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Abstract: Novel hyperspectral indices, which are the first derivative normalized difference
nitrogen index (FD-NDNI) and the first derivative ratio nitrogen vegetation index (FD-SRNI),
were developed to estimate the leaf nitrogen content (LNC) of wheat. The field stress experiments
were conducted with different nitrogen and water application rates across the growing season of
wheat and 190 measurements were collected on canopy spectra and LNC under various treatments.
The inversion models were constructed based on the dataset to evaluate the ability of various spectral
indices to estimate LNC. A comparative analysis showed that the model accuracies of FD-NDNI
and FD-SRNI were higher than those of other commonly used hyperspectral indices including
mNDVI705, mSR, and NDVI705, which was indicated by higher R2 and lower root mean square
error (RMSE) values. The least squares support vector regression (LS-SVR) and random forest
regression (RFR) algorithms were then used to optimize the models constructed by FD-NDNI and
FD-SRNI. The p-R2 values of the FD-NDNI_RFR and FD-SRNI_RFR models reached 0.874 and 0.872,
respectively, which were higher than those of the exponential and SVR model and indicated that the
RFR model was accurate. Using the RFR inversion model, remote sensing mapping for the Operative
Modular Imaging Spectrometer (OMIS) image was accomplished. The remote sensing mapping of
the OMIS image yielded an accuracy of R2 = 0.721 and RMSE = 0.540 for FD-NDNI and R2 = 0.720
and RMSE = 0.495 for FD-SRNI, which indicates that the similarity between the inversion value and
the measured value was high. The results show that the new hyperspectral indices, i.e., FD-NDNI
and FD-SRNI, are the optimal hyperspectral indices for estimating LNC and that the RFR algorithm
is the preferred modeling method.

Keywords: hyperspectral remote sensing; crop parameter inversion; spectral index design; derivative;
algorithm optimization

1. Introduction

Nitrogen content is an essential indicator of the nutritional level and health status of crops.
Nitrogen deficiency significantly reduces the photosynthetic yield of crops while excessive application
of nitrogen fertilizer can cause stress to crops and environmental pollution [1]. Therefore, information
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on the nitrogen contents of crop leaves must be obtained for scientific and rational decision-making in
agronomy [2,3].

The traditional methods for acquiring chemical crop parameters such as Kjeldahl determination
have the disadvantages of being time consuming, restricted to point-source information, and difficult
to acquire at the macro scale. In contrast, hyperspectral remote sensing technology can be applied to
rapidly estimate the spatiotemporal variations in crop nitrogen content on a macro scale at a relatively
low cost when compared to the cost of field measurements [4–6]. Currently, important progress has
been made in estimating the nitrogen contents in crops such as wheat using hyperspectral indices and
there have been a series of studies that have discussed the properties of different indices [1,2,4–9].

However, most of the indices in current research were directly constructed from spectral
reflectance data. Generally, the reflectance spectra collected from a field are a mixture of crop and soil
information due to the limited canopy density of crops [2]. Therefore, the spectral indices composed
of reflectance spectra usually contain soil background information, which limits the accuracy of the
estimation model based on these indices. Fortunately, there is evidence that derivative processing could
effectively reduce the soil background values and make remote sensing estimation of biophysical and
biochemical parameters more reliable. Furthermore, derivative techniques are effective in enhancing
weak spectral features and extracting critical wavelengths by reducing the influence of trends or
low-frequency noise [2,10–12].

Therefore, if the spectral indices used for the soil nitrogen estimates are constructed from
derivative spectra, then the background soil information could be reduced and the feature information
of crop nitrogen content be more effectively extracted. Currently, the indices constructed by derivative
spectra were successfully applied to monitor photosynthetic organ areas of rape by estimating the leaf
area index (LAI) of rice and leaf water content of wheat [12–14]. In this paper, the derivative spectra
will be used for the construction of new spectral indices to provide a more accurate method for the
hyperspectral remote sensing estimation of the leaf nitrogen content (LNC) of crops.

Generally, spectral indices are computationally simple and can reduce the impacts of interference
factors and refine the target information. Thus, they can be considered an optimal method for
estimating the physiological and biochemical parameters of vegetation [15–20]. Nevertheless,
compared to utilizing the full band as the variable in the model construction, using spectral indices to
estimate nitrogen content requires a reduction in the number of model input variables and may result
in a lower inversion accuracy. Fortunately, certain new algorithms such as random forest regression
(RFR) ensure good performance with several or even a single variable if the input variable is highly
important and representative [15–17,21–23].

