x;Ns,t])

12 I+ Reconstruct([Z;O,t,..., Zp i)

Compared with the patch-based analog data assimilation [22], it might be noted that we iterate
patch-level assimilation steps and global reconstruction steps thanks to the NN-based propagation of
the patch-based covariance structure. This procedure potentially allows information propagation from
one patch to neighborhing ones after each assimilation step. By contrast, in the patch-based analog
data assimilation, each patch is processed independently, such that no such information propagation
can occur. This is regarded as a key feature to account for the propagation of geophysical structures
(e.g., fronts, eddies, filaments,...).

We refer to the patch-based NNKF reconstruction model using the EOF block-diagonal
parameterization of the covariance model Fy, as model PB-NNKF-EOF. The model using the diagonal
parameterization of the covariance model F5, in the patch space is referred to as PB-NNKE.
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Figure 1. Proposed neural-network-based representation of a spatio-temporal dynamical system.
The input X; is first decomposed into P x P patches, each patch is then propagated using its associate
local stochastic dynamical models (F7*, .7-'; *). The mean componont of the output X; 1 is reconstructed
by injecting the forecasted patches into the reconstruction model F;. The block diagonal covariance
matrix is formed by the collection of the patch-level covariances.

4. Data and Experimental Setting

As a case-study, we address the spatio-temporal interpolation of satellite-derived SST fields
associated with infrared sensors, which may involve high missing data rates (typically from 50% to
90%). We consider the same region and dataset as in [22] to make easier benchmarking analysis.

4.1. Dataset Description

The SST time series used here is delivered by the UK Met Office [5] from January 2008 to December
2015. The spatial resolution of our SST field is 0.05° and the temporal resolution # = 1 day. The data
from 2008 to 2014 were used as a training set. The 215 data were used as ground truth to provide
a quantitative analysis, observations used in the assimilation experiments were simulated from this
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ground truth based on realistic SST clouds patterns provided by the METOP-AVHRR mask. This sensor
is highly sensitive to the cloud cover and results in very high missing data rates.As case-study area,
we select an area off South Africa (from 2.5° E, 38.75° S to 32.5° E, 58.75° S). This region involves
is particularly relevant for the considered complex fine-scale SST dynamics (e.g., fronts, filaments).
It makes it relevant for the considered quantitative and qualitative evaluation.

4.2. Experimental Setting

The proposed neural-network-based Kalman scheme involves the following parameter setting.
The proposed patch-based and NN-based Kalman filter is applied to SST anomaly fields w.r.t.
optimally-interpolated SST fields (see below for the parameterization of the optimal interpolation).
These optimally-interpolated fields provide a relevant reconstruction of horizontal scales up to
~100 km.

We exploit patch-level representations with non-overlapping 20 x 20 patches. This patch size
was particularly tuned for the resolution of fine scale structures for this particular dataset [22].
For each patch P;, we learn an EOF basis from the training data. We keep the first 50 EOF
components, which amount on average to 95% of the total variance. For the patch-level NN model
FPs, we use a bilinear residual neural network architecture with 60 linear neurons, 100 bilinear
neurons and 10 fully-connected layers with a Relu activation. Among other parametrizations [39],
This architecture prove to outperform several othre data driven models in the forecasting of patch based
SST dynamics. The reconstruction model F; is a convolutional neural network with 3 convolutional
layers. The first two layers comprise 64 filters of size 3 x 3 with a Relu activation and the last layer is
a linear convolutional layer with one filter. This parameters were tuned to give the best forecasting
performances at a low computational cost.

Regarding the diagonal covariance model F, ,7335, we consider an MLP with 4 layers, 3 hidden
layers with 200 neurones and Relu activations and an output layer with a softplus activation.
This parametrization was tunned to give the best trad-off between assimilation results and numerical
complexity sins more complicated models lead to the same results illustrated in Section 5. With
a view to evaluating the EOF-based covariance parameterization, we consider both PB-NNKF-EOF
and PB-NNKF schemes.

