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Abstract: Ship detection plays an important role in automatic remote sensing image interpretation.
The scale difference, large aspect ratio of ship, complex remote sensing image background and ship
dense parking scene make the detection task difficult. To handle the challenging problems above,
we propose a ship rotation detection model based on a Feature Fusion Pyramid Network and deep
reinforcement learning (FFPN-RL) in this paper. The detection network can efficiently generate the
inclined rectangular box for ship. First, we propose the Feature Fusion Pyramid Network (FFPN) that
strengthens the reuse of different scales features, and FFPN can extract the low level location and high
level semantic information that has an important impact on multi-scale ship detection and precise
location of dense parking ships. Second, in order to get accurate ship angle information, we apply
deep reinforcement learning to the inclined ship detection task for the first time. In addition, we put
forward prior policy guidance and a long-term training method to train an angle prediction agent
constructed through a dueling structure Q network, which is able to iteratively and accurately obtain
the ship angle. In addition, we design soft rotation non-maximum suppression to reduce the missed
ship detection while suppressing the redundant detection boxes. We carry out detailed experiments
on the remote sensing ship image dataset, and the experiments validate that our FFPN-RL ship
detection model has efficient detection performance.

Keywords: ship detection; deep reinforcement learning; convolution neural network; feature
map fusion

1. Introduction

In recent years, remote sensing technology has developed rapidly, and more and more research has
gradually been carried out on the high-quality, high-resolution remote sensing images. Ship detection
is an important part of these works and continues to attract attention. In addition, it can greatly
improve the ability of coastal defense, maritime monitoring management and harbour dispatching.
The ship detection task in remote sensing images is full of challenges, such as the special aspect ratio of
the ship, the dense parking scene, the uneven illumination, the large number of complex interferences
in the background, etc.
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Thus far, many ship detection models have been proposed. Some ship detection methods are
based on ocean and land segmentation. Long et al. [1] proposed a method for detecting coastal ships
based on prior geographical information. Through separating the sea surface from the port, the ships
were detected by the threshold method in the separated sea area. Jiang et al. [2] adopted the separation
method of ocean and land to extract the characteristics of the ship and complete the detection task.
Liu et al. [3] proposed a piecewise energy function based on the active contour model to obtain ship
local features. Zhou et al. [4] and Xu et al. [5] proposed methods for detecting ships in Synthetic
Aperture Radar (SAR) images. Li et al. [6] used a multi-model fusion approach and a two-stage step
of detection–classification to detect side-by-side ships. Some work focuses on ship detection using a
saliency model. Bi et al. [7] proposed a bottom-up computational model to extract candidate regions of
optical satellite images. Qi et al. [8] built a Phase Spectrum of a Fourier Transform model for region
proposal to automatically detect ships. Most of the above ship detection models are based on prior
knowledge and artificially designed features. They are effective only under certain conditions and lack
generalization ability for ships of different scales and types.

For object detection tasks, some methods based on template, sparse representation and dictionary
learning perform well in the detection and classification of specific objects. Dao et al. [9] built a novel
sparsity based method which combined the resolution of multispectral bands into the soil detection to
realize the automatic tunnel mining monitoring. Based on the theory that hyperspectral pixels are able
to be sparsely represented through combination of a few training samples, Chen et al. [10] proposed
a sparsity algorithm to classify hyperspectral images and achieved state-of-the-art performance.
Huang et al. [11] constructed a moving object detection algorithm through sparse representation and
dictionary learning. The most sparse representation of the data dictionary was obtained by K Singular
Value Decomposition (K-SVD), and the moving object was segmented by robust principal component
tracking (PCP) to detect moving object. Xiao et al. [12] proposed an object detection method based on
local contour learning and matching. The template image was generated by unsupervised clustering;
then, a local contour codebook dictionary was established, and a final detection area was obtained by
sliding window.

Due to the development of convolutional neural network based on deep learning, object detection
in natural images have made rapid progress over recent years. With the application of various
convolutional neural network training methods and the increasingly abundant computing resources,
the convolutional neural network continues to evolve and the performance achieved in various
competitions is also getting higher and higher. The classical convolutional neural network models
include AlexNet [13], Visual Geometry Group Networks (VGG) [14], GoogLeNet [15], Residual
Networks (ResNet) [16], Densely Connected Convolutional Networks (DenseNet) [17] and Neural
Architecture Search Networks (NASNet) [18]. Because of the continuous advancement of these neural
network models, the performance of object detection models based on these networks is also increasing,
such as Fast Regions Convolution Neural Network (Fast R-CNN) [19], Faster Regions Convolution
Neural Network (Faster R-CNN) [20], Feature Pyramid Networks [21], You Only Look Once Network
(YOLO) [22] and Single Shot Multibox Detector (SSD) [23]. Customized versions based on these efficient
detection frameworks are used for different visual tasks. Nguyen et al. [24] built LightDenseYOLO
to detect and track marker in Unmanned Aerial Vehicle (UAV). In addition, it achieved perfect
performance. LightDenseYOLO combined LightDenseNet and YOLO v2. LightDenseNet was adopted
as a feature extractor, and YOLO v2 directly predicted a bounding box of marker. These neural network
detection models are robust and effective for detecting remote sensing ships because of the strong
generalization ability. However, due to the particularity of ship rotation, large aspect ratio and dense
parking, they sometimes have difficulty getting perfect results.

There are some works to focus on the detection of object with a large aspect ratio, such as text
and ship. Once the angle of such object is inclined, the conventional horizontal detection rectangle
does not accurately and strictly surround the object. For example, due to the large aspect ratio,
the ship’s horizontal detection box often contains redundant ports, coasts, and parts of surrounding
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ships. In order to overcome the above problem, some object detection models were proposed to
generate inclined rectangle boxes. Ma et al. [25] built the Rotation Region Proposal Networks (RRPN)
that generated inclined proposals with an angle information of text. However, because of the angle
error in Regions Of Interest (ROI) pooling, the classification and regression layers of the network
cannot obtain all ship feature information, which led to poor detection performance. Jiang et al. [26]
presented Rotational Region CNN (RRCNN) to detect inclined text. Compared to RRPN, RRCNN used
horizontal boxes in the Region Proposal Network stage, which preserved the text features to some
extent. Yang et al. [27] proposed Rotation Dense Feature Pyramid Networks (R-DFPN) to detect ships
in different scenes through direct features connection and rotation anchor strategy. In the detection
method of these large aspect ratio object, the orientation information is obtained by the regression
angle or the relative coordinates. Exact orientation information is a vital part in the detection of this
kind object, and the direct angle regression method is often difficult to obtain accurate prediction
results. Reinforcement learning provides a new intelligent solution for angle prediction.

Reinforcement learning is an important machine learning method, and it is widely used in the
field of robot control, analysis and prediction. It learns the mapping from environmental state to agent
behavior, and obtains the biggest reward from the environment through action selected by the agent.
In 2013, DeepMind presented a groundbreaking work [28], which first proposed deep reinforcement
learning and deep Q network (DQN) algorithm to learn to play Atari 2600 games through pure image
input. Nature published the evolutionary version of DQN paper [29] in 2015. The advanced DQN
achieved beyond human performance in half of the 49 games. The relevant researchers gradually
proposed efficient deep reinforcement learning algorithms, like Double DQN [30], Dueling DDQN [31],
Hierarchical Reinforcement Learning [32] and continuous action control algorithm [33]. At present,
research based on deep reinforcement learning in the traditional computer vision are constantly
developing, such as object tracking [34], person re-identification [35], autonomous driving [36], etc.

