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Abstract: Mobile Laser Scanning (MLS) point cloud data contains rich three-dimensional (3D)
information on road ancillary facilities such as street lamps, traffic signs and utility poles.
Automatically recognizing such information from point cloud would provide benefits for road
safety inspection, ancillary facilities management and so on, and can also provide basic information
support for the construction of an information city. This paper presents a method for extracting
and classifying pole-like objects (PLOs) from unstructured MLS point cloud data. Firstly, point
cloud is preprocessed to remove outliers, downsample and filter ground points. Then, the PLOs are
extracted from the point cloud by spatial independence analysis and cylindrical or linear feature
detection. Finally, the PLOs are automatically classified by 3D shape matching. The method was
tested based on two point clouds with different road environments. The completeness, correctness
and overall accuracy were 92.7%, 97.4% and 92.3% respectively in Data I. For Data II, that provided
by International Society for Photogrammetry and Remote Sensing Working Group (ISPRS WG) III/5
was also used to test the performance of the method, and the completeness, correctness and overall
accuracy were 90.5%, 97.1% and 91.3%, respectively. Experimental results illustrate that the proposed
method can effectively extract and classify PLOs accurately and effectively, which also shows great
potential for further applications of MLS point cloud data.
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1. Introduction

The three-dimensional (3D) information of roads and ancillary facilities is the basic content of
city information construction. The high-precision 3D information of roads and ancillary facilities
plays an important role in road safety inspection, road facility management, maintenance and 3D
city modeling [1–4]. In particular, pole-like objects (PLOs) such as street lamps, traffic signs and
utility poles are important for urban planning, navigation and driving aids [5,6]. The increase of
new roads and road reconstructions has resulted in a rapid renewal in the number and type of PLOs.
The traditional manual methods cannot accommodate the collection of massive 3D information of
PLOs. It is time consuming and increases the overall cost when managing, maintaining and updating
the basic data as to road and ancillary facilities data.

Mobile Laser Scanning (MLS) system is an effective complement to the airborne laser scanner
(ALS) and terrestrial laser scanner (TLS) systems [7]. MLS can continuously scan the road surface
and objects on both sides of roads, thus providing detailed elements of urban model such as building
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facades, road surfaces and PLOs [6,8–10]. With the rapid growth of location-based services, PLOs are
becoming increasingly significant for safe driving [3]. PLOs can provide drivers with the necessary
warnings, distance and direction information for safety driving assist [8,11]. However, MLS point
cloud is massive, including a variety of ground points, and it takes time and labor to manually
identify PLOs [12,13]. Therefore, it is necessary to extract and classify PLOs automatically in a more
efficient way.

For pole recognition from MLS point cloud, a variety of methods have been proposed. Some
methods extracted the pole relying on additional data or scan line-by-line analysis. Wang, et al. [14]
detected traffic signs based on the difference of reflective intensity, as the traffic signs were always
painted with highly reflective materials. Lehtomäki, et al. [2] detected circles or ellipses from the
scan lines, fused and classified clusters in the vertical direction. Lehtomäki, et al. [5] segmented
scanning lines to find possible pole sweeps to cluster as a candidate pole, then further extracted
PLO based on defined features. Yu, et al. [15] segmented point cloud into road and non-road points,
followed by using a matching method to extract the street lamp from non-road points. There are also
spatial analysis methods applied based on grid, voxel or super-voxel. Yadav, et al. [16] implemented
a three-stage strategy to extract poles. Firstly, point cloud was grouped into 2D grids. Secondly,
the point set in each grid was segmented vertically along the Z-axis. Lastly, the principal component
analysis (PCA) was applied to detect vertical poles. Aijazi, et al. [6] voxelized point cloud by radius
Nearest Neighbors (r-NN) and clustered the voxels according to point geometry features and color
attributes to form super-voxels. The local features and geometric models were used to classify objects.
Cabo, et al. [17] first voxelized point cloud and found a part of the pole by two-dimensional (2D)
analysis, the horizontal section of the voxelized point cloud, then clustered and identified PLO based
on voxel connectivity analysis. Lim and Suter [18] used discriminative conditional random fields and
super-voxels for point cloud recognition by over-segmenting the original point cloud into super-voxels
to reduce the number of points. Wu, et al. [19] located and extracted street lamps from MLS point
cloud based on the super-voxel method, which included five steps, namely preprocessing, location,
segmentation, feature extraction and classification. There are certain methods for extracting local shape
features and semantic information. Rabbani and Van Den Heuvel [20] used the 2D Hough transform
and 3D Hough transform to estimate the position and radius of the cylinder. Lam, et al. [21] used
the random sample consensus (RANSAC) method and least squares method combined with Kalman
filtering to fit plane for extraction 3D information of road, street lamp and electric wire. Pu, et al. [1]
used a region growing algorithm to classify MLS point cloud into ground points and non-ground
points, and then extracted traffic sign, vegetation and building facade based on semantic features (size,
shape, orientation and spatial relationships). In addition, some researchers tried to extract poles by
using the density of projected points (DoPP) that were obtained from raw point cloud. El-Halawany
and Lichti [8] projected point cloud to a horizontal plane and segmented point cloud with high point
density. The PLOs were extracted by using up-zone region growing. PLOs were classified based on its
features such as height, surface normal vector and maximum normalized eigenvalue. Hu, et al. [22]
used DoPP method to extract street lamps based on the prior information of street lamp height.
In addition, there are some methods that used priori information and region of interest. Yan, et al. [23]
detected and classified PLOs from the MLS point cloud. Firstly, ground points were removed from
the original point cloud. Non-ground points were clustered by the Euclidean distance method, and
prior information and shape information were used to detect the PLOs from these clusters. Secondly,
random forest classifier was used to classify PLOs. Rodríguez-Cuenca, et al. [24] first selected region of
interest in the preprocessing phase to reduce original points, detected PLOs by the Reed and Xiaoli [25]
anomaly detection method, and then the unsupervised classification algorithm was used to classify
vertical clusters into two categories: Artificial poles and trees.