We perform a quantitative analysis of the interpolation performance of the proposed scheme
with respect to an optimal interpolation, and the EOF based interpolation method VE-DINEOF [11]
which are two of the most popular techniques in spatio-temporal fields interpolation. Furthermore,
in order to provide a comparison to an other data-driven data assimilation technique, we also tested
the interpolation technique based on analog forecasting. Overall, the considered parameter setting is
as follows:

¢  Optimal interpolation (OI): We use a Gaussian kernel with a spatial correlation length of 100 km
and a temporal resolution length of 3 days. These parameters were empirically tuned for the
considered dataset using a cross-validation experiment.

* Analog data assimilation (Local Analog Forecasting(LAF)-EnKF, Global Analog
Forecasting(GAF)-EnKF): We apply both the global and local analog data assimilation
schemes, referred to as GAF-EnKF, LAF-EnKF [19,22]. Similarly to the proposed scheme, we
consider 20 x 20 patches and 50-dimensional EOF decomposition with an overlapping of
10 pixels. We let the reader refer to [19,22] for a detailed description of this data-driven approach,
which relies on nearest-neighbor regression techniques.

e EOF based reconstruction (PB-VE-DINEOF): We also compare our approach to the state-of-the-art
interpolation scheme based on the projection of our observations with missing data on an EOF
basis [11]. The SST field is here decomposed as described in the analog data assimilation
application into a collection of 20 x 20 patches with a 10 pixels overlapping. Each patch is
then reconstructed using the VE-DINEOF method.
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5. Results and Discussion

We report in this section the results of the considered numerical experiments. We first focus on
patch-level performance as the patch-based representation is at the core of the proposed interpolation
model. We then report interpolation performance for the whole case-study region.

5.1. Patch-Level Interpolation Performance

We first evaluate the patch-level interpolation performance of the proposed scheme for four
patches corresponding to different dynamical modes as illustrated in Figure 2 located in the area (5° E
to 75° E and latitude 25° S to 55° S). In Table 1, we report the interpolation performance in terms of
root mean square error (RMSE) for the proposed EOF NN-based scheme (NNKF-EOF) and include
a comparison to the local analog data assimilation (LAF-EnKF). With a view to specifically analyzing
the relevance of NN-based parametric covariance model, we also apply an ensemble Kalman filter
with the trained dynamical model F%s. The reported results clearly illustrate the relevance of the
proposed NN-based scheme for the assimilation of a single patch. The proposed NN-based scheme,
which combines a NN-based formulation of the mean forecasting operator and of the associated
covariance pattern, slightly outperforms the ensemble Kalman filters, while also significantly reducing
the computational complexity induced by the generation of ensembles of size 500.

305

408

50s

10E 30E 50E

Figure 2. Selected patches on the high resolution component of the SST data. (The SST map corresponds
to 19 July 2015).

Table 1. Patch-level interpolation experiment: RMSE of the reconstructed anomaly fields for the LAF
EnKEF (local analog forecasting based ensemble Kalman filter), Bi-NN-EnKF (Bilinear residual neural net
model (F7+) used in an ensemble Kalman filter), Bi-NN-NNKF (Proposed NNKEF based on a bilinear
residual neural net dynamical mean model).

Assimilation Method Considered Patch RMSE (°C)
Patch1 Patch2 Patch3 Patch4
LAF EnKF 0.50 0.25 0.22 0.39
Bi-NN-EnKF 0.55 0.23 0.22 0.30
Bi-NN-NNKF-EOF 0.46 0.20 0.19 0.27

5.2. Global Forecasting and Interpolation Performances

Forecasting performances of the proposed data-driven dynamical priors: We further evaluate
the performance of the proposed schemes over the considered case-study region. Table 2 reports
the RMSE of the proposed NN-based representation compared with local and global forecasting
operator [19]. The proposed patch-level NN-based model outperforms the benchmarked approaches
by about 5-15% in terms of forecasting RMSE. This is due to the structure of the proposed model that
involves a postprocessing operator learnt from data that combines the predicted patches in order to
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minimize the global forecasting error. The analog forecasting models in the other hand, even through
the use of more patches with overlapping, process the output patches through EOF projections to get
ride of the variability due to the patches interaction. However, This smoothing results in losing some
high resolution information which results in diminishing the forecasting results with respect to our
proposed model.

