Table S1. Model parameters and equations. $\alpha = 1.26$ is the Priestley-Taylor coefficient (Priestley and Taylor [26]), Δ is the slope of the saturation to vapor pressure curve, γ is the psychrometric constant, RH is relative humidity, VPD is the saturation vapor pressure deficit, $\beta = 3.0$ is a sensitivity parameter, T_a is the air temperature in Celsius, $NDVI_{soil} = 0.05$ and $NDVI_{soil} = 0.84$ are the minimum value of NDVI over bare soil and maximum value of NDVI of the vegetated areas for the study period respectively, $m_2 = 1.0$ and $b_2 = -0.05$ (Fisher et al. [27]), A = 0.31 and B = 74,000 (Santanello and Friedl [58]), $k_{Rn} = 0.6$ (Fisher et al. [27]), LAI is the leaf area index (Houborg and McCabe [46]). NIR and Red are the near infrared and red band reflectance values (Houborg and McCabe [46]). In the reference column, original study refers to the formulation proposed by Fisher et al. [27].

Parameter	Description	Equation	Reference
ET	Evapotranspiration	$ET_c + ET_s + ET_i$	Original study
ET_c	Canopy transpiration	$(1-f_{wet}) \cdot f_g f_T f_M \cdot \alpha \frac{\Delta}{\Delta+\gamma} \cdot Rn_c$	Original study
ET _s	Soil evaporation	$(f_{wet} + f_{SM}(1 - f_{wet})) \cdot \alpha \frac{\Delta}{\Delta + \gamma} \cdot (Rn_s - G)$	Original study
ET_i	Interception evaporation	$f_{wet} \cdot lpha \frac{\Delta}{\Delta + \gamma} \cdot Rn_c$	Original study
f_{wet}	Relative surface wetness	RH^4	Original study
f_g	Green canopy fraction	$\frac{f_{APAR}}{f_{IPAR}}$	Original study
f_T	Plant temperature constraint	$\frac{1}{1 + e^{0.2 \cdot (12 - T_a)}}$	This study
f _M	Plant moisture constraint	<u>f_{APAR} f_{APARmax}</u>	Original study
f_{SM}	Soil moisture constraint	$RH^{VPD/\beta}$	Original study
<i>f_{APAR}</i>	Fraction of photosynthetically active radiation absorbed by green vegetation cover	$(NDVI - NDVI_{soil})/(NDVI_{veg} - NDVI_{soil})$	Wittich and Hansing [61]
<i>f_{IPAR}</i>	Fraction of photosynthetically active radiation intercepted by total vegetation cover	$m_2 NDVI + b_2$	Original study
G	Soil heat flux	$A \cdot \cos\left(\frac{2\pi(t+10,800)}{B}\right) \cdot Rn_s$	Santanello and Friedl [58]
Rn _s	Net radiation that reaches the soil	$Rn \cdot e^{-k_{Rn} \cdot LAI}$	Original study
Rn_c	Net radiation to the canopy	$Rn - Rn_s$	Original study
NDVI	Normalized difference vegetation index	$\frac{NIR - Red}{NIR + Red}$	Original study