In this paper, we propose a ship detection framework based on a Feature Fusion Pyramid
Network and Deep Reinforcement Learning (FFPN-RL). Through enhancing the reuse of different
scales features in FFPN, the detection model is able to efficiently detect ships of various scales.
The angle prediction agent can accurately obtain the ship angle information by iteratively rotating
the ship image. Experiments validate that our FFPN-RL ship detection model obtains state-of-the-art
detection performance. Our work has the following contributions:

1. We construct an efficient ship detection model which unites Feature Fusion Pyramid Network and
deep reinforcement learning. To the best of our knowledge, this is the first time that reinforcement
learning is applied to the remote sensing ship detection task. The model achieves accurate
detection results with angle information.

2. We build the Feature Fusion Pyramid Network (FFPN) through the multi-scale feature reuse in
feature pyramids. FFPN can fully utilize features of different scales, and sufficiently combines the
location and semantic information. It is effective for ship detection of different scales. Semantic
information is considered as discriminable features of ships. It is encoded by neural networks to
represent the characteristics of ship category.

3. We convert the ship angle prediction task to a Markov Decision Process. A prediction agent based
on a dueling deep Q network is trained through policy guidance and a long-term training method
proposed in this paper. By iteratively rotating the ship image, the agent can obtain the accurate
orientation information of a ship.

4. We adopt the soft rotation non-maximum suppression (SRNMS) algorithm to suppress redundant
detection results. Combining the detection rectangle with an angle and the soft suppression
strategy, SRNMS is able to avoid the absolute suppression, reduce the missed detection,
and further improve the overall detection performance.

The rest of this paper is organized as follows: the ship detection model and important parts are
presented in Section 2. Section 3 introduces the thorough comparison experiments and analyses in
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detail. Section 4 discusses the results of a detection model we proposed. In addition, the paper is
concluded in Section 5.

2. Proposed Ship Detection Method

We present the details of our ship detection model (FFPN-RL) in this section. Compared to
horizontal detection framework, our model is able to generate an inclined result with an angle that
better describes the state of ship. We divide the entire detection task into three parts: classification,
location detection, and angle prediction. We design two-stage networks to complete the first two
missions through classification and regression. In addition, we use deep reinforcement learning to
iteratively predict the angle.

Figure 1 shows the whole ship detection model. The Feature Fusion Pyramid Network (FFPN)
can generate features of various scales, which are used as input for Region Proposal Networks (RPNs),
and Regression and Classification Refinement Detection Networks. Through RPN, the detection
framework can get high-quality horizontal proposals of raw input images. The refinement network
can classify and regress based on the proposals to acquire the category and location information.
In addition, the angle prediction agent trained by reinforcement learning can get accurate angles
based on the location result generated in refinement networks. Finally, soft rotation non-maximum
suppression is adopted to remove redundant inclined detection boxes. Each part of the proposed
method is detailed in the following sections.

Figure 1. Feature Fusion Pyramid Network and Deep Reinforcement Learning (FFPN-RL) ship
detection model.

2.1. Feature Fusion Pyramid Network

Most of the object detection methods only use the high level features of the neural network for
prediction. Low level features have less semantic information; nevertheless, the object location is
accurate. In contrast, the semantic information of high level features is rich, but the object location
is relatively rough. The Feature Pyramid Networks (FPN) in [21] is able to integrate the semantic
information of high level and the location information of low level with special top-down connection,
which is beneficial to the object detection of different scales.

Remote sensing ship detection not only accurately locates ships but also distinguishes ships and
backgrounds from extremely complex remote sensing images. The FPN adds the resized higher layer
feature map to the current layer to obtain the new feature map. The aliasing effect generated by
this kind of feature map connection may have a negative impact on ship location and classification.
For reducing the above influence and increasing the utilization of features, we propose the Feature
Fusion Pyramid Network (FFPN), which is shown in Figure 2.
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Figure 2. Feature fusion process in a Feature Fusion Pyramid Network.

In FFPN, we take ResNet50 as the network backbone. The outputs of each stage last residual block
in ResNet50 are used as original feature maps, which are C2, C3, C4, and C5. Through convolution,
resizing and stacking operations, the original feature maps are converted to fused feature maps as
Figure 2 shows. We define the fused feature maps as {P2, P3, P4, P5, P6}. In addition, P6, which is not
illustrated in Figure 2, is generated through two stride convolutions of P5.

Specifically, we take the feature map C4 as an example to illustrate the feature fusion process
in detail. As shown in Figure 3a, we perform convolutions on C4 and get the feature map P_4st4.
Then, we perform the nearest neighbor upsampling and downsampling operations on the P_4st4 to
obtain the P_4st5, P_4st3 and P_4st2 at different scales. After operation 1©, we can get four groups
of feature maps. Each of them contains four scale feature maps. As shown in Figure 3b, we stack
the P_5st4, P_4st4, P_3st4 and P_2st4 feature maps that have same size. Finally, in operation 3©,
we perform convolutions to reduce the number of channels and aliasing effect.

(a) (b)

Figure 3. C4 feature map fusion process in a Feature Fusion Pyramid Network. (a) the convolution and
resizing based on the original feature map C4; (b) the stacking operation based on the intermediate
feature maps.

The Feature Fusion Pyramid Network can significantly provide detailed information for bounding
box regression and classification in the following network, and it is beneficial to overall ship detection.

2.2. Location and Classification Prediction in Ship Detection

In this section, we introduce our method to detect the location and predict the ship/non-ship score
of arbitrary-oriented ship. Firstly, we describe the ground truth definition of ship. Then, we introduce
the location and classification prediction networks in detail. Finally, we present the multi-task loss
function in training.
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2.2.1. Ground Truth Definition

Unlike the horizontal ground truth of traditional object detection, the ground truth of
object with large aspect ratios like ship and text is usually composed of four point coordinates
(x1, y1, x2, y2, x3, y3, x4, y4), which tightly surround objects as shown in Figure 4a. In order to
simplify the detection of this kind of object, the quadrilateral ground truth is approximated as an
inclined rectangle. In scene text detection, work in [26] adopts the first two point coordinates clockwise
and the height of the bounding box to represent an inclined rectangle (x1, y1, x2, y2, h). In our work,
the horizontal axis forms two angles with the two sides of inclined rectangle in the counterclockwise
direction. We select the smaller one (θ) as the angle in ground truth. The edge corresponding to this
angle is width, and the other side is height. Then, in our work, we combine these three variables
(width, height, θ) with the center point coordinates (x, y) as the ground truth of ship, which is shown
in Figure 4b.

(a) (b)

Figure 4. (a) the four points coordinates of quadrilateral ship ground truth; (b) the inclined rectangle
ship ground truth in our work.