In the past decade [2,14,23,24,26,27], researchers raced to extract and classify PLOs from MLS
point cloud data of urban scene and had demonstrated the effectiveness of such algorithms. However
due to the complexity of the urban scene and the geometric characteristics of the PLO, some existing
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methods still need further improvement to improve the accuracy of extraction and classification. Some
of these algorithms were subject to additional data or selection of region of interest. These algorithms
of extracting the PLO could not fully use spatial and geometric (cylinder and linear) features of PLOs.
Besides, these algorithms had weak classification capability since they did not take full account of
classification information. To solve these problems, we propose a novel algorithm of PLO extraction
and classification. Different from other algorithms, the proposed algorithm extracts the potential PLO
by using their spatial independence, and then further confirms the PLO through the fitting results of
their cylindrical features or linear features. In the process of classification, the street lamp with high
point density and clear shape was used as the template. Compared with existing algorithms of PLO
extraction and classification, the proposed algorithm has the following advantages: (1) rapidly extract
the complete structure of pole. The spatial and geometric features of the pole were fully considered;
(2) classify complex poles through 3D shape and height features with the template based on the method
of 3D shape matching.

This paper is organized as follows. Section 1 introduces the necessity and objective of our research.
Section 2 presents the proposed PLOs extraction and classification method. In Section 3 the proposed
method is demonstrated and validated on two MLS point clouds of road environment. In last section,
conclusions and future work are drawn.

2. Materials and Methods

Two urban scene MLS point clouds were used to test our method. The main steps in the
method are as follows (see Figure 1): (1) point cloud preprocessing, e.g., removing outliers, the first
voxelization, downsampling, and ground filtering, (2) pole-like objects extraction, e.g., the second
voxelization, 3D spatial independence analysis, cylindrical or linear features detection, and PLOs
clusers, (3) pole-like objects classification based on 3D shape matching. These steps are described in
detail in the following sections.
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2.1. Mobile Laser Scanning Point Clouds

We used two MLS point clouds to evaluate the performance of the method to recognize PLOs
(see Figures 2 and 3). Data I is a town scene with a 651-m-long road and a data resolution of 0.037 m.
Data I contains a large number of houses, street lamps, utility poles, and traffic signs, as shown in
Figure 2. Data II is provided by ISPRS WG III/5 and has a 465-m-long street with average resolution of
0.015 m, as shown in Figure 3. Data II contains a wide variety of vertical objects such as street lamps,
traffic signs, trees, and buildings. Table 1 shows the basic information of the two point clouds, e.g., their
point density, the number of original points, points removed and non-ground points. The non-ground
points of Data I after ground filtering account for 27% of the original point cloud. The non-ground
points of Data II account for 21.9%. Both Data I and Data II were classified into ground points and
non-ground points by filtering ground, as illustrated in Figures 2 and 3.

Table 1. Mobile Laser Scanning (MLS) Point cloud information.

Data Original Points pts/m2 Removed Points Non-Ground Points

Data I 8,139,726 733 1,703,153 (20.9%) 2,202,120 (27%)
Data II 35,527,813 4183 11,112,865 (31.3%) 7,795,873 (21.9%)

The manually-counted number of PLOs and categories are used to evaluate the performance of
recognition method. A total of 41 reference poles were found in Data I, including 22 street lamps,
13 utility poles, 6 traffic signs and 1 other pole. Data II included a total of 74 reference poles, including
38 street lamps, 3 utility poles, 31 traffic signs and 2 other poles.
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Figure 2. Data I (town scene). (a) Original point cloud; (b) Rough ground classification.

Remote Sens. 2018, 10, x FOR PEER REVIEW  4 of 23 

 

as shown in Figure 2. Data II is provided by ISPRS WG III/5 and has a 465-meter-long street with 
average resolution of 0.015 meter, as shown in Figure 3. Data II contains a wide variety of vertical 
objects such as street lamps, traffic signs, trees, and buildings. Table 1 shows the basic information of 
the two point clouds, e.g., their point density, the number of original points, points removed and 
non-ground points. The non-ground points of Data I after ground filtering account for 27% of the 
original point cloud. The non-ground points of Data II account for 21. 9%. Both Data I and Data II 
were classified into ground points and non-ground points by filtering ground, as illustrated in 
Figures 2b and 3b. 

Table 1. Mobile Laser Scanning (MLS) Point cloud information. 

Data Original Points ܕ/ܛܜܘ૛ Removed Points Non-Ground Points 
Data I 8,139,726 733 1,703,153(20.9%) 2,202,120(27%) 
Data II 35,527,813 4183 11,112,865(31.3%) 7,795,873(21.9%) 

The manually-counted number of PLOs and categories are used to evaluate the performance of 
recognition method. A total of 41 reference poles were found in Data I, including 22 street lamps, 13 
utility poles, 6 traffic signs and 1 other pole. Data II included a total of 74 reference poles, including 
38 street lamps, 3 utility poles, 31 traffic signs and 2 other poles. 

 
Figure 2. Data I (town scene). (a) Original point cloud; (b) Rough ground classification. 

 
Figure 3. Data II (urban scene). (a) Original point cloud; (b) Rough ground classification. 

