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Abstract: Aerial images are widely used for building detection. However, the performance of building
detection methods based on aerial images alone is typically poorer than that of building detection
methods using both LiDAR and image data. To overcome these limitations, we present a framework
for detecting and regularizing the boundary of individual buildings using a feature-level-fusion
strategy based on features from dense image matching (DIM) point clouds, orthophoto and original
aerial images. The proposed framework is divided into three stages. In the first stage, the features from
the original aerial image and DIM points are fused to detect buildings and obtain the so-called blob
of an individual building. Then, a feature-level fusion strategy is applied to match the straight-line
segments from original aerial images so that the matched straight-line segment can be used in the later
stage. Finally, a new footprint generation algorithm is proposed to generate the building footprint by
combining the matched straight-line segments and the boundary of the blob of the individual building.
The performance of our framework is evaluated on a vertical aerial image dataset (Vaihingen) and
two oblique aerial image datasets (Potsdam and Lunen). The experimental results reveal 89% to
96% per-area completeness with accuracy above almost 93%. Relative to six existing methods, our
proposed method not only is more robust but also can obtain a similar performance to the methods
based on LiDAR and images.

Keywords: building detection; aerial images; feature-level-fusion; straight-line segment matching;
occlusion; building regularization technique

1. Introduction

Buildings, as key urban objects, play an important role in city planning [1,2], disaster
management [3–5], emergency response [6], and many other application fields [7]. Due to the
rapid development of cities and the requirement for up-to-date geospatial information, automatic
building detection from high-resolution remote sensing images remains a primary research topic in
the communities of computer vision and geomatics. Over the past two decades, a variety of methods
have been proposed for automatic building detection. Based on the types of input data sources, the
existing automatic building detection methods can be divided into two categories [8]:

• Single-source-data-based methods, where the data include Airborne Laser Scanning (ALS) point
clouds [9,10], ALS-based Digital Surface Model (DSM) grids [11,12], and images [13,14].

• Multisource-data-based methods, where the methods include fusion of ALS-based digital DSM
grid data and orthophoto data [15,16] and fusion of ALS data and the images [17].
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Many researchers have reported that multisource-data-based methods perform better than
single-source-data-based methods [18–20]. This is mainly because multisource-data-based methods
use not only the spectral features provided by images but also the height information for the
building detection. However, the cost of multisource-data-based methods may be higher than that
of single-source-data-based methods. Moreover, with the fast development of multi-camera aerial
platforms and dense matching techniques, reliable and accurate Dense Image Matching (DIM) point
clouds can be generated from the overlapping aerial images [21]. Under this condition, instead of using
multisource remote sensing data, the approach of solely employing aerial images to extract buildings
in complex urban scenes is feasible. The building extraction mainly contains building detection and
the regularization of the building boundary in this paper. Hence, we first discuss the related works
in building detection paradigm only using aerial images and then cover the relevant literature on
boundary regularization in the following work.

From the perspective of the photogrammetric processing, the DIM point cloud, DSM and
orthophoto data can be generated from original aerial images, and all these data can provide various
features for building extraction. According to the sources of the features used in the process of building
detection, we distinguish aerial-image-based methods into four groups: methods using features from
images (including original aerial images or orthophoto), methods using features from DIM point
clouds, methods fusing the features from orthophoto and DSM and methods fusing the features from
aerial images and DIM point clouds.

The first two methods mainly make use of the features from either the images or the DIM point
clouds to detect buildings. The images mainly contain the spectral features (such as the color, tone, and
texture) and spatial features (such as the area and shape). Based on these features, both pixel-based and
segment-/object-oriented classification methods are proposed [22,23] for building detection. Because
the pixel-based methods have a salt-and-pepper effect, researchers prefer the latter. The methods
in [24–26] are several examples. However, objects of the same type may appear to have different
spectral signatures, whereas different objects may appear to have similar spectral signatures under
various background conditions. Therefore, the methods using features from images alone cannot
obtain satisfactory performance, particularly in a complex urban scene.