2.2.2. Location and Classification Prediction Networks

The region proposal network, regression and classification refinement network constitute the
overall location and classification prediction networks as shown in Figure 1. Benefiting from FFPN
in Section 2.1, the region proposal network can generate horizontal proposals which contain ships in
any orientation. After ROI pooling operation on these horizontal proposals, the extracted features are
concatenated to the fully connected layers for final classification and regression. In addition, we can
get the probability, the center point coordinate, width and height of ship.

Region Proposal Network: In our detection model, RPN is used to generate high quality
horizontal region proposals which contain ships in any orientation. Through FFPN, we can get
the fusion feature maps {P2, P3, P4, P5, P6}. We perform two convolution operations on each fusion
feature map. The first convolution fixes the channel to 512, and the second generates the coordinates
of proposals (x, y, w, h) and category scores. Due to the high level and low level feature fusion at
different scales in FFPN, RPN can simultaneously focus on the location and semantic information of
ship which is crucial to detecting ships with large scale difference in remote sensing images.

We assign anchors of a single scale to each feature map. In addition, in order to accurately
calculate and reduce error, we assign anchors of 32, 64, 128, 256, 512 scales to P2, P3, P4, P5, P6. We set
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the anchor ratios to 1/9, 1/5, 1/3, 1/2, 1.0, 2.0, 3.0, 5.0 and 9.0. The appropriate anchor aspect ratio
is beneficial to ship detection. We keep other hyperparameters of RPN the same as original FPN in
[21], including the definition of positive samples and negative samples. Figure 5 shows the multiscale
region proposals generated by RPN based on FFPN.

(a) (b)

(c) (d)

Figure 5. Ships region proposals of different scales. (a,b) the ground truth bounding boxes of ships;
(c,d) the different scales region proposals of multiscale ships generated by region proposal network in
our work.

Regression and Classification Refinement Network: Behind RPN, we design the regression and
classification refinement network in our ship detection model. Specifically, we implement ROI pooling
on multiple levels of the feature pyramid to obtain fixed size features. In addition, in a refinement
network, we remove the P6, the feature pyramid is P2, P3, P4, P5. Then, we connect the fixed size
features to two 1024-d fully-connected layers followed by final classification and regression layers.
Finally, we can get the probability, center point coordinate (x, y), width and height of inclined rectangle
illustrated in Figure 4b.

We perform non-maximum suppression with 0.7 threshold to get 2000 ROIs generated by RPN.
Science the ship is a large aspect ratio object, we use 7 × 7, 3 × 14 and 14 × 3 ROI poolings to extract
features to reduce the negative influence caused by the cropping and resizing operation. To train the
regression and classification refinement network, we select 256 ROIs for each image, and the ratio of
positive and negative samples is 1:1.

2.2.3. Multi-Task Loss Function

In the RPN network training, the category of anchor and the loss function are the two critical parts.
We use the loss function similar to the Faster RCNN [20] at the RPN stage. The horizontal ground
truth bounding box is defined as {xmin, ymin, xmax, ymax}. In addition, xmin is the minimum of the
four abscissas illustrated in Section 2.2.1, and xmax is the maximum. Similarly, ymin is the minimum of
the four ordinates, and ymax is the maximum. In addition, we determine whether the anchor belongs
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to the category containing ship through the IoU (Intersection over Union) between the anchor and the
horizontal ground truth bounding box of ship. Specifically, the following rules are used in our work:
(1) if the IoU between the anchor and every horizontal ground truth bounding box is less than 0.3,
the category of anchor is defined as the negative region; (2) if the IoU between the anchor and one
horizontal ground truth bounding box is greater than 0.75, the category of anchor is defined as the
positive region; (3) if the anchor has the highest IoU between any bounding box, we also define it as
the positive region. Neutral anchors do not match the conditions above, and they also do not have an
influence on the loss function.

In the training of regression and classification refinement networks, we perform the loss function
calculation on sampled region proposals generated by RPN. The loss function is composed of two
parts: the ship/non-ship classification loss, the central point coordinate and scale regression loss.
The multi-task loss function that needs to be minimized is defined as:

L(p, c, i, i∗) = Lcls(p, c) + λcLreg(i, i∗), (1)

where the parameter p generated by a softmax function in a prediction network is the probability
distribution of ship and background. The parameter c represents the category label. Lcls(p, c) is
cross-entropy loss for binary classification, and Lcls(p, c) = −logpc is the log loss for true class.

The parameter i = (ix, iy, iw, ih) is the coordinate and the scale information of inclined ground
truth rectangle bounding box, and i = (i∗x, i∗y , i∗w, i∗h) is the prediction value through network regression.
λ is the balance parameter in training. Regression loss is defined as:

Lreg(i, i∗) = smoothL1(i∗ − i), (2)

smoothL1(x) =

{
0.5x2, if |x| < 1,

|x| − 0.5, otherwise.
(3)

2.3. Angle Prediction Based on Deep Reinforcement Learning

As Figure 6 shows, the ship ground truth is mark with blue box. At the same center point and
scale conditions, the yellow inclined rectangle is the result generated by counterclockwise 5◦ rotation
of ground truth. Through calculation, we can find that only 5◦ difference results in 0.76 IoU between
two boxes, which may greatly affect the final detection and evaluation. Due to the large aspect ratio of
ship, angle prediction accuracy is vital for ship detection in remote sensing images.

Figure 6. Different inclined rectangle boxes of ships.
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In this section, we present our angle prediction agent based on deep reinforcement learning
in detail. Some researchers have utilized the convolutional neural network detection framework to
directly regress ship angle. In contrast, our approach is to iteratively predict the angle. We adopt
Markov Decision Processes in the ship angle detection task. With reinforcement learning, we train an
intelligent agent to continuously rotate the remote image which contains an inclined ship to horizontal
position, and the rotation angle is a fixed number of values every time. Eventually, we can get the
prediction of ship angle through the entire rotation process. The accuracy of ship angle prediction is
positively correlated with the total cumulative discounted reward in the ship angle prediction Markov
Decision Process. The angle prediction agent is able to choose the appropriate actions to obtain a high
total cumulative discounted reward.

2.3.1. Markov Decision Process of Ship Angle Prediction

In Markov Decision Processes (MDPs) of ship angle prediction, the rotation agent observes the
current inclined ship image (State), and it selects one action from our pre-defined Action Set. Then, the
ship rotates at a certain angle which the selected action determines. In addition, the agent receives a
corresponding encouragement or punishment based on whether the ship is closer to the horizontal
position. These decision processes and state transitions are continually cycled until the end of MDP.
In the above MDP, there are three import elements: State Set, pre-defined Action Set and Reward
Function which evaluate the selected action.

We use the part of current remote sensing image that contains the inclined ship to contrast
the state in angle prediction MDP. Specifically, we crop the square containing ship as the initial
image. The center of the square coincides with the center of ship, and the side length of the square
is 2×

√
Width2 + Height2. At the same time, we adopt the past action selected by an agent in the

construction of state to improve the stability of training process. Consequently, the current inclined
ship image and the past action encoded through one-hot constitute the state in angle prediction MDP.