Wheat is one of the most important food crops in the world and is also a large consumer of
nitrogen fertilizer in crops [24,25]. In China, the nitrogen use efficiency of wheat production is only
about 35%, which is far lower than that of developed countries [25,26]. Therefore, it is necessary to
design the spectral indices that can sensitively characterize the LNC of wheat to improve nitrogen
management and enhance productivity. In this paper, we will construct new hyperspectral indices that
are sensitive to nitrogen content and then use the RFR algorithm to optimize the modeling method to
achieve an accurate inversion of the nitrogen content of wheat. To achieve the objectives, the following
steps were performed: (1) Screening out the appropriate hyperspectral indices for LNC inversion,
(2) using the RFR algorithm to optimize the model, and (3) validating the optimal LNC inversion
model (i.e., established by appropriate indices and algorithms) by using the data that were collected
from an agricultural remote sensing experiment.
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2. Experimental Area and Study Methods

2.1. Study Area and Stress Experiment

The study site is located at the National Experiment Station for Precision Agriculture (latitude
40◦10′31”N to 40◦11′18”N, longitude 116◦26′10”E to 116◦27′05”E), which covers an area of 167 ha and
has flat terrain (30–100 m above the mean sea level). It is approximately 20 km northeast of Beijing,
China. The site is within the warm temperate continental monsoon climate zone and has a mean
annual precipitation level of 507 mm, which is a mean annual number of sunshine hours of 2684 hours
and a mean annual temperature of 13 ◦C. The experimental station was implemented and operated
with the objective of performing precision agricultural research. The object of this study site is winter
wheat (Tritium aestivum L.), which is one of the most essential crops in North China. The initial soil
properties of the study site (0–20 cm plow layer) for the cropping seasons are shown in Table 1.

Table 1. Chemical properties of the 0–20 cm top soil in the study site (n = 70).

Fertility Index PH Organic Matter Total N Olsen-P Available-K

Mean (g/kg) 8.34 * 16.17 0.98 15.33 102.35
Coefficient of variation (%) 3.58 8.05 11.36 20.94 53.13

* Unitless numerical value.

To ensure that a sufficient range of nitrogen levels was available for modeling, the stress
experiments were conducted in the wheat growing season of 2007. The stress experiments were
conducted in 24 subplots (360 m2 in size) of the experimental field and included six nitrogen application
levels (0, 75, 150, 225, 300, and 375 kg/ha) and six water application levels (0, 225, 500, 725, 1000,
and 1125 m3/ha). Each level consisted of two replicates (Figure 1).
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Figure 1. Study area and distribution of sampling points. The background is the true color of the
OMIS image (477 nm for blue, 553 nm for green, and 638 nm for red). The six levels of nitrogen stress
application were as follows: N1, 0 kg/ha, N2, 75 kg/ha, N3, 150 kg/ ha, N4 225 kg/ha, N5, 300 kg/ha,
and N6, 375 kg/ha. The six levels of water stress application were as follows: W1, 0 m3/ha, W2,
225 m3/ha, W3, 500 m3/ha, W4, 725 m3/ha, W5, 1000 m3/ha, and W6, 1125 m3/ha.
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2.2. Field Sampling Measurement

The canopy reflectance spectra from the jointing to the booting stage of wheat (Between 4 April,
and 13 May, 2007) were collected by spectral scanning between 350 and 2500 nm with an ASD Fieldspec
Pro FR spectro-radiometer (made by ASD Inc., Boulder, CO, USA) and the corresponding points of
wheat leaves were sampled. The sampling interval over the 350–1000 nm range is 1.4 nm with
3 nm resolution. Over the 1000–2500 nm range, the sampling interval is approximately 2 nm and
the spectral resolution is 10 nm. The measurements were conducted under clear and cloudless sky
conditions between 10:00 and 15:00 to ensure a high solar elevation angle during spectral acquisition.
The collectors wear dark clothes and face the sun behind the target area to minimize interference with
the spectral acquisition. The sensor fitted with a fiber optic probe with a 25◦ field of view was placed
1.3 m above the canopy, which is perpendicular to the crown level. In order to reduce the impact
of environmental changes, the data were taken as the average value after each sample is measured
10 times and the reference plate was used to correct the instrument per half hour. A total of 190 samples
were collected and they were divided randomly into two groups: one group with 142 samples used
as the training set and the other with 48 samples used as the prediction set. All original spectra were
denoised by the wavelet threshold denoising method [5].

