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Abstract: Due to the tremendous flux of terrestrial nutrients from the Changjiang River, the waters in
the coastal regions of the East China Sea (ECS) are exposed to heavy eutrophication. Satellite remote
sensing was proven to be an ideal way of monitoring the spatiotemporal variability of these nutrients.
In this study, satellite retrieval models for nitrate and phosphate concentrations in the coastal
regions of the ECS are proposed using the back-propagation neural network (BP-NN). Both the
satellite-retrieved sea surface salinity (SSS) and remote-sensing reflectance (Rrs) were used as inputs
in our model. Compared with models that only use Rrs or SSS, the newly proposed model performs
much better in the study area, with determination coefficients (R2) of 0.98 and 0.83, and mean
relative error (MRE) values of 18.2% and 17.2% for nitrate and phosphate concentrations, respectively.
Based on the proposed model and satellite-retrieved Rrs and SSS datasets, monthly time-series maps
of nitrate and phosphate concentrations in the coastal regions of the ECS for 2015–2017 were retrieved
for the first time. The results show that the distribution of nutrients had a significant seasonal
variation. Phosphate concentrations in the ECS were lower in spring and summer than those in
autumn and winter, which was mainly due to phytoplankton uptake and utilization. However,
nitrate still spread far out into the ocean in summer because the diluted Changjiang River water
remained rich in nitrogen.

Keywords: satellite remote sensing; nutrients; East China Sea; remote-sensing reflectance; sea surface
salinity; artificial neural network

1. Introduction

The East China Sea (ECS) is one of the largest shelf seas in the world. Affected by the nutrients
and particles from the Changjiang River, the coastal waters of the ECS are characterized by low salinity,
richness in nutrients, and high turbidity [1]. In the 40 years from 1963 to 2004, the nitrate and phosphate
concentrations increased by 7.8 times and 1.4 times, respectively, in the Changjiang Estuary, and the
ratio of nitrogen to phosphorus rose from 30–40 to 150 [2]. The excess and imbalance of nutrients led
to algal blooms, followed by anoxia, the deterioration of chemical properties, and a change in species
composition [3,4]. Therefore, conducting real-time and long-term observations of the nutrients in the
coastal waters of the ECS is vitally important.

Shipboard sampling and hydrological station measurements are high-precision means for
water quality monitoring. However, these routine means are limited by small spatial coverage
and nonsynchronous observations; they also require significant manpower and material resources,
which makes it difficult for sustained observations over the long term. However, satellite remote
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sensing is a powerful tool for large-scale and long-term observations with high temporal and spatial
resolution [5–8]. In particular, the first Geostationary Ocean Color Imager (GOCI), launched by
South Korea in 2010, provides eight hourly images per day with a spatial resolution of 500 m.
This higher spatial and temporal resolution improved the observations of highly dynamic and
small-scale changes in coastal waters [9–11].

The satellite detection of nutrients remains a challenge because dissolved nitrogen and phosphorus
have no significant spectral response in the visible and near-infrared regions [12]. Several studies tried
building empirical models to estimate the concentrations of these nutrients based on their relationships
with chlorophyll, total suspended matter (TSM), and other optically sensitive materials in continental
shelf and coastal waters [13–15]. Such relationships are usually unstable and less accurate because many
factors can influence these relationships. However, in coastal regions, which are influenced by large
river run-off, nutrients are usually conservative and have quantitative relationships with salinity [16,17].
Thus, the comprehensive use of salinity and spectral data may improve retrieval accuracy.

In this study, taking the coastal regions in the ECS as an example, we established satellite retrieval
models for nitrate and phosphate concentrations by incorporating sea surface salinity (SSS) and water
reflectance into a neural network method. In Section 2, the data and method are provided. In Section 3,
we detail the method used to train and validate the neural network. The monthly average results of
nitrogen and phosphate concentrations in the Changjiang River plume in the ECS from 2015 to 2017
are provided in Section 4. The discussion in Section 5 shows that our mixed models combining salinity
and reflectance as input parameters are more optimal compared to models that use SSS or reflectance
spectra alone.