2.2. Voxelization 

Voxel is a cube with certain length, width and height in 3D space, which is also known as spatial 
grid [28,29]. Voxelization is the process of grouping cluster point cloud to form cubical voxels. The 
computational cost of processing all points is very high. The voxelization is used to group point cloud 
into voxels with topological relation, which helps to improve the efficiency of the algorithm [7,30]. 
The relationship between central voxel and neighborhood voxels is shown in Figure 4. 

In order to distinguish and index voxels, column number ݅, row number ݆, and layer number ݇ 
are illustrated in Figure 4, parallel to ܺ , ܻ  and ܼ  axis, respectively. Point set is indexed by 
corresponding coordinate of voxels. Aijazi, et al. [6] used the r-NN method to voxelize point clouds. 
In this paper, we convert all point cloud to voxel coordinates by the following formulas: 

120

115

110

105

Ground points

Non-ground points

E
le

va
ti

on
 (

m
)

 
 
 
 
 

(a) (b) 

255

270

265

260

E
le

va
ti

on
 (

m
)

Ground points

Non-ground points

(a) (b) 

Figure 3. Data II (urban scene). (a) Original point cloud; (b) Rough ground classification.

2.2. Voxelization

Voxel is a cube with certain length, width and height in 3D space, which is also known as
spatial grid [28,29]. Voxelization is the process of grouping cluster point cloud to form cubical voxels.
The computational cost of processing all points is very high. The voxelization is used to group point



Remote Sens. 2018, 10, 1891 5 of 23

cloud into voxels with topological relation, which helps to improve the efficiency of the algorithm [7,30].
The relationship between central voxel and neighborhood voxels is shown in Figure 4.

In order to distinguish and index voxels, column number i, row number j, and layer number k are
illustrated in Figure 4, parallel to X, Y and Z axis, respectively. Point set is indexed by corresponding
coordinate of voxels. Aijazi, et al. [6] used the r-NN method to voxelize point clouds. In this paper,
we convert all point cloud to voxel coordinates by the following formulas:

i = Int(x/l + e)
j = Int(y/w + e)
k = Int(z/h + e)

(1)

where (i, j, k) is the coordinate of voxel, (x, y, z) represents the point coordinates, l, w, h are the
length, width, and height of voxel, respectively, Int rounds a number to the next smaller integer,
and e ∈ (0, 1) is the differential coordinate value of voxel.
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In our method, the voxel is designed as a small cube of the same size, which is symmetrical
in 3D space. After the voxelization of point cloud, each voxel corresponds to the point set of space.
Based on the coordinate (i, j, k) index voxel and neighborhood non-empty voxels, the topological
relations among voxels are established. Figure 4a illustrates the spatial relationship between central
voxel V(i, j, k) and neighborhood voxels. Figure 4b shows the topological relationship among voxels
in the same layer (horizontal layer), and Figure 4c represents the relationship among vertical voxels.
If more neighborhood voxels of V(i, j, k) are needed, they are easily implemented based on the voxel
coordinate system.

While the space size of each point cloud data is fixed, the number of voxels depends on the
length of sides (l, w, h), and its size is determined by the average resolution of point cloud. The voxel
size is fixed in the same point cloud. In our method, there are two voxelizations in the processes of
downsampling and PLO detection, respectively. In the first voxelization, the average resolution of
point cloud is used as the voxel size. The set of voxel size is based on the approximate diameter of the
PLO during the second voxelization. Figure 5 shows the voxelization of partial point cloud.
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2.3. Preprocessing

In order to improve the effectiveness and efficiency of the method, sparse outliers usually need
to be removed. Point cloud downsampling is utilized before using the feature extraction method.
A large number of ground points are contained in the original point cloud, while poles exists in the
Non-ground points. If the ground points can be effectively removed, it will be beneficial to the poles
recognition. In this section, we will perform sparse outlier removal, downsampling, and ground points
filtering on the original point cloud.

2.3.1. Sparse Outlier Removal

Sparse outlier points inevitably appear in point cloud due to the influence of laser beam width and
the difference of object surface properties [31,32]. These points are far away from the main point cloud.
Sparse outlier points influence the local feature estimation, for example, surface normal vector or
curvature, which leads to a wrong calculation [33]. By calculating the mean distance µ = 1

n ∑n
i=1 di and

standard deviation σ =
√

1
n ∑n

i=1(di − µ) of the nearest neighbor points of point p, the point is defined
and removed as a sparse outliers if the distance to the nearest point that satisfies d > (µ + 3σ) [34].
Here the di is the distance from the i-th neighbor point to the point p.

There are two ways to determine the neighborhood of a point: Distance search and k nearest
neighbor search. In regards to the point cloud with uniform density, distance search can better represent
the local geometric features. If the point cloud density varies dramatically from the scanning center,
the radius search becomes impractical. Thus, the k nearest neighbor search is more commonly used.
In fact, it is interpreted as an adaptive search radius [35]. The original point cloud is unstructured data.
In order to facilitate the neighborhood search, point cloud needs to be structured. We use the K-D tree
to structure point cloud.

2.3.2. Downsampling

Due to the complexity of the road environment, MLS point cloud has different characteristics
from ALS and TLS point cloud [24]. The point cloud density is affected by the driving speed as lower
speed leads to higher point density. The distance between the objects and the laser scanner also affects
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the changing of point cloud density. The point cloud density increases while the distance between
object and laser scanner decreases. And point cloud density is the highest in the road surface below
the scanner. The reasonable reduction of points and maintenance structure of object are very useful
to reduce the processing time of feature recognition algorithm [35]. The downsampling contains
following steps, voxelize point cloud first, then calculate the center of the interior point set of voxels,
and keep the point that nearest to the center. The results of the point set in the voxel is expressed only
by one point.