Immediately after the canopy reflectance spectra measurements were collected, the leaves at the
location of the canopy reflectance measurement were sampled with a serial number in 20 minutes.
Afterward, the LAI and LNC of the samples were determined in the laboratory. The LAI was
determined by the dry weight method and rectified by a laser area meter (Type C1-203). The LNCs
were determined by the Kjeldahl method (GB 7173-87) using dry samples.

2.3. Airborne Hyperspectral Remote Sensing Image

To analyze the adaptability of the index during the actual remote sensing process, we used
Operative Modular Imaging Spectrometer (OMIS) imagery to test the indices. In this study,
OMIS imagery was collected by the Y-5 aircraft at an altitude of 1 km with an approximate pixel size of
3 m at 10:30–13:30 on 26 April, 2007. The data contain 128 channels covering the visible/near-infrared
portions of the solar spectrum from 0.4 to 12.5 µm with a bandwidth (spectral resolution) of 10 nm.
The imagery was radiometrically corrected to “at sensor” radiance and then the quick atmospheric
correction (QUAC) and empirical linear correction (ELC) atmospheric correction methods were used
to obtain the ground reflectance. Afterward, the OMIS imagery was georeferenced using GPS data
collected at the center of the sites with ground white targets. All of the above processes were conducted
in ENVI 5.1 (Environmental Systems Research Institute, Inc. Redlands, CA, USA).

While obtaining the remote sensing images, synchronous sampling was carried out on the
36 pre-distributed field uniform sampling points (six fell in the wheat free area and the final effective
sampling points were 30). The samples were brought to the laboratory to measure the LNC and analyze
the accuracy of the remote sensing mapping. To facilitate a comparison with the remote sensing
mapping results, the corresponding geographic coordinates of the sample points were obtained from
the dynamic GPS differences at the sub meter level (Figure 1).

2.4. Spectral Indices for This Research

Several spectral indices have been reported in the references for LNC estimations in plant leaves.
Fourteen spectral indices with clear physical meanings and high degrees of recognition were selected
for comparative analysis in this paper. The calculated methods and literature sources of these indices
are shown in Table 1. The wavebands used by these indices were in the visible and near-infrared range
in accordance with the existing studies (Table 2).
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Table 2. Hyperspectral indices for nitrogen content estimation.

Indices Formula or Definition References

NDVI705 (R750 − R705)/(R750 + R705) [27,28]
mNDVI705 (R750 − R705)/(R750 + R705 − 2R445) [28,29]

mSR705 (R750 − R445)/(R705 − R445) [28,29]
REP 700 + 40[(R670 + R780)/2 − R700]/(R740 − R700) [30]

VOG1 R740/R720 [31]
VOG2 (R734 − R747)/(R715 + R726) [31]
VOG3 (R734 − R747)/(R715 + R720) [31]
NDNI [log(1/R1510) − log(1/R1680)]/[log(1/R1510) + log(1/R1680)] [32,33]

PRI (R531 − R570)/(R531 + R570) [34,35]
OSAVI (1 + 0.16)(R800 − R670)/(R800 + R670 + 0.16) [36]

NVI (R777 − R747)/R673 [37]
NDCI (R762 − R527)/(R762 + R527) [38]
RI1dB R735/R720 [39]

GNDVI (R750 − R550)/(R750 + R550) [40]
VIopt (1 + 0.45)((R800)2 + 1)/(R670 + 0.45) [41]

NDVI(573,440) (R573 − R440)/(R573 + R440) [42]
RVI(810,560) R810/R560 [43]
RVI(950,660) R950/R660 [44]
RVI(810,660) R810/R660 [44]

However, although these spectral indices could represent the nitrogen contents of the crops
sensitively, they were directly constructed from reflectivity, which makes it difficult to avoid the effects
from the background soil value. To reduce the background signals or noise and resolve overlapping
spectral features and enhance the relationship between spectral data and the LNC, we applied two
spectral index approaches, i.e., the normalized difference spectra and the simple ratio spectra with
first derivative spectra. In this study, the first derivative spectra in the range of 350 to 1350 nm were
selected for analysis to avoid the relatively high spectral noise at wavelengths greater than 1350 nm.
The normalized difference nitrogen index of the first derivative (FD-NDNI) is defined as:

FD-NDVI(x,y) = (x− y)/(x + y) (1)

where x and y are the first derivative (FDi and FDj) values at i and j nm over the whole hyperspectral
range [45]. Similarly, another transformation, the simple ratio nitrogen index of the first derivative
(FD-SRNI), is defined by the equation below.