2. Materials and Methods

2.1. Study Area

The study area, namely the shelf of the ECS influenced by the Changjiang River plume, has a
water depth that is generally less than 100 m (Figure 1). There are many islands and bays along the
mainland of China that enhance the influence of sediment accumulation. Moreover, the interaction of
various offshore currents and water masses in the ECS makes the situation complex.

The Changjiang Diluted Water (CDW) has a significant impact on the ECS. The Changjiang River is
the largest river in Eurasia, with an annual flow of about 8.7 × 1011 m3 and an annual sediment transport
capacity of 1.3 × 108 t [18]. Of all the main rivers flowing into China’s coastal seas, the Changjiang
River contributes about 66% of the nitrogen load and 84% of the phosphorus load per year [19]. Due to
a combination of the Changjiang River input and nearshore aquaculture, eutrophication is one of the
most widespread water quality problems in the ECS.
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Figure 1. Bathymetry and regional ocean circulations in the study area. The arrows indicate the
Changjiang Diluted Water (CDW), Yellow Sea Warm Current (YSWC), SuBei Coastal Current (SBCC),
Zhejiang–Fujian Coastal Current (ZFCC), and Taiwan Warm Current (TWC) [20,21]. The red dashed
box is Zone A (122.5–125.5◦E, 27.5–33.5◦N), where the regional average was calculated for comparison
with WOA13 data (detailed in Section 5.2).
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2.2. Field Samples

2.2.1. Hydrological and Water Quality Data

Four cruises were conducted in the Changjiang Estuary and ECS from 2015 to 2016
(Figure 2), including cruises in the wet season (August 2015) and dry season (March 2016) in the
Changjiang Estuary, and two cruises (December 2015 and August 2016) on the shelf of the ECS. A total
of 193 surface water samples were collected at a depth of 0.5 m with Niskin samplers. Salinity was
measured with a handheld conductivity meter. Other water quality parameters, including chlorophyll,
suspended matter, and nutrients, were obtained by laboratory measurement after filtering on the boat.

Nutrient samples were filtered with 0.45-µm cellulose acetate membranes, poisoned with 1–2%
chloroform, and then frozen and kept at −20 ◦C for nitrate and phosphate measurements [22].
In the laboratory, nutrients were measured with an AA3 Auto-Analyzer following the methods
of Han et al. [23]. Chlorophyll samples were filtered with glass-fiber membranes (0.7 µm pore size)
and stored frozen in liquid nitrogen before measurement. In the laboratory, each filter was analyzed
with a Turner-Design 10 fluorometer to obtain chlorophyll concentrations [24].
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Figure 2. Locations of sampling sites. Two Changjiang Estuary cruises were conducted in August 2015
and March 2016, and two continental shelf cruises were conducted in December 2015 and August 2016.
Black circles indicate the sites where the weather was clear during sampling and synchronous satellite
observations were obtained.

2.2.2. Measuring Remote-Sensing Reflectance

Remote-sensing reflectance (Rrs) was measured on board the ship using an ASD FieldSpec
Spectroradiometer with a spectral range of 350–2500 nm (Analytical Spectral Devices Incorporation,
ASD, Boulder, CO, USA). The upward radiance from the sea surface (Lt), standard reflecting plate (Lp),
and downward sky radiance (Lsky) were measured at daytime stations with suitable light conditions.
To avoid sun-glint, the zenith and azimuth angles of the probe were kept at about 40◦ and 135◦,
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respectively. Additionally, we also selected the suitable locations to minimize the effects of ship
shadow, foam, and floating objects [11]. Rrs was calculated as follows:

Rrs = βp(Lt − βsLsky)/(πLp), (1)

where βp and βs are the standard plate and air–sea interface reflectance, respectively. Then, Rrs needs
to be converted to an equivalent reflectance (Rrs_equi) for direct comparison with satellite data [25]:

Rrs_equi(λ) =

λmaxr

λmin

f (λ)Rrs(λ)F(λ)dλ

λmaxr

λmin

f (λ)F(λ)dλ

, (2)

where Rrs_equi(λ) is the equivalent reflectance for a band with a central wavelength of λ, f (λ) is the
spectral response function, F(λ) is the solar irradiance at a mean earth–sun distance, and λmin and
λmax take values of 300 nm and 1000 nm, respectively.