The action set consists of three actions: Action1, Action2 and Action3. When the angle detection
agent selects Action1, the ship will be rotated 10◦ clockwise. Correspondingly, when Action2 is selected,
the ship will be rotated 2◦ clockwise. Action3 marks the end of the rotation process. After selecting
Action3, we can get the predicted value of the ship angle through the overall decision-making process.
With these different rotation angles in action sets, we can achieve higher prediction accuracy and
reduce the number of decision-making actions. This short-term MDP can facilitate the convergence of
the training process. Figure 7 shows the action set in angle prediction MDP. After selecting several
Action1 and Action2s, the ship is rotated to corresponding angle clockwise. Finally, the ship is rotated
to horizontal position until Action3 is selected, and we can get the ship angle.

The reward function encourages or punishes the angle prediction agent through the selected
action. The agent accumulates experience with the above reward, learns from it and finally selects
appropriate actions in each decision. We contrast the reward functions Ra1(st, st+1), Ra2(st, st+1),
Ra3(st, st+1) for each action based on the difference between the ground truth angle (angle_true) and
the next angle (angle_nowt+1), which is generated by adding current angle (angle_nowt) with the
angle corresponding to the action selected by agent. We define the initial angle of each MDP process to
be 1◦ (angle_now1 = 1◦). The reward functions are defined:

Ra1(st, st+1) =

{
+2, if 0◦ ≤ angle_true− angle_nowt+1,

−2, otherwise,
(4)

Ra2(st, st+1) =

{
+2, if −1◦ < angle_true− angle_nowt+1 < 8◦,

−2, otherwise,
(5)

Ra3(st, st+1) =

{
+5, if −1◦ < angle_true− angle_nowt+1 ≤ 1◦,

−5, otherwise,
(6)
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where the state is st at time t, and the ship prediction agent selects action at, then the state changes into
st+1. Based on the difference mentioned above between angles and the threshold we set, the agent gets
encouragement (+2,+5) or punishment (−2,−5).

Figure 7. The action set and ship rotation process.

The reward function Ra1(st, st+1) and Ra2(st, st+1) evaluate whether the agent rotate the inclined
ship at an appropriate angle. For example, when the difference between the ground truth angle and
the current angle is 13◦, it means that the agent needs to rotate the ship 13◦ clockwise to the horizontal
position. At this time, if the agent select the action A1 which rotates the inclined ship 10◦ clockwise,
the difference between the ground truth angle (angle_true) and the next angle (angle_nowt+1) changes
to 3◦, then the agent can get +2 encouragement. If the action A2 is selected, the angle difference
changes into 11◦, and the agent will be punished −2.

The reward function Ra3(st, st+1) measures the angle prediction accuracy. When the end action
A3 is selected, the entire MDP is over. If the absolute value of angle difference is greater than −1◦ and
less than or equal to 1◦, the end encouragement is +5; otherwise, the punishment is −5.

2.3.2. Dueling Double Deep Q Learning

Q learning is a reinforcement learning algorithm that is used to find an optimal action-selection
policy to maximize the sum of the discounted rewards. The Q function is defined as Qπ(s, a) =

E[Rt|st = s, at = a, π], and it represents the Q value of action a in state s and policy π which is a policy
mapping states to actions. The optimal action value is defined as Q∗(s, a) = maxπE[Rt|st = s, at =

a, π]; it represents the maximum expected return in any policy. According to the Bellman equation,
we adopt the deep neural network to estimate the optimal action value function Q(s, a, θ) where θ is
the network parameters.

Furthermore, we adopt dueling network architecture in our work because the estimation of state
value is of great importance for every state. Contrasted with the stack structure of fully connected
layers in a traditional deep Q model, the dueling network uses two parallel streams at the end of the
network. One stream calculates the state value, and the other is used to estimate the action advantage
function. After parallel structure, two streams are connected to Q output.

As shown in Figure 8, dueling network architecture contains convolutional neural networks,
connection of features and past actions, two fully connected layers, State Value part, Action Advantages
part and 3D Q value output. The ResNet50, which is pre-trained on the ImageNet [37] and has effective
feature extraction performance, is used to initialize weights in convolutional neural networks.
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Figure 8. The dueling network of angle prediction. The state value and action advantages are estimated
in parallel structure of dueling networks.

The combined Q value is defined as:

Q(s, a; c, wv, wa) = V(s; θ, wv) + A(s, a; θ, wa), (7)

where s is the state, and a is the action. c is the weight of convolutional neural network. wv and wa

are the fully connected layer parameters of state value part and action advantage part. V(s; θ, wv)

calculates the value for each state, and A(s, a; θ, wa) estimates the advantages for three actions in our
angle prediction MDP.

2.3.3. Training of Dueling Double Deep Q Network

The neural network in parallel structure can automatically compute the value and action
advantages, and they have no influence on the network optimization. We adopt a double deep
Q algorithm (DDQN) to optimize the Q network. Different from a single Q network in [28], DDQN
uses two Q networks (Q and Q−) to avoid high estimation of action Q value. Two Q networks
correspond to action selection and evaluation. The update of neural network weights is defined as:

wi+1 = wi + α(r + βQ−(st+1, argmaxaQ(st+1, a; wi); w−i )−Q(st, a; wi))∇wi Q(st, a; wi), (8)

where wi is the ith weights of deep Q network (Q) and the wi+1 is the (i + 1)th weights. w−i is the ith
weights of target deep Q network (Q−). The angle prediction agent selects action a at state st; then,
the state changes into st+1. The learning rate is α, and β represents the discount factor in discounted
reward.

We use policy guidance instead of random action selection in the original algorithm to help
the angle prediction agent make appropriate action in training. The original dueling double
deep Q network (dueling DDQN) selects random action with a probability of ε in each ε− greedy
decision-making stage. However, we optimize this kind of selection in our method. Before the agent
selects action, we can calculate the difference between the ground truth angle and the current angle.
Based on the angle difference, the most appropriate action is chosen for the agent to get the +2 or
+5 encouragement. Compared with random selection, this kind of policy guidance increases the
proportion of positive reward in experience buffer, which improves the performance of the agent.

For the angle prediction task, we replace the single step training in the original algorithm with
the long-term training that updates weights until one MDP is ended. On one hand, this approach
enables the agent to quickly accumulate experience, and, on the other hand, it accelerates the training
of networks.