FD-SRNI(x,y) = x/y (2)

Spectral indices using complete combinations of the full spectral bands were calculated using
the FD-NDNI and FD-SRNI formulas. The contour map of relevant statistical indicators such as
the determination coefficient (R2) between the spectral index and a specific target variable can
provide comprehensive information about the predictive power of the combination of two separate
hyperspectral wavelengths. Maps of FD-NDNI and FD-SRNI are useful for selecting optimal
wavelengths, optimal band combinations, and effective bandwidths [46]. In this study, we derived
the contour maps of R2 between the spectral indices and the LNC to screen out the new indices that
had a high predictive ability. To screen out the appropriate indices for estimating the LNC, the newly
constructed indices were compared with 14 vegetation indices derived from literature.

2.5. Modeling and Optimization

Using the spectral index as the independent variable (x) and the LNC as the dependent variable
(y), we selected the best method from various curve-fitting algorithms (linear regression, exponential
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regression, logarithmic regression, etc.) to construct the estimation model. Afterward, we evaluated
the model by the R2 and root mean square error (RMSE) values to identify the optimal spectral index.

However, the function types must be predefined to use these methods. Difficulties will be
encountered during this process if the sample scatter diagram does not show a regular pattern of a
functional form. Several new machine learning algorithms such as support vector machine regression
(SVR) and RFR can cope with the strong nonlinearity of the functional dependence between target
parameters and spectral indices. In addition, these algorithms do not require predefined function types
and, therefore, may be more suitable candidates than curve-fitting methods. In this study, SVR and
RFR were applied to optimize the estimation model.

Least square support vector machine regression (LS-SVR) algorithm. The support vector machine
(SVM) algorithm, which is a machine learning algorithm based on the principle of structural risk
minimization, can ensure the accuracy of a calibration model while reducing the complexity of machine
learning to obtain an effective generalization ability and high prediction accuracy [47]. The LS-SVR
algorithm has been widely used to estimate target parameters for remote sensing technology in recent
years [2,15,48,49]. In this study, the radial basis function (RBF) was applied as the kernel function in the
LS-SVR model. A penalty coefficient C and the RBF kernel function parameter g, which have significant
impacts on the estimation accuracy, were optimized by cross-validation. To reduce the search difficulty
and save computation time, a two-step grid search method was used for cross-validation: (1) a large
step length over a large value range was used to obtain the general range of parameters and (2) a small
step length based on the above result was used to optimize the parameter values [2]. The termination
criteria for the grid search and final training were set at 0.1 and 0.001, respectively.

Random forest regression (RFR) algorithm. RFR, which was first developed by Breiman [23], is a
new ensemble machine learning algorithm based on regression trees. RFR relies on the assumption
that different independent predictors predict incorrectly in different areas and, thus, the overall
prediction accuracy can be improved by combining the prediction results of the independent predictors.
The structures of regression trees in RFR exhibit significant differences when the training data vary
slightly. By using this characteristic and combining it with bagging (bootstrap aggregating) and
random feature selection, independent predictors can be created to construct a random decision tree.
Training data are generated during RFR modeling by sampling and replacing all of the samples for
each predictor in the ensemble [21,23]. The RFR algorithm needs to set the number of random features,
the number of trees, and the stop criteria. In this study, we determined the number of features by the
square root of all features and then trained the RFR model with 100 trees. When the minimum sample
in a tree was one sample with a minimum impurity of zero, we terminated the training process.