2.3. Satellite Data

Rrs data from GOCI were used in this study. GOCI has eight spectral bands in the visible and
near-infrared range, with central wavelengths of 412 nm, 443 nm, 490 nm, 555 nm, 660 nm, 680 nm,
745 nm, and 865 nm (Bands 1 to 8, or B1 to B8, respectively, in the ensuing paragraphs). GOCI regularly
obtains eight images per day over the ECS from 8:30 a.m. to 3:30 p.m. local time, at a rate of once per
hour. Level-2A data, which include the normalized water-leaving radiance (NLW), were obtained
from the Korea Ocean Satellite Center (KOSC). NLW can be converted to Rrs by dividing by F(λ).

SSS was a key component of the model used in this study. Salinity data from the Soil Moisture
Active Passive (SMAP) satellite were obtained. SMAP is an Earth satellite mission that measures
and maps Earth’s soil moisture and SSS. SMAP has excellent spatial and temporal resolution
(eight-day repetitive observations with a spatial resolution of 1/4◦) compared with previous microwave
radiometers, such as Soil Moisture and Ocean Salinity (SMOS) and Aquarius. Eight-day average
data and monthly average data were obtained for April 2015 (when SMAP first released data) to
December 2017 from the National Aeronautics and Space Administration (NASA) OPeNDAP website
(https://opendap.jpl.nasa.gov/opendap/SalinityDensity/smap/L3/RSS/V2/monthly).

2.4. Artificial Neural Network

In coastal regions, the relationships between nutrients, salinity, chlorophyll, and TSM are very
complex, and analytical models and semi-analytical models, which require solutions to radiation
transfer equations, have difficulty obtaining exact solutions. Therefore, empirical models are often
used to obtain the elements in Case II waters.

In this study, a back-propagation neural network (BP-NN) algorithm was applied to estimate
the concentration of nitrate and phosphate in the surface water of the ECS. The network has three
layers: the input layer, which distributes the input parameters; a hidden layer, where several neurons
are contained; and the output layer, which distributes the target parameter. A neural network with a
single hidden layer has the ability to simulate any nonlinearity [26]. The three-layer neural network
used in this study is shown in Figure 3. In a BP-NN model, the information moves forward from the
input nodes through the hidden nodes and to the output nodes. The back-propagation method was
used in the network to calculate the gradient and adjust the weight of the neurons.

https://opendap.jpl.nasa.gov/opendap/SalinityDensity/smap/L3/RSS/V2/monthly
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Figure 3. The three-layer neural network used in this study. In this study, the nitrate and phosphate
networks were trained separately using in situ data.

3. Developed Satellite Retrieval Models for Nutrients

3.1. Correlation between Nutrients and Rrs or SSS

Table 1 provides the coefficient of determination (R2) for the relationships between nutrients and
in situ Rrs for each GOCI band. Both the nitrate and phosphate clearly have good relationships with
the Rrs at long wavelengths, with the highest R2 being 0.68 and 0.67 for Band 5 (660 nm) for nitrate
and phosphate, respectively. Overall, Rrs is useful for estimating concentrations of nutrients in the
study area.

Table 1. The coefficient of determination (R2) between nitrates, phosphates, and measured remote-
sensing reflectance (Rrs) for each Geostationary Ocean Color Imager (GOCI) band (B).