The appropriate size of voxel directly affects the downsampling level: the larger the voxel size,
the more points are removed. In order to reduce point cloud more reasonably, we establish the
connection between the voxel size and the point cloud resolution. The average resolution of point
cloud is taken as the size of voxel. Calculate the distance between point p and point p′ (the nearest
neighbor point of point p), then summing up the distances of point pairs. The mean distance is the
average resolution of point cloud. The average resolution is calculated by Formula (2).

Average resolution =
1
N

N

∑
i=1

(
pi − p′i

)
(2)

where N is the number of points in the original point cloud, pi is a point in point cloud, and p′i is the
closest point to pi, i = 1, 2, . . . , N.

2.3.3. Ground Points Filtering

After the sparse outliers points are removed and downsampled, the point cloud mainly consists
of ground points. These ground points include a large number of redundant points. If the ground
points are effectively removed, the efficiency of subsequent detection and extraction of the PLOs
is improved [36,37]. In order to filter ground points, Zhang, et al. [38] used progressive window
algorithm based on the mathematical morphology ground filtering method. Vosselman [39] proposed
a slope ground filtering method to identify ground points by comparing the gradients between points
and their neighbors. Zheng, et al. [27] removed the ground points by piecewise elevation histogram
segmentation method. Given that the ground points in a city or town are low compared with the
gradient of the building and other vertical objects, it is thus more efficiently and accurately to identify
the ground points by means of the cloth simulation method [40].

We used the cloth simulation method by Zhang, et al. [40] for ground points filtering. In the cloth
simulation method, the LiDAR point cloud was inverted and the rigid fabric was used to cover the
inverted surface. By analyzing the interaction between the distribution node and the corresponding
LiDAR points, the position of the distribution node was determined to generate the approximate value
of the ground. Finally, by comparing the original LiDAR points with the generated surfaces, point
cloud was classified into ground points and non-ground points.

2.4. Extraction of Pole-Like Object

Non-ground points contain all PLOs whose structures are usually slender with different heights,
diameters and perpendicular to the ground. Most road ancillary facilities include pole structure [17],
and the detection of pole structure is the first step of PLO extraction. In 3D space, the PLOs are
independent from other objects. The clusters of different objects could be line, plane, and volume
structures. After non-ground points are voxelized, the voxels of PLO are continuous along the
Z-axis, but discontinuous in the horizontal direction. In fact, the voxels of PLO do not exist or have
fewer neighborhood non-empty voxels in the horizontal layer (the same layer). The building facade,
vehicle and crown have more neighborhood non-empty voxels in multiple directions because of their
large spatial volume. The voxels of PLO are quickly detected by analyzing the number of empty
neighborhood voxels. To further detect the cylindrical feature or linear feature, RANSAC algorithm
and PCA were used to get vertical cylinder model and principle direction of point set in neighborhood
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voxels. If the voxel, V(i, j, k) is one of PLO voxels, the neighborhood voxels have a smaller amount
of non-empty voxels than empty voxels. Figure 6 shows different viewing angles of PLO voxels.
Color-marked voxels are non-empty voxels which contain some points, and empty voxels without
color are drawn to show neighborhood search. The central voxel V(i, j, k) is marked with green and the
non-empty neighborhood voxels are marked with blue, as shown in Figure 6b. Figure 6c,d are the top
view and side view of the neighborhood voxels, respectively. The neighborhood coordinates of voxel
V(i, j, k) are, (i + a, j + b, k + c), with a, b and c ∈ [−n, n], and n belonging to the set of integers. The n
is used to set the range of neighborhood searching. Figure 6 illustrates the searching ranges for central
voxel V(i, j, k), n = 2 and the number of empty neighborhood voxels is 115.

The voxel V(i, j, k) has an independent feature if it satisfies the following three conditions: (1) voxels
(i, j, k + c) are non-empty voxels; (2) the outer voxels of the same layer are empty; (3) statistics on the
number of empty neighborhood, voxel Vnum, must meet a certain threshold. If the voxel V(i, j, k) has
this independent characteristic, then the cylindrical or linear feature of the point set in neighborhood
voxels will be detected.

	

O O 

O 

K (Z) 

I (X) 

J (Y) 

J (Y) 

K (Z) J (Y) 

I (X) 

(a)	 (b)	

(c)	 (d)	
Figure 6. Space structure of PLO voxels. (a) PLO voxels; (b) Neighborhood voxels; (c) Top view of (b);
(d) The side view of (b).

The voxels of PLOs were detected by independent analysis. If the point set belongs to pole in
non-empty voxels, it has a cylindrical feature when the density of point clouds is high. The RANSAC
algorithm is used to detect cylinder from point set [41–43]. Figure 7 shows the result of cylinder
detection, and the black ring is the top view of the detected cylindrical feature. r denotes the cylindrical
radius and dmax denotes distance threshold point to cylindrical surface. The blue and red regions
are the regions of r + dmax and r− dmax, respectively. It is the interior point if the point to cylindrical
surface distance satisfies d ≤ dmax, otherwise it is the exterior point. If the ratio of internal points to
the number of point set is greater than or equal to 95%, it means that the point set belongs to PLO.
If the point set is not adequate for detecting the cylindrical feature, it is therefore necessary to detect its
linear feature.
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Figure 7. Cylindrical feature detection. (a) Street lamp and point set with independence; (b) Fitting
cylinder; (c) Interior points and exterior points.

PCA was used to detect point sets that have specific structure such as a linear feature.
The eigenvalue and eigenvector represent the geometric features of the point set [35,44]. Calculate
the covariance matrix C3×3 of the point set, with λ1, λ2 and λ3 (λ1 ≥ λ2 ≥ λ3 ≥ 0) being used as the
three normalized eigenvalues of C3×3. When the point set was part of a linear object, its eigenvalue
λ1 � λ2 ≈ λ3, where λ1 corresponding to eigenvector

→
n is the principal direction of the linear

object [26,45,46]. If the angle between vector
→
n and vector (0, 0, 1) is less than 5◦, the point set is a part

of the PLO.
By applying to the above detection methods, it is easy to verify that voxel V(i, j, k) belongs to PLO.