3. Results and Analysis

3.1. Effects of Nitrogen Stress on LNC and Canopy Spectra of Wheat

It can be seen from Figure 2a that the wheat LNC with different nitrogen application rates
decreased with the growth process. In the same growth stage, LNC of wheat increased with the
increase of nitrogen application rate, but the increase became smaller when the nitrogen rate reached
150 kg/ha. The above phenomenon may be caused by a decrease in the effect of nitrogen rate on
wheat after the excessive nitrogen fertilizer. Figure 2b is the effects of 30-day different level nitrogen
stress on canopy spectra of wheat. The spectra beyond 1350 nm has been removed because that is
a relatively small valuable in vegetation analysis and the noise is strong in some regions. It can be
seen from the figure that, with the increase of nitrogen content in a wheat canopy, the wheat canopy
spectral reflectance increased significantly in the near-infrared region and decreased in the visible
region. The phenomenon is consistent with our understanding of plant canopy spectra. When fertility
is sufficient, crops are usually more dense and photosynthetic, which means they absorb more intensely
in the visible region and have higher reflectance in the near-infrared region.
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Figure 2. The change of wheat LNC with time in different nitrogen application rates (a) and spectral
reflectance of wheat canopy with different nitrogen fertilization levels after 30 days of stress experiment
(b). The six levels of nitrogen stress application were as follows: N1, 0 kg/ha, N2, 75 kg/ha, N3,
150 kg/ha, N4 225 kg/ha, N5, 300 kg/ha, and N6, 375 kg/ha.

3.2. Spectral Indices Optimized for LNC Estimation

Figure 3a shows the maps of R2 between LNC and FD-SRNI(i,j) using the complete combinations
of two wavebands at i and j nm in the form of the ratio calculation. From the image, the useful
combinations of wavelengths as well as the waveband widths can be inferred for estimating LNC.
The waveband area with the most significant relation to LNC was found around FD-NDNI(715,516),
which had an R2 of 0.861 (Figure 3a). Another type of index, FD-SRNI(i,j), uses the complete
combination of two wavelengths in the form of a normalized calculation. Among these combinations,
FD-SRNI(716,26) had the most significant correlation with LNC, which had an R2 of 0.862 (Figure 3b).
According to the knowledge of vegetation spectra, we can see that the sensitive indices of nitrogen
content are mainly composed of the spectra around the red edge and green peak spectral areas.
In addition, as shown in Figure 3, FD-NDNI(715,516) had a broader area of significant points than
FD-SRNI(716,526).Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 17 
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The results suggest that the combination of the first derivative values of approximately 715
and 520 nm has a significant role in estimating LNC. In both the FD-SRNI and FD-NDNI maps
(Figure 3), the peak width at approximately 520 nm was as narrow as 30 nm even though the width at
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approximately 715 nm was relatively broad. The R2 value between LNC and FD-SRNI(i, j)/FD-NDNI(i, j)
dropped sharply beyond the spectral range. To quantitatively verify the influence of the bandwidth
on the estimation accuracy, the R2 value between LNC and FD-NDNI(715,516)/FD-SRNI(716,526) was
calculated when the bandwidth was 5 nm, 10 nm, 20 nm, . . . , 70 nm (Figure 4).

Figure 4 shows that, when the bandwidth is less than 30 nm, the R2 value decreases slightly
but remains above 0.843. When the bandwidth is greater than 30 nm, the R2 value decreases rapidly.
This result indicates that, when the bandwidth is greater than 30 nm, the ability to use spectral
indices to estimate the wheat LNC will drop sharply with the increase of bandwidth. Therefore,
when constructing an appropriate spectral index to estimate wheat LNC, a relatively high spectral
resolution (<30 nm) is required to determine the optimal position. This result facilitates the efficient
selection of the optimum bandwidth and wavelength in the design of new spectral indices for LNC
estimation and new sensors for agricultural remote sensing.
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3.3. Comprehensive Comparison of Various Indices for Estimating LNC

The estimation results of LNC using optimal curve-fitting algorithms and various spectral indices
including the results from the literature (Table 2) and this paper are presented. To identify the indices
for LNC estimation that performed consistently, the indices were sorted according to their R2 ranks
in descending order (Table 3). Table 3 shows that FD-SRNI and FD-NDNI, which are the spectral
indices designed in this paper, had high R2 (0.861 For FD-SRNI and 0.860 for FD-NDNI) and low
RMSE (0.332 for FD-SRNI and 0.333 for FD-NDNI) values and appeared at the top of the rankings,
which indicates that these two spectral indices had highly relevant relationships with LNC. In addition,
the estimation models based on mNDVI705, mSR705, NDVI705, and GREEN-NDVI also had relatively
high accuracies with R2 values in the range of 0.771 to 0.748 and RMSE values in the range of 0.424%
to 0.445%, which accounted for the rankings three through six, respectively.

Although these results indicated that FD-NDNI and FD-SRNI were more likely to yield highly
accurate LNC estimations, ideal spectral indices should be obtained with good results from different
remote sensing platforms. Therefore, the new spectral indices will be further analyzed using the OMIS
data in the next section.
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Table 3. Estimation models and evaluation indicators based on various spectral indices (n = 48).