B1 B2 B3 B4 B5 B6

Nitrates <0.1 0.27 0.37 0.58 0.68 0.66
Phosphates 0.13 0.37 0.50 0.67 0.67 0.64

Figure 4 presents the relationship between nutrients and salinity. The values of R2 were 0.94
and 0.51 for nitrate and phosphate, respectively. In the moderate salinity range (SSS = 5–20 psu),
nutrients behaved conservatively. However, there are some points that were lower than the
conservative line in the continental shelf waters (SSS > 20), which may be due to the absorption
of phytoplankton. Additionally, for phosphate, there are also some points below the conservative
line in the inner river waters (SSS around 0). This may be due to adsorption and buffering by
suspended sediment in the high-turbidity Changjiang River water [27,28]. Furthermore, it is clear that
high chlorophyll concentrations were associated with low nitrate and phosphate concentrations at
many shelf stations (Figure 4); in these cases, quantifying the influences on Rrs was important to the
model. Therefore, in coastal regions influenced by large rivers, both Rrs and SSS are important for
retrieving nutrients.
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Figure 4. Relationships between in situ salinity and the concentration of nutrients. The color of the
points represents chlorophyll concentration. Points circled in red indicate sites where nitrate and
phosphate concentrations were significantly lower than conservative lines in high-salinity waters.
Points circled in yellow indicate phosphate concentrations in the estuarine freshwater that are
significantly lower than the conservative line.

3.2. Training and Validation of the Neural Network

The MATLAB neural network toolbox (MathWorks, Natick, MA, USA) was used to build the
BP-NN model for nitrate and phosphate. To eliminate the impact of dimensionality on the model,
each parameter was scaled to (−1, 1). The initial weights related to nodes were created randomly at
first, and the Levenberg–Marquardt algorithm was used for model training [29].

The number of hidden layer nodes, m, as a key parameter in the network, needs to be determined.
The most suitable value of m varies with the complexity of the problem, and overfitting or undesirability
occurs when m is too large or too small. To determine the optimal number of hidden nodes, training was
performed with the value of m varying from 2 to 20. Figure 5 shows the changes in R2 and mean relative
error (MRE) with different nodes. In each case, we averaged the results of 500 trainings to increase the
model stability. The nitrate model reached steady state quickly. With an m value of 5, R2 exceeded 0.98,
and remained almost unchanged with increases in m. MRE shows the opposite trend; when m was set to
5, the MRE for the nitrate network was marked as minimum, which shows that the accuracy was higher.
The phosphate model was more complicated, and more nodes were needed; R2 and MRE achieved
stability when m was set to 10. Additionally, the phosphate model was not as accurate as the nitrate
model (Figure 5).
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In situ Rrs_equi and SSS were used as input parameters to the BP-NN models, and nitrate and
phosphate were target parameters. All in situ data were divided into three groups: 70% (135 samples)
were used for model training; 15% (29 samples) were used for validation; and the remaining 15%
(29 samples) were used for testing.

Figure 6 shows a comparison between model outputs and measured values; the R2,
root-mean-square error (RMSE), and MRE values are presented in Table 2. The two models worked
well in the study area using both SSS and spectral data as model inputs. Overall, the nitrate model
was superior to the phosphate model, although both performed well. For nitrate, the R2, RMSE,
and MRE between the inversion results and measured data were 0.99, 6.13 µM, and 11.2%, respectively;
for phosphate, the R2, RMSE, and MRE were 0.83, 0.22 µM, and 13.7%, respectively.
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Table 2. The coefficient of determination (R2), root-mean-square error (RMSE), and mean relative error
(MRE) between in situ and estimated nutrients. All measured data were divided into three groups for
training, validation, and testing.