Region growing algorithm is used to extract the complete structure of PLO. Voxel V(i, j, k) is the initial
seed and grows in the vertical direction if voxel V(i, j, k) belongs to PLO. When the neighborhood voxels
of seed voxel are non-empty, they are added to the growth region. The unlabeled voxels in the growth
region continue to grow as seeds until no new voxels are added to the growth region. Seed voxels are
labeled in the process of growth. We limit the range of growth region to prevent overgrowth. In order
to obtain a more detailed structure of PLO, the horizontal range above the voxel V(i, j, k) is set to a and
b, and here under the voxel V(i, j, k), only voxels with the same i and j coordinates are grown. At the
end of the region growing, the PLO is extracted as a cluster. PLOs have a certain height and are buried
on the ground. Thus, a cluster with a height less than that of the threshold Hthr1 is removed, and a
cluster with a height above the ground and greater than that of the threshold Hthr2 is also removed.

2.5. Classification

The clusters of PLOs include street lamp, unity pole, traffic sign, tree and other poles. In the
process of classification, the artificial PLOs will be classified into three categories: Street lamp, traffic
sign, and utility pole. At this stage, the design of classifier is the key to achieving good results of
recognition. The 3D shape and height of the pole are considered in the classification.

Different categories of PLO have different shapes and heights. Traffic signs, with a pole-like and
plane structure, provide instructions or traffic information to road users. The shape of street lamps
can be I-shaped, Γ-shaped and T-shaped [47], and there may be banners or billboards on the poles for
celebration or other purposes. Complex shapes are created by adding flags or planes to the simplest
pole. The height of the PLO is an important feature that is worth considering when designing the
classifier. The height of a traffic sign is usually lower than a street lamp and utility pole for observation
by pedestrians and drivers. The utility pole has a power transmission function in order to avoid a
connection between the electrical wires and other objects, and the height of the utility pole is usually
the highest among the PLOs. The height of the street lamp is between those of the traffic sign and the
utility pole.
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Taking into consideration the shape and height of the PLO, we chose complex street lamps as the
template from original point cloud, as shown in Figure 8. The number of templates is related to the
subcategory of the street lamps. The street lamp in Data I has no subcategory, so we choose a complex
street lamp as Template I, as shown in Figure 8a. The street lamp in Data II has two subcategories,
whose height and shape are quite different, so one of the two subcategories was chosen as Template
II and Template III, respectively, as shown in Figure 8b,c. The 3D shape matching method between
unclassified and template is one key problem in PLOs classification. Iterative closest point (ICP)
algorithm is commonly used in the registration of 3D shapes. The ICP algorithm achieves registration
by rotating and translating point set around the X, Y, and Z axis, respectively [48,49]. The PLOs are
perpendicular to the ground, and make principal orientation approximately parallel to the Z-axis.
To achieve a match between unclassified pole and template, it only needs to translate the unclassified
pole relative to the template and rotate around the Z-axis. If the root mean square error (RMSE) of 3D
shape matching is less than the threshold, the unclassified pole to be matched is of the same shape of
the template. The height of the PLO is also an important feature worth considering when conducting
classification. If multiple templates are chosen from the same data, templates need to be prioritized
through their heights. Low templates have higher priority over high templates. The unclassified poles
match these templates separately, and if any pole does not belong to the street lamp category, it would
be classified according to the template with the highest priority. This process would be repeated for the
next unclassified object until all objects are classified. In the experiment, the priority level of Template
II is higher than that of Template III. The meaning of the classification features were detailed in Table 2.
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According to the above ideas, a 3D shape matching classification method is designed. Q and P
denote the unclassified pole and template, respectively. Q rotates around the Z-axis with θ angular
resolution, and rotated point set is Q′ = Q·RT. Rotation matrix R is calculated by Formula (3). RMSE
is calculated by Formula (4). The minimum value of RMSE is the result of the 3D shape matching.

R =

 cos β − sin β 0
sin β cos β 0

0 0 1

 (3)
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where β is the angle that the Q turns relative to the initial position.

RMSE =

√√√√ 1
N

N

∑
i=1

∣∣Pi −Q′i
∣∣2 (4)

where N is the number of points of Q, and
∣∣Pi −Q′i

∣∣ represents the distance of the i-th closest point pair.
According to the calculation of RMSE, the more similar the 3D shape of Q and P, the smaller

the RMSE. Therefore, RMSE is used to judge whether the shape matching is successful. Threshold
RMSEthr1 is defined as the upper limit of RMSE. If the RMSE is greater than RMSEthr1, the shape of
Q and P differ greatly and Q will be grouped into other objects. If the RMSE is less than or equal to
RMSEthr2, the shape of Q is similar to P. The height difference between Q and P needs to be further
compared. If

∣∣hp − hq
∣∣ is less than or equal to the threshold ∆h1, it means that Q and P belong to the

same category, namely a street lamp. If hp − hq > ∆h2, it means that Q is a traffic sign, otherwise it is a
utility pole.

Table 2. Features used in the process of classification.

Classification Features Description

Shape P The street lamp with high point density and clear shape in the raw
point cloud.

Q The unclassified poles are used as input data for the classification process.

RMSE
RMSEthr1

RMSE is used to judge whether the 3D shape matching is successful.
If RMSE is greater than RMSEthr1, Q will be classified as others.