Interpolation performances of the proposed model with respect to OI and DINEOF: We report
the mean interpolation performance in Table 3 and the interpolation error time series in Figure 3.
The proposed NN-based scheme (PB-NNKF-EOF) leads to very significant improvements with respect
to the optimal interpolation and PB-VE-DINEOF schemes in terms of RMSE and correlation coefficients
for both the SST and its gradient with a relative improvement of the RMSE above 50% for missing data
areas for the SST and its gradient (resp. 40%). This important gain clearly emphasizes retrivement of
fine scale structures unresolved using OI and DINEOF techniques. From a methodological point of
view, this gain was clearly expected. OI and DINEOF schemes rely purely on data to interpolate the
SST field. Therefore when provided with observations with a high missing data rate, these techniques
are only able to retrive horizontal scales up to ~100 km. In the opposite, our proposed framework
combines both the observations and the data driven model outputs to reconstruct our SST field which
results in better representation of fine scale structures.
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Figure 3. Reconstruction and gradient RMSE times series for the selected models.

Interpolation performances of the proposed model with respect to GAN-EnKE, LAN-EnKF:
A clear gain is also exhibited w.r.t. analog data assimilation schemes with a relative gain greater
than 20% in terms of RMSE for both the SST and its gradient. The same conclusion holds in terms of
correlation coefficients close to 90% or above for all parameters for PB-NNKF-EOF scheme, all the
other ones depicting correlation coefficients below 85% for SST gradient fields. These results reflect
the forecasting performances illustrated in Table 2 and the patch based interpolation performances
in Table 1. Indeed, the PB-NNKF-EOF scheme outperforms both the analog forecasting operators
in terms of one step ahead predictions which suggest better assimilation in a global scale especially
for missing data areas. Although the considered NN-based representation exploits non-overlapping
patches, we still come up with significant improvements w.r.t AnDA schemes which involve a 50%
overlapping rate between patches. This clearly illustrates the relevance of NN-based representation,
which fully embeds the direct and inverse mappings between the SST field and its patch-level
representation. Iterating patch-level assimilation steps and global reconstruction steps as illustrated by
the Algorithme 1 allows information propagation of assimilated patches in a global scale which helps
outperforming AnDA schemes. Interestingly, Table 3 also reveals the importance of the EOF-based
parameterization of the NN-based covariance model (19) in the improvement of interpolation results.

Qualitative analysis of the proposed schemes: We further illustrate these conclusions through
interpolation examples in Figure 4. The visual analysis of the reconstructed SST gradient fields
emphasize the relevance of PB-NNKF-EOF scheme to reconstruct fine-scale details. While OI and
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PB-VE-DINEOF schemes tend to smooth out fine-scale patterns, the analog data assimilation may
not account appropriately for patch boundaries. This typically requires an empirical post-processing
step [22]. By contrast, the PB-NNKF-EOF scheme fully embeds this post-processing step through
reconstruction network F, and learns its parameterization from data, which is shown here to greatly
improve patch-based interpolation performance. The analysis of the spectral signatures in Figure 5
leads to similar conclusions with the PB-NNKF-EOF scheme being the only one to recover significant
energy level up to 50 km.

Table 2. Forecasting experiment for several prediction time steps.

Model Forecasting RMSE (°C)
t+h  t+4h t+8h

PB-NN 048 0.60 0.63
LAF 050 0.68 0.76
GAF 061 0.74 0.76

Table 3. SST interpolation experiment: Reconstruction correlation coefficient and RMSE over the SST
time series and their gradient.