Algorithm 1 shows the training pseudo code of optimized dueling double deep Q network.
We adopt the policy guidance and long-term training method to make the angle prediction agent learn
effectively. Subsequent experiment results demonstrate the advantages of the optimized algorithm.
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Algorithm 1 Optimized Dueling Double Deep Q Learning

Input: dueling deep Q network Q with weights w, target dueling deep Q network Q− with weights
w− which are duplicated from w, empty experience deque buffer B.
Output: the weights of trained dueling deep Q network

set ε with 100% in ε− greedy policy
for loop counter = 1, I do

update ε with max(ε− 10%, 0.1)
for ship counter = 1, J do

initialise state s1 (inclined ship image m1 + past action p1)
while True do

duplicate w− with w each M action selection
if random(0,1) > ε then

select action ai corresponding to the maximum of the Q network output
else

compute angle difference and perform policy guidance to get action ai

rotate the image clockwise by the angle corresponding to ai

get new state si+1 (new inclined ship image mi+1 + new past action pi+1) and reward ri

store (si, ai, ri, si+1) in experience deque buffer B
set current state si with si+1

if ai == A3 then
stop current cycle

Sample random batch (st, at, rt, st+1) from experience deque buffer B
if at == A3 then

set network label lt with rt

else
set network label lt with rt + βQ−(st+1, argmaxaQ(st+1, a; wi); w−i )

calculate loss (lt −Q(st, at; wi))
2 and update the weights in Q with loss backpropagation

2.4. Soft Rotation Non-Maximum Suppression

So far, we obtain the center point coordinate (x, y), the scale (width, height) and the angle (θ)

information of ships. Because of the overall multi-stage detection framework and the abundant region
proposals generated by RPN, there are redundant boxes in one remote sensing image. We need to use
algorithms to reduce useless results in final detection.

Normally, the non-maximum Suppression (NMS) is used as the last operation in many detection
models to reduce redundant detection bounding boxes. The NMS algorithm is based on the scores
and bounding boxes in detection results. Specifically, the highest score detection bounding box is
selected, and the others that have obvious overlap with the selected one are suppressed. The process is
continually and recursively applied to the remaining bounding boxes until the end.

Since the ship detection results in our work are the inclined rectangles, we use the rotated
bounding boxes to compute the IoU in NMS. Contrasted with the traditional horizontal detection
boxes, the inclined rectangles and rotation non-maximum suppression (RNMS) can avoid large overlap
and missed detection in ship rotation detection tasks.

Furthermore, we adopt the soft strategy in rotation non-maximum suppression. In traditional
NMS, if the IoU is higher than the threshold, the bounding box is absolutely suppressed and disappears
in subsequent steps. This approach may result in missed detection. We use a Gaussian kernel function
to control the suppression extent in soft strategy. The soft rotation non-maximum suppression (SRNMS)
is a signification solution to the dense parking problem. SRNMS algorithm is detailed in Algorithm 2.
In addition, our evaluation results confirm the effectiveness of SRNMS.



Remote Sens. 2018, 10, 1922 13 of 26

Algorithm 2 Soft Rotation Non-Maximum Suppression
Input: inclined rectangle bounding Boxes: B = (x1, y1, w1, h1, t1), ..., (xl , yl , wl , hl , tl), bounding boxes
length: L, bounding boxes Scores: S = (s1, ..., sl), final threshold, Gaussian kernel function parameter:
sigma.
Output: Index of final result: Keep

initialize empty index set: Keep, initialize all zero suppression flag set: Suppression
for _i = 1, L do

get the current score index in descending order: Order
set current_index i with Order[_i]
if Suppression[current_index] == 1 then

stop current cycle

add current_index i to Keep
for _j = _i+1, L do

set the next score index j with Order[_j]
if Suppression[current_index] == 1 then

stop current cycle

calculate rotated IoU of two inclined rectangles (xi, yi, wi, hi, ti), (xj, yj, wj, hj, tj)

calculate suppression weight = exp(−IoU2/sigma)
update Scores[j] = weight × Score[j]
if Scores[j]<final threshould then

update suppression flag set element at index j to 1

3. Experiments and Analysis

In this section, we perform experiments to evaluate the performance of our ship detection
model. Firstly, we carefully analyze the ship dataset and detail the relevant parameters of network
training. Then, we design experiments to illustrate that, compared to the direct regression of neural
networks, the prediction agent based on deep reinforcement learning can obtain the angle more
accurately. Finally, some experiments are designed to explore the influence of Feature Fusion Pyramid
Networks, the contributions that the angle prediction agent make and the importance of Soft Rotation
Non-Maximum Suppression in our overall ship detection model (FFPN-RL). The comparisons with
other ship detection models show the effectiveness of our method. All experiments are carried out on
a NVIDIA K80M 12G GPU which is manufactured through United States NVIDIA.

3.1. Implementation Introduction

3.1.1. Ship Remote Sensing Image Dataset

We generate our ship detection dataset, which is collected publicly from the Google Earth through
the QuickBird satellite. Specifically, Google Earth images are downloaded through software, and we
crop the downloaded images to many uniform size subimages. Since the ship images are downloaded
directly, the spatial resolution is lower than 0.6 meters of the original QuickBird satellite. Due to the
arbitrariness of image acquisition time, shadows exist around the ships. At the same time, there are
some clouds and fogs in images. The dataset contains 10,000 remote sensing ship images. The image is
in Red Green Blue (RGB) format with uniform 1000× 600 pixels size. Through manual annotation,
the ground truth is the four points coordinates that surround the ship. We take the center point
coordinate (x, y), width, height and angle of the minimum bounding rectangle as the final ground
truth that is calculated through four points’ coordinates. Widths range from 8 to 578, and heights range
from 11 to 573.

We take 8000 image samples for training, 1000 samples for verification and the last 1000 samples
for testing. We build the testing set by randomly selecting images from all 10,000 remote sensing ship
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images at 10% ratios. We evenly divide the remaining 9000 images into nine parts. Eight parts are
selected as the training set which the ship detection model is trained based on, and the remaining one
is used as a validation set to adjust hyperparameters of the network. Due to the uneven distribution
of data, cross-validation is adopted. We use our dataset to train and test the overall ship rotation
detection model.

Some image samples are shown in Figure 9. The ships in the dataset contain boats, cruise ships
and warships that have different scales. The background of remote sensing images includes rivers,
oceans, ports, containers, residential areas and so on, which affect the ship detection task.

(a) (b)

(c) (d)

Figure 9. Some remote sensing ship images in datasets.

3.1.2. Location and Classification Prediction Network

Our ship location and classification prediction network are implemented with the pre-trained
model ResNet50 based on deep learning framework Keras. Because of the large aspect ratio of ship,
the edge of the image sometimes only contains the prow or stern, not the entire ship. During training,
we remove the samples containing only part of a ship. With this selection strategy of training samples,
the detection model focuses more attention on detecting whole ships rather than any part of them.

In order to find the appropriate anchors, we analyze the widths and heights of ships horizontal
ground truth boxes (xmin and xmax o f x1, x2, x3, x4; ymin and ymax o f y1, y2, y3, y4) in training and
verification datasets. Anchor scales are set to 32, 64, 128, 256 and 512. As shown by the gray dots
in Figure 10a, we draw the scatter plot of ships’ horizontal boxes widths and heights. We draw the
green lines with 1/2, 1.0 and 2.0 slopes and yellow dots of anchors with 1/2, 1.0 and 2.0 aspect ratios,
which are widely used in common natural object detection. However, there are a lot of gray dots
outside the three lines due to the large aspect ratios of ships. These anchor ratios make the regression
of the neural network difficult and adversely affect the final ship detection performance. Taking into
account the detection accuracy and computational complexity, we set the anchor ratios to 1/9, 1/5, 1/3,
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1/2, 1.0, 2.0, 3.0, 5.0 and 9.0. As shown in Figure 10b, the green lines, red lines and yellow dots evenly
distribute near the gray dots. In our ship detection task, we adopt the anchor ratios in Figure 10b.