RMSEthr2

If the RMSE value is between RMSEthr1 and RMSEthr2, Q falls in the utility
pole category. If the RMSE is less than or equal to RMSEthr2, the category of
Q needs to be further judged based on the height feature.

Height ∆h1
If
∣∣hp − hq

∣∣ is less than or equal to ∆h1, Q belongs to the category
street lamp.

∆h2

If hp − hq is greater than ∆h2, then Q can be classified to be category traffic
signal, otherwise it is a utility pole. ∆h1 and ∆h2 denote different levels of
height difference between P and Q, ∆h1 < ∆h2.

3. Results

3.1. Parameters Setting

When the sparse outlier points were removed, the number of neighborhood points of parameter
k is set to 30. The size of voxel for downsampling is based on the average resolution of point cloud.
During the PLOs extraction phase, the voxel size for non-ground points was set to 0.3 m. We selected
the horizontal and vertical search ranges n = 2 and 80 ≤ Vnum ≤ 120 to detect the spatial independence
of voxel. Using the RANSAC algorithm to fit cylindrical feature, dmax is set to 0.05 m. If the distance
from point to cylinder surface is less than or equal to 0.05 m, the point belongs to the cylinder. After the
region growing, the clusters of Hthr1 < 2 m and Hthr2 > 2.5 m were removed. In the ground filter based
on the cloth simulation method, we set cloth resolution at 1.0 m, max iterations at 500, and classification
threshold at 0.3 m. These parameters settings are suitable for most scenarios.

The shape and height of the PLOs in Data I and Data II are different, and the classification method
parameters are set as shown in Table 3.

Table 3. Parameters used for classification pole-like objects (PLOs).

Data RMSEthr1 RMSEthr2 ∆h1 ∆h2 θ

Data I 0.80 0.15 1.5 3.00 3.6
Data II 0.80 0.20 1.0 1.50 3.6
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3.2. Recognition Result

In Table 4, three quality measures are listed in order to quantitatively evaluate performance of
method, namely, completeness (Cp), correctness (Cr), and quality (Ql) [24]. They are defined as

Cp = TP
TP+FN

Cr =
TP

TP+FP
Ql =

TP
TP+FP+FN

(5)

where TP, FP and FN denote respectively the number of True-Positives, False-Positives and
False-Negatives in extraction of PLOs. High Cp indicates high detection rate of pole. Cp indicates the
correctness of poles extraction. Ql represents the overall quality of the poles extraction.

Figures 9 and 10 illustrate the results of PLOs extraction of Data I and Data II, respectively. A total
of 39 poles were extracted from Data I, and the number of matches with the reference poles were 38.
There was 1 pole that did not match the reference poles and 3 poles were not extracted. A total of
69 poles were extracted from Data II, of which 67 poles matched the reference poles, 2 poles did not
match the reference poles, and 7 poles were not extracted. The completeness, correctness and quality
of the two data were calculated by Formula (5).

Table 4. PLO extraction quality.

Data TP FP FN Completeness Correctness Quality

Data I 38 1 3 92.7% 97.4% 90.5%
Data II 67 2 7 90.5% 97.1% 88.2%

	
	

(a)	

(b)	 (c)	

1 1.5 2 2.5 3 3.5 4 4.5
1

1.5

2

2.5

3

3.5

4

4.5

1 1.5 2 2.5 3 3.5 4 4.5
1

1.5

2

2.5

3

3.5

4

4.5

Non-ground points 

Pole-like objects 

(a)	

(b)	 (c)	

1 1.5 2 2.5 3 3.5 4 4.5
1

1.5

2

2.5

3

3.5

4

4.5

1 1.5 2 2.5 3 3.5 4 4.5
1

1.5

2

2.5

3

3.5

4

4.5

Non-ground points 

Pole-like objects 

Figure 9. Results of PLOs extraction in Data I. (a) Non-ground points colored in cyan and PLOs colored
in black; (b) view 1; (c) view 2.
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Figure 10. Results of PLOs extraction in Data II. (a) Non-ground points colored in cyan and PLOs
colored in black; (b) view 1; (c) view 2.

As performance metrics for quantitative evaluation, we use precision, overall accuracy (OA),
individually for street lamp, traffic sign and utility pole. Each element of Table 5 was filled in line by
line according to the classification results of PLOs. As shown in Table 5, the diagonal elements are the
number of accurate classification of PLOs. The last column is the precision of the classification of the
PLO. Overall accuracy was used to evaluate the overall accuracy of all three categories, which was
defined as the percentage of the correct classification to the total number of extracted PLOs.

Table 5. Quality of classification results of PLOs.

Data Street Lamp Utility Pole Traffic Sign Others Precision (%)

Data I Street lamp 22 2 0 0 91.7
Utility pole 0 10 0 0 100.0
Traffic sign 0 0 4 1 80.0
OA: 36/39 = 92.3%

Data II Street lamp 35 2 1 0 92.1
Utility pole 1 1 0 0 50.0
Traffic sign 0 0 27 2 93.1
OA: 63/69 = 91.3%

Figures 11 and 12 represent the results of the 3D shape matching of the poles and the templates
of Data I and Data II, respectively. The RMSE of matching results of the same category was smaller.
According to Data I and Data II, PLOs had different shapes and geometric features. The height of the
same category of poles was also different, as shown in Figure 11c,d. The 3D shape matching method
takes into account by applying shape differences and height features to classify the PLOs. The same
kind of poles match the template with small RMSE and similar height.
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Figure 11. Illustration of the results for three-dimensional (3D) shape matching of poles in Data I
(the template was illustrated in Figure 8). (a–d) are the classified poles of a street lamp, a traffic sign,
a street lamp and a utility pole, respectively.
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Figure 12. Illustration of the results for 3D shape matching results of poles in Data II (the templates
were illustrated in Figure 8). (a,b) are the classified poles of a street lamp and a traffic sign, respectively;
(c) The pole cannot be classified as a street lamp based on Template II; (d) The pole (see (c)) is classified
as a street light after being matched with Template III.