Nitrate Phosphate

R2 RMSE MRE R2 RMSE MRE

Training 0.98 6.14 13.5% 0.86 0.20 14.6%
Validation 0.98 7.68 17.7% 0.75 0.25 16.7%

Test 0.99 6.13 11.2% 0.83 0.22 13.3%
All 0.98 6.38 13.8% 0.84 0.21 14.7%

4. Results

4.1. Evaluation of Satellite-Retrieved Rrs

Atmospheric correction is one of the most important tasks for ocean color remote sensing
in coastal waters. GOCI’s standard atmospheric correction algorithm is based on the method of
Wang and Gordon (1994) [30]. To verify the suitability of GOCI’s Level-2 products in the study area,
18 sets of measured Rrs_equi synchronized with satellite data were chosen (Figure 2). The comparisons
of measured Rrs_equi and satellite Rrs at these sites are presented in Figure 7, and Table 3 lists the R2,
RMSE, and MRE from GOCI Band 1 to Band 6. The results for Band 1 (412 nm) were not as good as
for other channels (R2 = 0.57). This is consistent with the observation that complete water absorption
in the near-infrared range is questionable in turbid waters, and atmospheric correction products for
the short-wave channel are inaccurate [31,32]. In contrast, the R2, RMSE, and MRE for the other five
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channels were acceptable for further research. Overall, the standard atmospheric correction algorithm of
GOCI performed well in the study area.Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 16 
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Table 3. The coefficient of determination (R2), root-mean-square error (RMSE), and mean relative
error (MRE) between the Geostationary Ocean Color Imager (GOCI)’s Rrs and measured Rrs_equi in
different bands.

R2 RMSE MRE

Band 1 (412 nm) 0.57 0.0043 0.332
Band 2 (443 nm) 0.80 0.0040 0.299
Band 3 (490 nm) 0.87 0.0041 0.270
Band 4 (555 nm) 0.89 0.0052 0.251
Band 5 (660 nm) 0.89 0.0042 0.353
Band 6 (680 nm) 0.87 0.0043 0.336

4.2. Evaluation of Satellite-Measured Salinity

The SSS data of SMAP were compared with measured salinity. These two types of data showed
good agreement, with R2 and MRE values of 0.88 and 4.5%, respectively (Figure 8a). However,
there were some deficiencies in the SMAP data. Firstly, although SMAP has a higher spatial resolution
(about 1/4◦) than previous microwave radiometers, such as SMOS and Aquarius, it is still coarse
compared with optical satellites that have spatial resolutions better than 1 km. In this study, SMAP data
were converted to the same resolution as GOCI using optimal interpolation to allow combination with
optical data. Moreover, terrestrial noises reduce the accuracy of the microwave radiometer, and in turn
result in data deficiency in coastal areas, such as the Changjiang Estuary, Hangzhou Bay, and Zhejiang
offshore waters.
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4.3. Satellite-Derived Monthly Variations in Nutrients

Monthly distributions of nitrate and phosphate concentrations were obtained with monthly
satellite data as model inputs, followed by averaging from 2015 to 2017; the results are shown
in Figure 9. It is clear that nutrient concentrations in the ECS were significantly affected by the
Changjiang River plume, and there was a rapid declining trend from the nearshore to outer shelf.

Additionally, an eastward plume was found in the Changjiang Estuary, which intensified during the
winter and summer, and weakened during the spring and autumn. In the winter (December to February),
the sea surface water was forced by a strong northeasterly wind, and the nutrient-rich coastal water was
widely spread to the outer shelf. Concurrently, due to low water temperatures and insufficient light levels
in the winter, the consumption of nitrogen and phosphate by phytoplankton was limited, resulting in high
nutrient concentrations on the shelf. In the spring and summer (April to September), significant amounts
of nitrate and phosphate in the continental shelf waters were consumed with the increase in primary
productivity. Phosphate, as the limiting factor in the ECS, was consumed more significantly than nitrate
in the continental shelf, especially in the spring and summer [33].