The location and classification prediction network is trained 60× e4 iterations. The learning rate
starts from 1× e−4 in the first 20× e4 iterations. In the second 20× e4 iterations, the learning rate is set
to 1× e−5. In addition, it remains 1× e−6 in the last 20× e4 iterations. Weight decays are set to 0.0001.
We adopt the Adam Optimizer [38] in the training process. At the RPN stage, the anchor stride is set to
1, and anchors are created for each cell in feature maps. We sample 256 anchors for training in each
batch. At regression and classification refinement network training stage, we set the positive ROI ratio
to 0.5.

(a) (b)

Figure 10. Distribution Comparison of anchors with different aspect ratios. (a) scatter plot of ship
horizontal boxes (gray dots), scatter plot of anchors (yellow dots), and green lines with 1/2, 1.0 and
2.0 slopes used in traditional object detection; (b) anchor ratios are 1/9, 1/5 1/3, 1/2, 1.0, 2.0, 3.0, 5.0 and
9.0. Scatter plot of ship horizontal boxes (gray dots), scatter plot of anchors (yellow dots), green lines
with 1/2, 1.0 and 2.0 slopes, and red lines with 1/9, 1/5, 1/3, 3.0, 5.0 and 9.0 slopes supplemented for
object detection of large aspect ratio.

3.1.3. Angle Prediction Agent

We train the angle prediction agent through reinforcement learning algorithm. The agent interacts
with the images of trainval dataset and rotates ships in images to horizontal position. To expand
the trainval dataset, we make the agent interact with dataset 30 times during the entire training
process. As illustrated in Algorithm 1, ε− greedy policy is carried out when one trainval dataset loop
is over. After the end of 8th loop, the ε is set to 0.1 and remains unchanged. Every time 32 units are
randomly selected from the experience deque buffer. We use mean squared error as the loss function
and adopt Adam Optimizer with fixed 1× e−5 learning rate in deep reinforcement learning network
training process.

The optimized dueling double deep Q network algorithm in our work contains policy guidance
and long-term training method. Some advantages are detailed below compared with the original
dueling double deep Q network [31]:

• In addition to action selection based on a deep Q network, the original training algorithm
in dueling double deep Q network [31] randomly selects actions in action sets. However,
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our optimized algorithm adopts a priori policy guidance to help agents quickly accumulate
the positive experience.

• We perform the long-term training method which trains the deep Q network after the rotation
end action A3 is selected in Algorithm 1. The algorithm in [31] trains the network after the end
of each action selection. The long-term training method can accelerate the convergence process
of the network.

• Compared to the original simple video game scene, considering the complex background and
difficult-to-distinguish objects in remote sensing images, we store the experiences to larger
first-in-first-out experience deque buffer (length: 200,000) in Algorithm 1.

In each training loop, the agent performs about two hundred thousand action selections, and after
the end of thirty training loops, about six million actions are selected. For the comparison of algorithms,
we train an agent which rotates the images based on policy guidance, and another agent that randomly
rotates the images is trained by contrast. Moreover, two kinds of agents based on the step training and
long-term training are trained to compare the convergence speed.

3.2. Evaluating the Angle Prediction Agent

We evaluate the performance of angle prediction agents trained through reinforcement learning
in 1000 testing remote sensing images. We use the following evaluation criterias: angle prediction
accuracy rate and mean angle difference, which are defined as:

Accuracy Rate =
Ncorrect

N
, (9)

where N is the number of ships in testing images, and Ncorrect denotes the number of ships whose
angles are correctly predicted. In our work, we define that the prediction is considered to be correct
when the absolute value of angle difference between prediction and the ground truth is less than 2◦,
which is already a relatively strict standard in ship detection tasks:

Mean Angle Di f f erence =
1
N

N

∑
n=1
|predictioni − truthi|, (10)

where N is the number of ships in testing images, predictioni is the angle prediction value, and truthi
is the angle ground truth of ith ship.

In contrast, we train a convolutional neural network with supervised learning to directly regress
the angle information from the ship image, and the convolutional neural network also takes ResNet50
as a backbone. On the other hand, we convert the ship image in the test set into oval binary
image, and we use the angle estimation method in [39] (Eigenvectors with the Largest Eigenvalue of
Covariance Matrix, ELECM) to predict the ship angle on the transformed image for comparison.

We first explore the impact of policy guidance on angle prediction agent training. As Figure 11
shows, ELECM achieves accuracy rate of 79.23% and 2.43◦mean angle difference for binary images, and
the CNN model gets a 75.28% accuracy rate and 3.85◦ mean angle difference in testing images. As the
amount of training increases, two kinds of angle prediction agents gradually perform better. The agent
trained based on policy guidance achieves a 79.98% accuracy rate, which eventually surpasses the
CNN model, and a 4.05◦ mean angle difference that is close to the result of a CNN model. However,
suffering from the lack of prior knowledge guidance, the second agent only learns from the random
action selection, and it gets a 58.28% accuracy rate and 10.35◦ mean angle difference.
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Figure 11. Prediction performance of Eigenvectors with the Largest Eigenvalue of Covariance Matrix
(ELECM), Convolutional Neural Network (CNN), Agent with policy guidance and Agent which has
no guidance. (a) accuracy rate lines of four models at different training loops; (b) mean angle difference
(◦) lines of four models at different training loops.

On the other hand, we also compare the effects of step training and long-term training methods.
According to the positive influence of policy guidance, we use it in the two different training methods
above. As Figure 12 shows, the agent trained through long-term training achieves an 82.60% accuracy
rate and 3.56◦ mean angle difference, which outperforms the direct regression of CNN model and the
agent trained through a traditional step training method in [31]. The angle prediction method in our
work outputs the angle based on the original ship image. The ELECM method predicts the angle of the
simplified binary image. The accuracy rate of agent prediction is slightly higher than ELECM, and the
mean angle difference is one degree larger than ELECM. Figure 13 shows the different convergence
processes of the step training above and long-term training methods. The long-term training method
has better performance in terms of loss convergence speed and results. Due to the competitive effect of
policy guidance and long-term training, we adopt the agent trained based on these two methods in the
following experiments.
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Figure 12. Prediction performance of Eigenvectors with the Largest Eigenvalue of Covariance Matrix
(ELECM), Convolutional Neural Network (CNN), Agent trained through step training and Agent
trained through long term training. (a) accuracy rate of four models at different training loops; (b)
mean angle difference (◦) of four models at different training loops.
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Figure 13. Different convergence processes of deep Q network loss value during the whole training.

We compare the average prediction time of ELECM, the CNN model and agent based on deep
reinforcement learning as Table 1 shows. ELECM requires the least amount of time 0.005 s because it
directly calculates the angle based on binary images. The CNN model directly regresses the angle with
one forward propagation and takes 0.065 s on average. The prediction agent iteratively gets the angle
through action selection guided by a deep Q network, and it costs 0.122 s.

Table 1. Average prediction time on each inclined ship for Eigenvectors with the Largest Eigenvalue
of Covariance Matrix (ELECM), Convolutional Neural Network (CNN) direct regression and Agent
prediction.