The road conditions of Data I was simpler than those of Data II, and the features of poles on both
sides of the road were less overlapped by other objects. Figure 13 shows the result of recognition.
The method had extracted 22 street lamps with a classification precision of 91.7%. The classification
precision of utility poles reached 100.0%. 39 PLOs were extracted from Data I, among which were 36
correct recognitions, and the overall classification accuracy of the PLOs was 92.3%. The undetected
traffic sign was highlighted as shown in Figure 13. Only one utility pole was not extracted from Data I
(see Figure 14).
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3.3. Computational Complexity

The procedures of preprocessing, voxelization and the independence analysis were implemented
in C++. The cylindrical feature fitting, linear feature detection, and shape matching processing were
implemented in MATLAB. A personal computer with an Intel Core-i5-3470 2.30 GHz CPU and 8 GB of
RAM was used to process Data I and Data II. The time costs of processing different steps depended on
many parameters, such as the amount of input data, the complexity of algorithm, and the number of
iterations. Table 6 shown a list concerning the time costs of each processing and the total time cost.
The time cost of voxelization was very low. The preprocessing time for Data I and Data II were 126.3 s
and 381.4 s, respectively. The original point cloud was preprocessed, which greatly reduced the amount
of input data in the extraction of PLO stage. The proposed algorithm provided a promising solution for
PLO recognition from MLS point cloud, and achieved acceptable computational complexity. The two
data sets had a total time cost of less than half an hour, which fully proves that the proposed algorithm
is highly effective and suitable for mass point cloud processing.

Table 6. Processing time cost by each stage of our method (seconds).

Data Preprocessing 2nd Voxelization Independence
Analysis

Features
Detection

PLOs
Classification Total Time

Data I 126.3 0.4 1.8 41.6 139.5 309.6
Data II 381.4 1.1 15.7 237.5 813.6 1449.3

4. Discussion

4.1. Sensitivity Analysis

In this method, most of the parameters are configurable, and the correct selection of these
parameters will affect the performance of the recognition. Parameters of preprocessing were designed
for MLS point cloud and therefore these parameters were generally applicable to MLS point cloud.
In the process of downsampling, the voxel size is based on the average resolution of point cloud.
At the stage of PLOs extraction, the appropriate voxel size is the key to correctly extracting PLOs.
The undersized voxel will reduce the efficiency of the method, and the oversized voxel will result in
neighborhood voxels containing other objects. Different categories of pole can have different diameters
and heights. The voxel size could be set according to the diameter of main poles, and the size should
be approximate to the diameter of main poles. This ensures that neighborhood voxels of poles would
be as little as possible during independence analysis, which is beneficial to the extraction of PLO. In the
process of classification, the RMSE value represents the degree of similarity between template and
poles. The smaller the RMSE value was, the more likely the poles was in the same category with the
template. The topography, objects, and data size of Data I and Data II were different. As shown in
Table 7, the mean diameters and heights of the street lamps, utility poles, and traffic signs were listed
separately. The maximum gradient of Data II was greater than Data I. Data I and Data II had different
characteristics, and the proposed algorithm could effectively extract and classify poles. The results
show that the algorithm was insensitive to the diameter and height changes of poles.

Table 7. The different characteristics between Data I and Data II.

Data Objects
Poles Topography

Diameter (m) Height (m) Maximum Gradient

Data I Houses, poles, trees,
lawn, people, vehicles 0.23, 0.27,0.13 6.32, 7.42, 2.70 2.2%

Data II Buildings, poles, trees,
people, vehicles 0.21, 0.35, 0.08 5.75, 11.83, 3.07 3.0%
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4.2. Pole-Like Object Recognition

The experiments, conducted with two MLS point clouds, showed that this method can
automatically extract and classify most of the PLOs. Objects overlapping and missing parts of the
poles are possible challenges to accurate PLOs recognition. The utility pole is so close to the tree that it
is almost surrounded by the canopy of the tree, as shown in Figure 14. Figure 16 shows an undetected
street lamp, the upper part of which is surrounded by crown and the lower part is too close to the
green plant. In this case of poles in the canopy, the proposed algorithm cannot recognize these poles.

Figure 16. Undetected street lamp due to high crown and low vegetation.