The DIM point clouds mainly provide the height information for buildings detection. Although
the cues from DIM point clouds are more robust than the spectral features from images, the
3-Dimensional (3D) shape features of buildings and trees are similar, as shown in Figure 1a–d, which
increases the challenges of building detection using DIM point clouds in an urban scenario. In addition,
the noise of the DIM point clouds is higher than the ALS data, which causes that the methods based
on ALS data for building detection may be not suitable for DIM point clouds. Therefore, compared
with the first two methods, the latter two methods are more popular in building detection.

The methods in [27–29] are some examples of the methods fusing the features from orthophoto
and DSM. Compared with the methods solely using either the spectral information from images or
height information from DIM point clouds, the detection results of the methods fusing the features
from orthophoto and DSM were more robust and had greater accuracy. However, some disadvantages
should not be ignored. On the one hand, compared with the original images, the orthophoto introduces
the wrapping phenomenon, as shown in Figure 1e,f. This results that the features from orthophoto,
such as texture, cannot reflect the true objects. On the other hand, the DSM, which represent the
elevation of the tallest surfaces at that point, is unable to provide the information about the occluded
objects such as low buildings. Hence, in terms of the features, the methods fusing the DIM point
clouds and original aerial images have more potential for building detection. Our proposed building
detection method falls under this category.
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Figure 1. (a,b) the building from Airborne Laser Scanning (ALS) data and Digital Surface Model (DSM)
point clouds, respectively; (c,d) the tree from ALS data and dense image matching (DIM) point clouds,
respectively; (e,f) the building from original aerial image and orthophoto, respectively.

Some approaches based on the fusion of DIM point clouds and original aerial images for building
detection have been proposed. Xiao et al. [30] makes use of the façade features that are detected
from oblique aerial images using edge and height information to extract the buildings first; then, the
DIM point cloud is employed to verify the detected buildings. In this method, façades are the most
important features, which leads to the situation where the small or low buildings are removed due to
the loss of windows on the façades. Rau et al. [31] proposed a method based on a rule hierarchical
semantic network. First, this method makes use of a multi-resolution segmentation technique to
segment the images into patches and calculate the features of each patch. Subsequently, the object
height and gradient features from DIM point clouds and the spectral features from the patch are
combined to classify the objects into correct categories. Finally, the DIM point clouds are classified
into the correct classes with the aid of back projection. However, this method relies on experience to
set the classification thresholds, which severely affected the accuracy of the classification. Second, the
method makes use of only nine features to classify the DIM point clouds into five objective categories,
resulting in an accuracy of 81% for buildings in National Cheng Kung University (NCKU), Taiwan
campus, which is a flat area.

Based on the above analysis, a new building detection method using a feature-level-fusion strategy
is proposed in this paper. Specifically,

• Filter the DIM point clouds to get the non-ground points.
• Apply the object-oriented classification method to detect vegetation with the aid of the features

from the original aerial images.
• Make use of the back-projection to remove the tree points from the non-ground points so that we

can obtain the building DIM points according to classified original aerial images.
• Create the building mask using the building DIM points.

The second task in this paper is the regularization of the building boundary after the building
detection. In terms of the boundary regularization, multiple methods [32–38] have been proposed.
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Most of these methods are aimed at the LiDAR point clouds. However, the accuracy of the detected
boundaries is often compromised due to the point cloud sparsity. In fact, the nature of building
boundary regularization is to refine and delineate the boundary of a building mask. If the rough
building edges of a building mask are replaced by straight-line segments that present the true
building edges, then the building boundary can be regularized. A previous study [39] made use
of the straight-line segments from orthophoto to regularize the building footprint, and the results
showed that a larger number of straight-line segments corresponds to higher performance. Therefore,
we aim to extract robust lines as much as possible in our proposed method to assist the building
footprint regularization.