Index Name Estimation Models

Calibration Dataset
(n = 142)

Validation Dataset
(n = 48) Rank

R2 RMSE(%) R2 RMSE(%)

FD-SRNI(716,526) y = 0.8303x + 0.2248 0.861 0.332 0.859 0.336 1
FD-NDNI(715,516) y = 8.408x − 1.98 0.860 0.333 0.859 0.337 2

mNDVI 705 y = 5.366x + 0.560 0.771 0.424 0.757 0.434 3
mSR705 y = 1.800 ln (x) + 1.186 0.754 0.439 0.741 0.448 4

NDVI705 y = 5.641x + 0.866 0.750 0.443 0.740 0.449 5
GREEN-NDVI y = 8.767x − 1.867 0.748 0.445 0.723 0.459 6

NDCI y = 9.329x − 2.884 0.738 0.450 0.731 0.456 7
VIopt y = −6.344x2 + 44.730x − 74.270 0.737 0.456 0.731 0.457 8

NDVI(573,440) y = − 13.917x + 8.828 0.733 0.452 0.727 0,460 9
REP y = 0.298x − 211.975 0.732 0.455 0.725 0.461 10

RI1dB y = 3.862x − 2.184 0.725 0.461 0.716 0.468 11
RVI(810,560) y = 2.374ln(x) − 0. 208 0.723 0.466 0.715 0.470 12

OSAVI y = 2.939 ln (x) + 5.478 0.702 0.480 0.694 0.487 13
VOG3 y = −39.151x2 − 23.81x + 0.790 0.687 0.496 0.680 0.502 14
NDNI y = −322.09x2 + 104.38x − 3.897 0.685 0.494 0.675 0.501 15
VOG2 y = −51.585x2 − 27.193x + 0.628 0.684 0.499 0.677 0.516 16

RVI(950,660) y = 1.385ln(x) + 0.933 0.680 0.501 0.657 0.520 17
RVI(810,660) y = 1.305ln(x) + 1.114 0.665 0.513 0.652 0.522 18

PRI y = 22.673x + 4.875 0.654 0.517 0.643 0.526 19
VOG1 y = 4.677ln(x) + 1.314 0.641 0.517 0.633 0524 20
NVI y = 0.914x + 2.721 0.504 0.620 0.488 0.629 21

3.4. LNC Estimation Modeling for OMIS

The wavelength ranges and the spectral resolution of the canopy spectra were collected by ASD
Fieldspec Pro FR were different from the OMIS data. To match the ASD Fieldspec Pro FR data with the
OMIS remote sensing image data, the field-measured spectra were converted into simulated OMIS
spectra, according to the spectral response function of the OMIS bands. Using the OMIS spectra,
the spectral indices suited for LNC estimation were quantified by using the following equations where
Rx is the reflectance, x is the central OMIS wavelength, and FDx is the first derivative value of the
OMIS reflectance.

NDVI705 = [(R745 + R756)/2− (R699.2 + R710.9)/2]/[(R745 + R756)/2 + (R699.2 + R710.9)/2] (3)

mNDVI705 = [(R745 + R756)/2− (R699.2 + R710.9)/2]/[[(R745 + R756)/2 + (R699.2 + R710.9)/2]− 2R455.7] (4)

mSR705 = [(R745 + R756)/2− R455.7]/[(R699.2 + R710.9)/2− R455.7] (5)

FD-SRNI = FD710.9/FD527.7 (6)

FD-NDNI = (FD710.9 − FD515.3)/(FD710.9 + FD515.3) (7)

LNC inversion models of various spectral indices were constructed using curve-fitting LS-SVR and
RFR algorithms. The results are shown in Table 4. For the curve-fitting models, a comprehensive
analysis of Tables 3 and 4 suggests that the accuracies of the spectral indices calculated from the
OMIS bands were consistent with those derived from the original spectral bands, which indicates that
OMIS bands can be used instead of the original spectral bands to retrieve the wheat LNC for various
spectral indices. In addition, compared to the curve-fitting and LS-SVR methods, the accuracies of the
prediction results were generally improved by using an RFR algorithm, which is indicated by higher
R2 and lower RMSE values for various spectral indices (Table 4). These results indicated that the RFR
algorithm was the optimal modeling method when compared to the curve-fitting method and LS-SVR
method. Therefore, the RFR algorithm and new spectral indices including FD-NDNI and FD-SRNI
were selected to validate the estimated accuracy of the LNC estimations using the OMIS image.
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Table 4. LNC estimation results using various algorithms and spectral indices.