5. Discussion

5.1. Comparison with Spectrum-Based Algorithms

In this study, BP-NN models were proposed to estimate the concentration of nitrate and phosphate
in surface water using both satellite SSS data and optical data as input parameters. Prior to this
study, there were two main methods for estimating the concentrations of nutrients. Firstly, global-
or basin-scale models were employed based on the relationship between nutrients, sea surface
temperature (SST), and chlorophyll concentration [34–36]. However, such models are not applicable to
coastal waters, because there is little change in environmental elements, such as SST, on a small spatial
scale. Secondly, regional models with satellite spectra as inputs were used [5,14]. These models are
primarily based on the complex relationship between nutrients and satellite spectra and are suitable
for closed and semi-closed aquatic systems; however, they have little utility in the ECS because of the
completely different environment. Some studies analyzed the conservative characteristics of nutrients
in larger river estuaries [16,17], while few studies focused on remote-sensing applications. There are
various reasons for this lack of research. Firstly, it is difficult to obtain timely spatial SSS data. Prior to
SMAP, salinity-sensing satellites (SMOS and Aquarius) with coarse spatial resolution could not meet
the requirements for observing nearshore waters. Numerical simulations are another way of obtaining
SSS; however, they are invalid in offshore waters because of low accuracy. The insufficiency of SSS
data made it difficult to employ SSS-based nutrient models in the ECS. Secondly, Rrs and SSS are two
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different types of data, both having complex relationships with nutrients, and the traditional band ratio
models and linear regressions are unsatisfactory for handling this complexity. In this study, the BP-NN
algorithm was used to perform nonlinear fitting.
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Figure 9. Monthly average results for concentrations of nitrogen (a) and phosphate (b) in the Changjiang
River plume in the ECS from 2015 to 2017.

In Figure 10, we separately used SSS and GOCI spectra as input parameters to obtain four models,
referred to as SSS-based models and spectrum-based models, respectively. These models were then
compared with the previous mixed models. As mentioned previously, the conservative behavior
of nutrients in the study area resulted in the good performance in the medium salinity range of
SSS-based models. However, in the estuary and open sea, the SSS-based models were insufficient.
The spectrum-based model, when used as a supplement, can correct the described defects; however,
their overall precision is low. The mixed models using a combination of SSS and GOCI spectra as input
parameters provide optimal results compared to the models using SSS and reflectance spectra alone.
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5.2. Factors Impacting Nutrient Distributions

To further evaluate the model outputs, the monthly average results from 2015 to 2017 were
calculated and compared with World Ocean Atlas nutrient data (WOA13, V2) [37]. WOA13 is a
reanalysis data set published by the National Oceanic and Atmospheric Administration (NOAA)
which includes the global monthly mean nitrate and phosphate concentrations with 1◦ resolution
based on measured data. As WOA13 is also insufficient in nearshore waters, we chose Zone A
(Figure 1) as representative, and averaged the nutrient concentrations in Zone A to obtain monthly
changes. As shown in Figure 11a,b, overall, the trends of our model result and those of WOA13 are
similar; the nitrate and phosphate in the study area were characterized by high concentrations in
the winter and low concentrations in the summer. Furthermore, the nutrients decreased significantly
after April because of the increase in primary productivity. Some differences were found for nitrate
concentration; for example, there is an upward trend in the BP-NN estimates from June to July due
to the strengthening Changjiang River plume that the WOA13 data do not capture due to poor data
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coverage for near-coast waters. Additionally, phosphate rather than nitrate is the limiting factor in
the ECS [38], which results in greater absorption of phosphate in the spring and summer compared
to nitrate.

River inputs, precipitation, and exchanges between water masses are major sources of nutrients in
coastal waters [39–41]. Primary production, adsorption, and sedimentation are the main mechanisms
for transferring nutrients and sea surface currents, and the resuspension of sediment in shallow
waters caused by wind and tide also affects the distribution of nutrients [42,43]. The average
nitrate concentrations measured on our two Changjiang Estuary cruises were 114.8 ± 11.0 µM and
104.7 ± 20.7 µM, respectively, and the average phosphate concentrations were 1.35 ± 0.39 µM and
1.48 ± 0.28 µM, respectively. Therefore, the concentrations of nitrate and phosphate discharged by
the Changjiang River were the same in the dry season and the wet season. That is, the nutrient flux,
i.e., the amount of transported nutrients, is directly proportional to river run-off.