Prediction Model ELECM CNN Agent

Time (s) 0.005 0.065 0.122

3.3. Evaluating the Detection Model

The combination of location and classification prediction, angle prediction based on deep
reinforcement learning and soft rotation non-maximum suppression constitutes our overall ship
detection model. When the IoU between one ground truth box and the detection inclined rectangle is
higher than 0.5, the ship corresponding to the ground truth is considered to be detected. The Precision
(P), Recall (R) and F1 score are used as standards to evaluate the performance of ship detection model,
which are defined as:

P =
TP

TP + FP
, (11)

R =
TP

TP + FN
, (12)

F1 =
2× P× R

P + R
, (13)

where TP is the number of true positive objects (correct detected ships), FP is the number of objects that
are mistaken for ship, and FN is the number of un-detected ships. In general, P or R can only measure
one aspect of detection model. F1 combines both of them and evaluates the overall performance of the
model.

3.3.1. The Influence of Feature Fusion Pyramid Network and Angle Prediction Agent

As described above, different feature maps of CNN have different semantic and location
information. Low level features have less semantic information; nevertheless, the object location
information of them is often accurate. In contrast, the semantic information of high level features
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is rich, but the object location information of them is always relatively rough. We use the high-low
layer feature fusion method to make full use of the characteristics of different layers. Furthermore,
we design the FFPN to increase the reuse of features at different scales and reduce the aliasing of
features. In order to clarify the effect of FFPN, we perform experiments to compare original FPN [21],
DFPN [27] and FFPN in our work. All models are evaluated under the 0.8 confidence score. As Table 2
shows, three detection models adopt different feature fusion methods. In addition, each of these three
models has two different ways to get the ship angle information, agent prediction and neural network
direct regression. As mentioned above, agent prediction iteratively obtains the ship angle based on the
location result. However, in neural network regression, we directly add an output node at the end of
network to return ship angle information. Through supervised learning training, the angle is obtained
while outputting the position and scale information.

Table 2. Performance of models with Original Feature Pyramid Networks (FPN) [21], Dense Feature
Pyramid Networks (DFPN) [27] and Feature Fusion Pyramid Network (FFPN). Each of these three
models has two different ways to get the angle information, neural network direct regression (DR)
and agent prediction (AP). In the DR method, through adding one node at the end of network and
supervising learning, the detection model can directly obtain the angle while outputting the location
information. In the AP method, the agent independently and iteratively predicts the ship angle.

Method Recall Precision F1

Original FPN DR 74.20% 79.50% 76.76%
AP 76.94% 82.41% 79.58%

DFPN DR 78.08% 85.15% 81.46%
AP 79.85% 88.08% 83.76%

FFPN DR 78.99% 89.97% 84.12%
AP 83.42% 90.05% 86.61%

Compared with original FPN, FFPN makes full use of high and low feature maps and adopts
stacking operation instead of upper layer addition to reduce aliasing effect. In addition, FFPN can better
extract different layer information through reusing features at different scales compared with DFPN.
Under the same angle prediction method (direct regression or agent prediction), Recall, Precision and
F1 score of FFPN are higher than original FPN and DFPN. DFPN performs better than original FPN,
which is shown in Table 2.

At the same time, we also compare different angle prediction methods to identify the effectiveness
of agents trained through reinforcement learning. As Table 2 shows, in the same feature fusion
method, Recall, Precision and F1 score of agent prediction are better than direct regression. Benefitting
from the gradual angle prediction way of loop iteration, the agent often achieves accurate ship
orientation information that improves Recall of detection framework, such as comparison of the
83.42% Recall of AP and the 78.99% Recall of DR in FFPN. On the other hand, due to the accurate ship
angle, adjacent detection boxes that are overlapped may be separated from each other; therefore, the
subsequent NMS can generate more correct detection boxes that increase the Precision of detection
framework, such as the 88.08% Precision of AP and the 85.15% Precision of DR in DFPN.

As shown in Figure 14a,c, the agent prediction can generate more accurate angles which cover
the ships closely. In addition, due to accurate angle information, all nine ships are detected which are
shown in Figure 14d compared with seven detected ships whose angles are generated through direct
regression, which are shown in Figure 14b.
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(a) (b)

(c) (d)

Figure 14. (a,b) detection results whose angles are predicted by neural network direct regression;
(c,d) detection results whose angles are obtained through agent prediction.

3.3.2. The Effect of Soft Rotation Non-Maximum Suppression

Due to the multi-stage ship detection framework, we get a lot of inclined detection results,
and only part of them are correct detection boxes while the rest of them are redundant. Like other
detection models, we adopt non-maximum suppression to reduce useless results and get final detection.
With the inclined detection boxes, we design the soft rotation non-maximum suppression (SRNMS)
to further improve detection performance. We explore the impact of SRNMS on detection results in
this part.

As Algorithm 2 shows, we adopt soft strategy, which is implemented by Gaussian kernel function,
to replace the absolute suppression in original NMS. We discuss the influence of Gaussian kernel
function parameter sigma and the suppression score threshold on final evaluation standards. Figure 15
shows the changes of detection evaluation standards. The dark green quadrilaterals in three sub-images
indicate the constant values of evaluation standards after traditional NMS processing, 83.42% Recall,
90.05% Precision and 86.61% F1 score. For the convenience of display, we select [0.45, 0.95) Threshold
and (0, 0.5] Sigma as interval. Through verification, it can be found that the maximum of F1 score is
within the above intervals.

As illustrated in Figure 15a,b, when Threshold increases, Recall is also improved and exceeds the
83.42% generated by traditional NMS, and Precision is reduced at the same time. As Sigma becomes
larger, Recall is falling and Precision is gradually increased and higher than 90.05% in traditional NMS.
F1 is the overall measure of detection performance, and part of the F1 score rainbow curved surface is
above the dark green quadrilateral plane as Figure 15c shows. The F1 score at the highest point of the
surface is 87.41%, and the corresponding Recall and Precision are 86.17% and 88.69%.
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Figure 15. Curved surfaces of detection evaluation standards with Threshold and Sigma as variables.
(a) curved surface of Recall; (b) curved surface of Precision; (c) curved surface of F1 score.

Figure 16 visually shows different processing results of Rotation NMS (RNMS) and SRNMS.
As shown in Figure 16b, five ships are manually labeled in image. It is worth pointing out that they are
parked densely. Figure 16c shows the processing result of RNMS; only four ships are detected because
of the hard suppression standard. However, SRNMS generates all five ships as shown in Figure 16d.
Because of the soft strategy, SRNMS allows more overlap between detection boxes, which is important
for dense ship detection. The combination of detection boxes with angle information and soft strategy
in SRNMS can complete the dense ship parking detection task to a large extent.

(a) (b)

(c) (d)

Figure 16. Different results of Rotation Non-Maximum Suppression (RNMS) and Soft Rotation
Non-Maximum Suppression (SRNMS). (a) the original remote sensing image; (b) the inclined rectangle
ground truths of ships; (c) processing result of RNMS; (d) processing result of SRNMS.