Model Algorithm CHRIS Spectral Indices
Independent Validation Dataset (n = 48)

R2 RMSE (%)

Curve-fitting model

NDVI705 0.735 0.455
mNDVI705 0.749 0.446

mSR705 0.738 0.453
FD-NDNI 0.830 0.359
FD-SRNI 0.829 0.362

LS-SVR model

NDVI705 0.739 0.449
m NDVI705 0.756 0.432

mSR705 0.741 0.450
FD-NDNI 0.835 0.354
FD-SRNI 0.833 0.357

RFR model

NDVI705 0.811 0.385
m NDVI705 0.818 0.378

mSR705 0.816 0.374
FD-NDNI 0.874 0.317
FD-SRNI 0.872 0.320

3.5. LNC Remote Sensing Mapping

3.5.1. Extraction of the Wheat Coverage Area

The study area contains a variety of surface features, but only the wheat coverage area is the
target. The OMIS image of the study area was pre-treated by geometric correction, atmospheric
correction, de-noising, and independent component analysis. Using the top six ICA–wavebands as the
classified variable, the study area in the OMIS image was classified into several categories including
wheat, bare soil, water body, and impervious surfaces. The wheat coverage area was extracted by
masking the non-wheat coverage area (Figure 5). Then the first derivative thematic map of the image
was calculated.
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3.5.2. LNC Mapping and Accuracy Test

The above analysis showed that FD-NDNI and FD-SRNI were the optimal indices for nitrogen
estimation and RFR was the optimal algorithm for modeling. The remote sensing mapping of the
wheat LNC was achieved by inputting the first derivative thematic map of the image to the LNC
estimation model established by the RFR algorithm and FD-NDNI/FD-SRNI (Figure 6). The spatial
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distribution map shows the detailed information of the wheat LNC, which can provide a scientific
basis for a quantitative fertilization scheme.
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Figure 6. Ground-measured nitrogen content versus the values estimated from the inversion model:
(a) estimated by FD-NDNI and (b) estimated by FD-SRNI.

The ground-measured LNC values of synchronous sampling at the time of remote sensing image
acquisition were used for the accuracy test. The estimated and ground-measured values in the same
location were compared by regression fitting (Figure 7). As seen from the figure, FD-NDNI yields an
accuracy of R2 = 0.721 and RMSE = 0.540 for 30 sites with LNC values ranging from 1.85% to 4.71%.
For FD-SRNI, the estimation yields an accuracy of R2 = 0.720 and RMSE = 0.495 with LNC values
ranging from 1.87% to 4.74%. Furthermore, the relationships between the estimates and ground-based
measurements both have a slope close to 1 (0.782 for FD-NDNI and 0.864 for FD-SRNI) and a small
interception (0.512 for FD-NDNI and 0.357 for FD-SRNI), which indicates that the modeling approach
produces systematically fair estimations.
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Figure 7. Ground-measured nitrogen content versus the estimated values from the inversion model:
(a) estimated by FD-NDNI and (b) estimated by FD-SRNI.

4. Discussion

Nitrogen content is an important indicator of crop growth and physiological status. It is
meaningful to construct a spectral index to accurately estimate nitrogen content. Previous researchers
conducted a series of studies on different crops and attempted to design a new spectral index that
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could sensitively reflect the nitrogen contents of crops without disturbance by using information
on plant canopy density and other environmental factors. At present, in addition to the traditional
vegetation indices such as NDVI705, there are many spectral indices that are specifically used for
nitrogen estimation such as NDNI, NDVI(573,440), Viopt, RVI(810,560), RVI(950,660), and RVI(810,660) [41–44].
However, most of the above indices are directly constructed from the reflectance spectra of crops.
When the underlying surface of the target contributes to the spectral information, the index is easily
influenced by the background information and then the interference factor is introduced into the
model [10,12]. This is also the reason why these indices fail to achieve good results in this paper
(Table 3).

Nevertheless, during the remote sensing acquisition of physical parameters, the existence
of soil as background information is unavoidable. Therefore, if the designed spectral index can
weaken or even remove the interference from the soil background, the accuracy of the estimations
of physical parameters will be improved by using remote sensing technology [2,15,18]. The new
indices constructed in this paper known as FD-NDNI and FD-SRNI were calculated by the first-order
derivative values of the spectrum. The first derivative treatment effectively reduced the influence of
the soil background on the spectra and laid the foundation for the construction of indices for accurately
estimating LNC [10–12].