The ECS is a typical subtropical shelf sea with clear seasonal variations in precipitation,
solar radiation, and temperature. To analyze the environmental factors related to nutrient changes,
the satellite-derived monthly chlorophyll, photosynthetically active radiation (PAR), and sea surface
temperature (SST) from 2015 to 2017 were evaluated. These data, at 9-km resolution, were estimated
based on the Visible Infrared Imaging Radiometer Suite (VIIRS) obtained from the NASA OceanColor
website (https://oceancolor.gsfc.nasa.gov/). The monthly changes in these elements are shown
in Figure 11c,d. Surface nutrient concentrations are clearly negatively related to chlorophyll, PAR,
and SST, and are positively related to SSS, in the study area.

The changes in nutrient concentrations compared with environmental variables in different
seasons are presented in Table 4. During the winter (December to February), the concentrations of
nitrate and phosphate were lower, and reached a minimum in December before gradually trending
upward. Concurrently, precipitation (a factor in SSS) and PAR also increased monthly during the winter,
which indicates that the terrestrial input of nutrients dominates sea surface nutrients during winter.

River flow continued growing in the spring (March to May); however, phosphate concentrations
began declining because of the increase in PAR and primary productivity. In contrast, changes in nitrate
were not stable. Nitrate decreased in early spring and then increased after April, indicating that nitrate
concentration in the spring was jointly dominated by terrestrial input and phytoplankton uptake.

During the summer (June to August), photosynthesis continued increaseing, and phosphates
on the continental shelf were almost exhausted, with an average concentration of less than 0.1 µM.
However, nitrate remained rich due to abundant sources from the river.

During the autumn (September to November), both river discharge and primary productivity
decreased; however, the concentration of nitrate and phosphate increased. There are two reasons
for this observation: (1) the reduction in primary productivity led to a decrease in nutrient
consumption; (2) wind-induced resuspension resulted in nutrients in the sediment being carried
into the surface waters.

https://oceancolor.gsfc.nasa.gov/
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Figure 11. (a,b) Comparisons of monthly average nutrient concentration from model estimates and
the World Ocean Atlas data (WOA13, V2) in Zone A (Figure 1). (c,d) Monthly average changes in
chlorophyll concentration, photosynthetically active radiation (PAR), sea surface temperature (SST),
and sea surface salinity (SSS) in Zone A.

Table 4. Monthly average changes in nutrients and other related elements in Zone A. I (increase),
D (decrease), and - (stable) describe the monthly changes. The interrelationships between changes in
various factors should be noted. SSS—sea surface salinity; PAR—photosynthetically active radiation.

Winter Spring Summer Autumn

Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov.

Nitrate I I D D - I I D D I I I
Phosphate I I D D D D - - I I I I

SSS D D D D D D D I I I I I
Flux I I I I I I I D D D D D
PAR - I I I I D I D D D D D

6. Conclusions

Satellite retrieval models of surface water nitrate and phosphate concentrations based on
back-propagation neural networks were developed for coastal regions in the ECS. The conservative
behaviors of nitrate and phosphate were discussed, and the relationships between nutrients, Rrs,
salinity, and chlorophyll were analyzed. We used both SSS and Rrs as model inputs. After training
and validation with a large amount of measured data, reliable models were obtained. Level-2 Rrs data
from GOCI and SSS data from SMAP were compared with in situ data; both showed good agreement,
which indicated their applicability to the study area. Based on these models, time-series monthly
variations in nitrate and phosphate concentrations for 2015–2017 were obtained for the first time.
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The spatial characteristics and monthly changes in nutrients were analyzed further, and the results
were found to be consistent with WOA13 data.

Nitrate and phosphate are important water quality indicators in coastal waters. Remote-sensing
monitoring methods can provide large-scale, high-frequency observations, and this study is a
contribution to addressing this issue in complex coastal waters. Moreover, our study emphasizes
that salinity is an important parameter in developing satellite retrieval models for nutrients in large
river-dominated marginal seas.
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