Model Entire Map Missing Data Areas
RMSE Correlation RMSE Correlation

SST(°C) VSST(°C/°)  SST VSST SST(°C) VSST(°C/°) SST VSST
PB-NNKEF-EOF 0.33 0.13 99.87%  89.30% 0.35 0.10 99.85%  93.49%
PB-NNKF 0.51 0.18 99.75%  81.24% 0.51 0.18 99.71%  81.50%
LAF-EnKF 0.43 0.16 99.79%  84.41% 0.42 0.15 99.77%  86.73%
GAF-EnKF 0.48 0.19 99.74%  79.12% 0.48 0.18 99.72%  80.74%
PB-VE-DINEOF 0.54 0.20 99.68%  75.30% 0.54 0.21 99.66%  74.71%
@)1 0.76 0.25 99.37%  60.31% 0.75 0.27 99.37%  55.73%

0Obs
T
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SST(C) e —————

I ! 2 e
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Figure 4. Interpolation of the SST field on 19 July 2015: first row, the reference SST, its gradient and
the observation with missing data (here, 82% of missing data); second row, interpolation results using
respectively OI, PB-VE-DINEOF, GAF-EnKF, LAF-EnKF, PB-NN-NNKEFE, PB-NN-NNKF-EOF; third row,
gradient of the reconstructed fields.
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Figure 5. Radially averaged power spectral density of the interpolated SST fields with respect to the
reference SST.

6. Conclusions

In this work, we addressed neural-network-based models for the spatio-temporal interpolation
of satellite-derived SST fields. We introduced a novel probabilistic NN-based representation
of geophysical dynamics. This representation, which relies on a patch-level and EOF-based
decomposition, allows us to propagate in time a mean component and the covariance of the SST
field. It makes direct the derivation of an associated Kalman filter for the spatio-temporal interpolation
of SST dynamics. The relevance of the proposed framework is demonstrated in our numerical
experiments with respect to the state-of-the-art approaches. Our method clearly outperforms the
optimal interpolation and DINEOF based schemes which fail retrieving fine scale structures due to
the high missing data rate in our observations. Comparing our data-driven data assimilation scheme
to the analog data assimilation framework reveals the importance of investigating such filtering
representations. From our numerical experiments, an important gain is stressed with respect to analog
forecasting based schemes which is principally due to the formulation of our stochastic dynamical
model. The patch based identification procedure allows to significantly reduce the identification
complexity while still giving good priors. The recollection of the patches to form the global output
allows getting ride of fine tuning post-processing step that can decrease the results as illustrated in
our experiments. Finally the stochastic formulation of our dynamical model allows the propagation
of a parametric PDF of our transition function in a Kalman like assimilation scheme. This stochastic
formulation is completely learnt from data and allows getting ride of the ensemble formulation that
may cause limitations in terms of numerical complexity.

We believe that this study opens a new research avenue for the design of stochastic dynamical
representations for spatio-temporal fields. The application of the proposed framework to other sea
surface geophysical tracers, including multi-source and multi-modal interpolation issues is considered
as our first priority. SLA (Sea Level Anomaly) fields could provide an interesting case-study as
the associated space-time sampling is particularly scarce and multi-source strategies are of key
interest [40]. Improving the formulation and training of the covariance model is also an important
issue. Learning our covariance model based on one step ahead ensemble forecasting is most likely
to fail in sequential assimilation frameworks when provided with observations with highly irregular
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temporal sampling. Optimizing our covariance model based on the spatio-temporal sampling of our
observations seems to be an interesting path to investigate as one of our further works.

The use of the RMSE for training our data-driven models and as a diagnosis tool raises the
question of the relevance of the proposed criterion. Although from the qualitative analysis based
on the visual analysis of our reconstructed fields proved the relevance of the proposed technique.
The development of more rigorous diagnosis and training criterions based on structures matching is
an appalling research avenue. Exploiting stability analysis tools such as Lyapunov exponents is an
interesting approach that may increase the modeling capabilities of our data-driven framework.

Finally, the interpretation of the parametrization of the reconstruction network is an open issue.
In our work, our reconstruction network was tuned to give the best forecasting performances with
a low computational complexity. However, defining a relationship between the reconstruction
network parameters (e.g., number of filters, kernel size, activation function) and the physical system
(e.g., fine scale structures identification, patch boundaries) is an open research topic that might be
answered in the next years due to the advances of deep learning interpretability.
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