In this study, the sensitive bands, i.e., approximately 715 nm and 520 nm, were screened out to
construct new indices by using the contour maps of R2 values between the spectral indices and the
LNC. The transition point from the blue light absorption band of the vegetation spectra to the green
peak occurs at 520 nm such as the blue edge turning point. In addition, the transition point from the
red absorption band to the near-infrared band is 715 nm [50]. Nitrogen is one of the most important
nutrient elements in plants and it has a great influence on the pigment contents and photosynthetic
capacities of plant leaves [3–5,51–53]. When the nitrogen content is sufficient and the physiological
activity of a plant leaf is vigorous, the capacity of chlorophyll to absorb blue light and red light is
strong, which leads to an obvious green peak and a steep blue edge. At the same time, the near-infrared
reflectance is further elevated, which leads to a steep red edge. In this way, the slopes of the reflectance
spectra near 520 nm and 715 nm are increased and the first-order values of the slopes grow. When the
nitrogen content is insufficient, the physiological activity of the leaves is stressed and the ability of
chlorophyll to absorb blue light and red light is weakened. Thus, the green peak of the vegetation
spectra is flat and the red edge becomes relatively gentle, which leads to decreases in the slope of the
reflectance spectra near 520 nm and 715 nm and the first derivative value decreases accordingly [2].
Therefore, the above analysis indicates that the bands at 520 and 715 nm can sensitively reflect the
LNC of wheat.

However, even though the bands at 520 nm and 715 nm can sensitively reflect the nitrogen
contents in crops, the vegetation spectra are influenced by factors such as observation geometry,
radiation intensity, and the distribution of leaf inclinations in the field. Therefore, if a single band
is used as an index, it will be strongly influenced by these non-object factors and will not be able to
accurately reflect the target factor. In contrast, the synchronization effect of environmental factors
on different bands can be offset by the ratio or normalization method. Therefore, better results can
be obtained if two or more bands are used to construct an index [2,20,54]. In this paper, the indices
FD-NDNI and FD-SRNI were constructed by normalization and ratio methods and these indices
achieve good results for LNC estimation.

In addition, the modeling algorithm has a comparatively larger impact on the inversion results.
According to Breiman and Polikar, the RFR algorithm is a simplistic, robust, and optimal regression
method [21,23]. In this paper, the model established with different indices shows that the RFR
algorithm is more accurate than the curve-fitting method and the SVR algorithm, which is shown by
higher R2 values and lower RMSE values (Table 4). The results agree with the studies that indicated
the RFR algorithm is the preferred scheme for regression modeling [16,55–58]. The RFR algorithm can
achieve a better result than curve-fitting algorithms and the SVR algorithm is likely to be attributed to
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its reasonable assumptions, i.e., different independent predictors predict incorrectly in different areas
and, thus, the overall prediction accuracy can be improved by combining the prediction results of the
independent predictors [21,23].

5. Conclusions

In this study, we designed two new spectral indices known as FD-NDNI and FD-SRNI, which
were constructed with first-order derivative values of reflectance spectra, to estimate wheat LNC.
The comparative analysis shows that the accuracies of FD-NDNI and FD-SRNI were better than those
of commonly used indices such as mNDVI705 and NDNI, which indicates that FD-NDNI and FD-SRNI
are the optimal indices for wheat LNC estimation.

Choosing the appropriate spectral bands is critical for spectral index construction. The analysis
indicates that the spectral indices constructed by using the bands at 715 and 520 nm can accurately
estimate wheat LNC even though the effective ranges of these two sensitive bands are relatively
narrow. When the bandwidth is greater than 30 nm, the capacity of the indices to estimate LNC
decreases rapidly with an increase in bandwidth. Therefore, the location of sensitive wavebands must
be determined and the effective spectral bandwidth (<30 nm) must be selected in the design of new
sensors for crop LNC estimation in agricultural remote sensing.

Optimizing the modeling algorithm is an important process for improving the accuracy of
estimating physical and chemical vegetation parameters. Compared to curve-fitting and SVR, RFR is
the preferred algorithm for regression modeling of wheat LNC estimation, which is indicated by the
higher R2 and lower RMSE values in the retrieved results of both FD-NDNI and FD-SRNI indices.
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