3.3.3. Comparison with Other Detection Models

In this section, we validate the effectiveness of FFPN-RL ship detection method in our work
through comparison with You Only Look Once Network (YOLO) [22], Faster Regions Convolution



Remote Sens. 2018, 10, 1922 22 of 26

Neural Network (Faster R-CNN) [20], Rotation Region Proposal Networks (RRPN) [25], Rotational
Region CNN (RRCNN) [26] and Rotation Dense Feature Pyramid Networks (R-DFPN) [27], which are
impactful natural image object, scene text or ship detection frameworks. Table 3 shows the performance
of each detection method.

Table 3. Performance of You Only Look Once Network (YOLO) [22], Faster Regions Convolution
Neural Network (Faster R-CNN) [20], Rotation Region Proposal Networks (RRPN) [25], Rotational
Region CNN (RRCNN) [26], Rotation Dense Feature Pyramid Networks (R-DFPN) [27] and FFPN-RL
ship detection models.

Detection Model Recall Precision F1

YOLO 63.53% 83.04% 71.98%
Faster R-CNN 67.31% 79.62% 72.95%

RRPN 71.95% 77.34% 74.55%
RRCNN 79.83% 82.99% 81.38%
R-DFPN 83.74% 88.84% 86.21%
FFPN-RL 86.17% 88.69% 87.41%

YOLO and Faster R-CNN are ship detection models that generate horizontal rectangular boxes.
Due to the large aspect ratio of ships, complex background and side-by-side parking scene, Recalls
of these two detectors are low. However, Precisions are high, especially YOLO. Due to the feature
information loss in ROI pooling, RRPN often cannot accurately get the overall ship spatial information.
Therefore, the detection performance of RRPN is poor. RRCNN detects ships through directly
regressing the first two points coordinates in clockwise and the height of ship. In addition, there are
often dense parking areas in remote sensing ship images, and such detection methods sometimes
confuse the coordinate order and causes missed detection. R-DFPN adopts dense connection structures
in feature pyramid networks and multiscale ROI aligns to solve features misalignment, and it achieves
the highest 88.84% Precision. Because of the effective feature fusion method, FFPN-RL in our work
can extract characteristic information of different scale ships. In addition, with angle prediction agent,
FFPN-RL is able to get accurate angle information contrasted with direct regression in other detection
methods. After the final processing of SRNMS, FFPN-RL gets the highest 86.17% Recall and 87.41% F1
score.

Through increasing the confidence score threshold from 0 to 1, we can get different evaluation
results. Figure 17 shows the Precision–Recall curves of the ship detection methods above. When Recall
remains the same, higher Precision can generate larger F1 scores. A higher Precision–Recall curve
means that the detection model performs better. The Precision–Recall curve of FFPN-RL is clearly
above the other five models. Consequently, the FFPN-RL ship detection model in our work has better
performance than YOLO, Faster R-CNN, RRPN, RRCNN and R-DFPN.

Table 4 shows the processing time on each remote sensing ship image. Angle prediction in
FFPN-RL is independent of coordinate regression, and it costs the longest 0.89 s because of the extra
runtime. RRPN and R-DFPN need to generate a large number of inclined anchors, and they take 0.46 s
and 0.51 s to detect ships. Due to the rectangular anchors and one forward propagation regression,
RRCNN takes 0.46 s. Faster R-CNN costs 0.13 s. Since YOLO is a one-stage detector, it requires minimal
runtime 0.02 s.

Table 4. Average processing time on each testing image for different ship detection models.

Detection Model YOLO Faster R-CNN RRPN RRCNN R-DFPN FFPN-RL

Time (s) 0.02 0.13 0.46 0.26 0.51 0.89
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Figure 17. Precision–Recall curves of You Only Look Once Network (YOLO) [22], Faster Regions
Convolution Neural Network (Faster R-CNN) [20], Rotation Region Proposal Networks (RRPN) [25],
Rotational Region CNN (RRCNN) [26], Rotation Dense Feature Pyramid Networks (R-DFPN) [27] and
FFPN-RL ship detection models.

4. Discussion

Through careful analysis and comparison of many groups’ experiments, the efficiency of FFPN-RL
ship detection method we proposed is verified. This is the first time we adopt deep reinforcement
learning in inclined ship detection of remote sensing images. It can be seen from the experiments that
FFPN-RL we proposed has effective detection performance on multi-scale and dense parking ships.

1. We propose the Feature Fusion Pyramid Network (FFPN) to extract the ship features of different
scales. Unlike the traditional two stage detectors, which only operate at the high feature maps,
FFPN classifies and regresses on different scales feature maps. Figure 5 shows that, benefitting
from FFPN, the Region Proposal Network can generate high-quality proposals for different scales’
ships. At the same time, the multi-scale reuse of features in FFPN also has a positive impact on
the location and classification of the overall ship detection model. Table 2 shows that FFPN can
achieve better performance compared with other feature connection methods.

2. Angle is the vital information for the inclined ship detection. In addition, it affects the subsequent
suppression processing and overall detection results. Therefore, accurate angle detection is very
necessary. We propose using the deep reinforcement learning agent to iteratively predict the
ship angle. We use a dueling network structure to approximate the Q value function, and we
adopt the policy guidance and long-term training method to make the angle prediction agent
learn effectively. Figures 11 and 12 illustrate the validity of the optimized dueling double deep Q
learning we proposed in Algorithm 1. Table 2 shows that, compared with the direct regression
method, the agent prediction can continuously rotate the ship, and finally obtain the angle
information more accurately, which is able to achieve higher Recall and Precision.

3. Since the detection result is an inclined rectangle with angle information, we adopt a soft strategy
in SRNMS to suppress redundant detection results. Different from the traditional NMS, the
SRNMS can obtain some detection results that are suppressed in traditional NMS, and further
reduce the missed detection, which is shown in Figure 16. This type of processing is advantageous
for ship detection in dense parking situations.

As shown in Table 3 and Figure 17, FFPN-RL can achieve perfect performance on the detection
evaluation standards and the Precision–Recall curve. Nevertheless, since the ship angle information
prediction is independently performed by the deep reinforcement learning agent in our work, it is
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separated from the location and classification. Therefore, our model has higher time complexity than
other direct regression ship detection methods, which is shown in Table 4.

5. Conclusions

In this paper, we propose an effective FFPN-RL ship detection model based on Feature Fusion
Pyramid Network and deep reinforcement learning. The Feature Fusion Pyramid Network is
contrasted to generate precise location and category information for different scales’ ships through
multi scale feature reuse. Then, we train an angle prediction agent through policy guidance
and long-term training methods. In addition, the intellectual agent iteratively rotates the ship
image clockwise to obtain the correct ship orientation information. Finally, we adopt soft rotation
non-maximum suppression to remove redundant inclined results and improve the overall performance
while reducing missed detection. Detailed experiments validate that our FFPN-RL model is able to
achieve state-of-the-art detection performance for remote sensing ship images in different scenes.

In spite of the robustness and effectiveness of our model, shortcomings still exist. Due to the high
time complexity, we will focus on integrating location and angle prediction modules to reduce overall
running time in the future. In addition, we will also explore extending our ship detection models to
other objects.
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