Besides the orthophoto, all the original aerial images, DIM point clouds and the building mask can
provide straight-line features. Compared with the photogrammetric products, original aerial images
can provide more line segments. Hence, we choose the straight-line segments from original aerial
images to replace the rough edge of building mask so that we can regularize the building boundary.
Furthermore, these segments have higher accuracy.

However, the straight-line segments from original aerial images are located in 2D image space.
Hence, the line matching is necessary so that these 2D straight-line segments can be converted into
3D straight-line segments. In fact, line matching is a challenging task [40,41]. In [41], Habib et al.
projected the two-dimensional lines from left and right images onto the roof extracted from the ALS
data. If the two projected lines onto the planar coordinates satisfy the given thresholds, the two lines
can be regarded as a pair of corresponding lines. In this method, the LiDAR point clouds need to
be segmented into the planar. For DIM point clouds, the segmentation is a problem because of the
high noise of DIM point clouds. Therefore, a new strategy of the straight-line segments matching is
proposed with the aid of the straight-line features from the building mask, orthophoto and DIM point
clouds. The details of this strategy are described as follows:

• Extract the coarse building edges from the DIM points, orthophoto and the blob of the
individual building.

• Extract the building edge from the original aerial images and match these straight-line segments
with the help of the coarse building edges.

Theoretically, the boundary of building mask cannot be replaced with the matched lines
completely. Therefore, the straight-line segments from the blob of the individual building are
still essential. We can integrate these two kinds of lines to generate the closed building footprint.
Sections 2.3 and 2.4 show the details. In this paper, our main contributions include the following:

• Make use of the aerial images alone to detect the buildings by the combination of the features
from original aerial images and DIM point clouds.

• A new straight-line segment matching strategy based on three images is proposed with the help of
the coarse building edge from the DIM points, orthophoto and the blob of the individual building.

• In the regularization stage, a new strategy is proposed for the generation of a building footprint.

The rest of this paper is organized as follows: Section 2 details the proposed building detection
and the boundary regularization techniques. Section 3 presents the performance and discusses the
experimental results using three test datasets followed by a comparative analysis. Finally, Section 4
concludes this paper.

2. Our Proposed Method

Our proposed approach for building detection and boundary regularization consists of four stages:
(1) The generation of DIM point clouds and orthophoto from original aerial images; (2) individual
building detection from DIM point clouds with the aid of original aerial images; (3) building edge
detection using a feature-level fusion strategy; and (4) regularization of building boundaries by the
fusion of matched lines and boundary lines. The entire workflow is shown in Figure 2.
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Figure 2. Entire workflow of building detection and boundary regularization as described in this paper.

2.1. Generation of DIM Point Clouds and Orthophoto from Original Aerial Images

Our proposed method takes the aerial images as an input. The features from aerial images and
DIM points will be employed in the process of detecting buildings and the straight-line features from
orthophoto will be used to help building edge detection. Therefore, the generation of DIM point clouds
and true orthophoto from original aerial images is the top priority of our proposed method.

In this paper, we applied the commercial package Agisoft PhotoScan [42] which is able to
automatically orient and match large datasets of images to generate the DIM point clouds and
orthophoto. Due to commercial considerations, little information is available concerning the internal
algorithms employed. Hence, we will describe the process of the generation of the DIM point clouds
and orthophoto based on the workflow of Agisoft PhotoScan. Specially,

• Add the original images, the positioning and orientation system (POS) data and the camera
calibration parameters into this software.

• Align photos. In this step, the point features are detected and matched; and the accuracy camera
locations of each aerial image are estimated.

• Build the dense points clouds. According to a previous report [21], a stereo semi-global matching
like (SGM-like) method is used to generate the DIM point clouds.

• Make use of the DIM points to generate a mesh. In nature, the mesh is the DSM of the survey area.
• Build the orthophoto using the generated mesh and the original aerial images.