Building columns and pillars between windows may lead to extraction errors (see Figure 17).
These structures are spatial independence with a cylindrical or linear feature, and they were thus
extracted as poles by the method. In the phase of 3D shape matching, these clusters will be classified
as other objects because their values of RMSE are larger than the threshold RMSEthr1.
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The shape of the street lamps in different scenarios is usually different. The template should
be chosen according to the category of street lamps. Figure 18 shows all street lamps with different
shapes in the point clouds. The street lamps shown in Figure 18a,c are simple street lamps with a
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single function, and the other street lamps are complex street lamps with multiple functions. Flags,
signs and traffic lights are attached to the simple poles to form complex street lamps. There are
two subcategories of street lamp in Data II: Subcategory I (see Figure 18c–g) and Subcategory II
(see Figure 18h). In Data II, Subcategory I is the main category of street lamp, and Subcategory II has
two. The street lamp shown in Figure 18g is the most complicated one, with flag and signs attached
to the pole. Traffic signs and lights are attached to Subcategory II, so the street lamp has lighting
and guidance functions, as shown Figure 18h. Street lamps with clear and complex shapes should be
preferred as templates. Compared to simple street lamps, complex street lamps should be used as
templates since they present more precise registrations, as shown in Figure 19. Figure 19b illustrates
the result of registration between a simple street lamp and a complex one as the template. The RMSE
is larger than the complex street lamp as template. During the classification phase, choosing simple
street lamps as templates increases the possibility of shape matching incorrectness and increases the
possibility of pole classification errors.
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As shown in Figures 11 and 12,d, the more similar the 3D shape of pole and template, the smaller
the RMSE value. However, the smaller RMSE value is not sufficient evidence to indicate that the pole
and the template belong to the same category (see Figure 20). The height difference between pole and
template needs to be further compared. As shown in Figure 20a, since the utility pole was similar in
height to the template, it was misclassified as a street lamp. The discontinuousness of PLO voxels in
the Z-axis direction caused by a small amount of occlusion will not affect PLO extraction. However,
the pole was misclassified as a traffic sign because it became shorter, as shown in Figure 20b. In the
design of the classification algorithm stage, we assumed that the height of street lamps is between
those of the traffic sign and the utility pole. When the heights of utility pole and template are similar
and the RMSE is small, an incorrect classification will occur, as shown in Figure 20a. The incomplete
pole caused by a small amount of obstacles will not affect pole extraction. However, the pole was
misclassified as a traffic sign because it became shorter, as shown in Figure 20b.

During the pole extraction phase, trees with an apparent pole structure will be extracted, as shown
in Figure 10. These trees were classified as other objects in the classification step. As shown in
Figure 20c,d, in comparison with artificial poles, these trees have relatively large volumes. The RMSEs
by registering the trees with the template are greater than that of RMSEthr1. For the tree shown
in Figure 20d, similar to the template in height, the RMSE is still greater than RMSEthr1. In this
paper, the method focuses on the extraction and classification of artificial poles, so the extraction
and classification accuracy of the trees are not discussed. For future studies, we will focus on the
recognition of trees.
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Figure 20. (a) Falsely classified utility pole as a street lamp; (b) Part of street lamp was misclassified as
a traffic sign; (c) The big tree was classified as other object after matching the template; (d) The small
tree was also classified as other object.

The registration result and the height difference between the objects and the template are used
for classification. The point on the object forms a point pair with the nearest point on the template to
calculate the RMSE. If the size of poles (e.g., traffic signs) is smaller than the template, the poles would
match the template segments. Since these PLOs have a pole structure, matching can be performed,
and PLOs can be distinguished based on height difference. In future research, the 3D shape matching
method can be used according to feature points, which might be more efficient.
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4.3. Comparison with Previous Methods

The proposed method can automatically extract and classify most of PLOs, but it is not easy to
compare the findings of this study with previous ones since different road conditions and different
accuracy sensors will influence the results of recognition. In addition, most previous studies focused
on PLOs extraction, while automatic PLOs classification was under-researched. Even so, a comparison
was performed by considering the dataset used in their studies. The detection rate and correct detection
rate was 77.7% and 81.0% respectively by method of Lehtomäki, et al. [2], respectively. The poles
detection rate of the method of Pu, et al. [1] was 86.9% in Enschede data set and 60.8% in the Espoo
data set. A completeness, correctness and accuracy rate of 93.6%, 79.5% and 75.1%, respectively, were
achieved by Li and Oude Elberink [4] for PLOs detection. The detection rate for the three data sets
tested were 83%, 91% and 83% by the method of El-Halawany and Lichti [8], respectively. The detection
rate was about 90% by the method of Teo and Chiu [36]. The method of Rodríguez-Cuenca, et al. [24]
detected rates in the two datasets at 94.3% and 95.7%. The method of Yan, et al. [50] detection rate
achieved over 91% for five types of light poles and towers. The PLO detection method proposed by
Guan, et al. [26] achieved a poles detection ratio of 88.9%. The method of Wu, et al. [19] achieved an
average overall accuracy of 98.8% for classifying street lamps and traffic signs.

The average completeness, correctness and quality values for PLOs extraction of our method were
91.6%, 97.3% and 89.4%, respectively. Our proposed method achieved an overall accuracy of 92.3%
and 91.3% for classifying street lamps and traffic signs and utility poles in two datasets. The method
can classify more kinds of PLOs and has high overall accuracy compared with the previous methods.
Two different data sets were used in this study, which are very complex and feature overlapped objects.

5. Conclusions

This paper proposed a complete method for PLOs recognition. Point clouds from both town
and urban scenes were used to test the proposed method. Firstly, the original data was preprocessed
through removing outliers, downsampling and ground filtering. Then, the PLOs were extracted
according to the independence analysis and cylindrical or linear feature detection. At last, the PLOs
were classified into street lamp, traffic sign, and utility pole by the 3D shape matching method.
The method only used X, Y, and Z coordinates without additional data or training data, and the
parameters or thresholds were adjusted according to the structures of different pole-like objects.
The PLOs with low point density can also be extracted from point cloud. The correctness was more than
97% in both point clouds. The overall accuracy was 92.3% and 91.3%, respectively. The main advantages
of the method are as follows: (1) rapidly extracts poles by spatial and geometric features of the PLO.
The potential PLO was extracted at the voxel scale, and then cylindrical and linear feature detection
for the potential PLO; (2) classify complex poles based on the method of 3D shape matching. Artificial
poles were classified into three categories: Street lamp, traffic sign, and utility pole. The experimental
results showed that the proposed method has a high robustness. Our proposed method can effectively
extract and classify PLOs, which provides technical support for road maintenance, safety inspection
and city modelling using MLS data.

Considering the importance of forest tree species in urban landscape construction and 3D city
modeling, it is necessary to focus on automatic extraction and classification of urban trees, which will
be covered in our future work.
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