Figure 3a,b shows the generated orthophoto and the DIM point clouds of the test area 3 of the
Vaihingen dataset.
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2.2. Building Detection from DIM Point Clouds with the Aid of the Original Aerial Image

2.2.1. Filtering of DIM Point Clouds

Filtering of the point clouds is the process of separation of ground points from the non-ground
points and is the first step to detect buildings. Multiple filtering methods [43,44] have been proposed.
Among these methods, the progressive triangular irregular network (TIN) densification (PTD)
algorithm [45] is one of the most popular algorithms in engineering applications. However, this
method may fail to extract the ground points because the density and the noise of DIM point clouds
are higher than that of the ALS point cloud. Hence, an improved PTD algorithm [46] is selected

The improved PTD is divided into two steps. The first step is selecting seed points and
constructing the initial TIN. The second step is an iterative densification of the TIN. The largest
differences between the PTD and the improved PTD is the procedure for calculating densification
thresholds. In the improved PTD, the angle threshold changes from high to low, and with the increase
of the density of points added into the TIN, the angle threshold becomes large. Using this method, we
can remove the ground points and low objectives points. The remaining points only contain building
and tree points.

2.2.2. Object-Oriented Classification of Original Aerial Images

Generally, it is easier to detect trees from aerial images than to detect buildings. Based on this,
we classify the aerial images into two categories: trees and other objects. Here, the commercial
classification software eCognition 9.0.2 is used to detect trees from each aerial images. In this section,
the original aerial images are classified, so that the classification results of each original aerial image
can be employed in the later stage. The process of object-oriented classification is divided into three
steps:

• Multi-resolution segmentation of the aerial image. This technique is used to extract reasonable
image objects. In the segmentation stage, several parameters, such as layer weight, compactness,
shape, and scale, must be determined in advance. These algorithms and related parameters are
described in detail in [47]. Generally, the parameters were determined through visual assessment
as well as trial and error. We set the scale factor as 90 and set the weights for red, green, blue and
straight-line layers are 1, 1, 1, and 2, respectively. The shape and compactness parameters are 0.3
and 0.7, respectively.

• Feature selection. The normalized difference vegetation index (NDVI) has been used extensively
to detect vegetation [48]. However, relying on the NDVI alone to detect the vegetation is not
accurate due to influence of shadows and colored buildings on aerial images [16]. Therefore,
besides the NDVI, the texture information in the form of entropy [49] is also used on the basis of
the observation that trees are rich in texture and have higher surface roughness than building
roofs [16]. Moreover, R, G, B, and brightness are also selected as the features in our proposed
method. Notably, if the near-infrared band is not available, color vegetation indices can be
calculated from color aerial images. In this paper, we applied the green leaf index (GLI) [50,51]
to replace NDVI. The formula of the GLI is expressed in the formula (1). In this formula, R, G
and B represents the value of the red, green and blue bands of each pixel from original aerial
image, respectively.

GLI = (2 × G − R − B)/(2 × G + R + B) (1)

• Supervised classification of segments using a Random Forest (RF) [52]. The reference labels are
created by an operator. The computed feature vector per segment is fed into the RF learning
scheme. To monitor the quality of learning, the training and prediction is performed several times.
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2.2.3. Removal of Tree Points from Non-Ground DIM Points

In this stage, the tree DIM points will be removed from non-ground DIM points with the aid of
the classified original aerial images. The process of removing tree points from non-ground DIM points
is described as follows:

• At first, define a vector L. The size of L is equal to the number of non-ground DIM points and
each element within this vector is used to mark the category of each corresponding non-ground
DIM point. In the initial stage of this process, we set the value of each element within this vector
to 0, which indicates that the corresponding DIM point is unclassified.

• Then, select a classified original aerial image and make use of this classified original aerial
image to label the category of each element within the vector L. The fundamental of this step
is back projection. If the calculated projected point of a non-ground DIM point falls within the
region which is labelled as tree in the selected image, the corresponding element within L plus 1;
otherwise, the corresponding element within L minus 1.

• Continue the second step until all classified original aerial images are traversed.
• If the value of an element within the vector L is greater than 0, the corresponding non-ground

DIM point is regarded as a tree point; otherwise, the DIM point is a building point.

In the second step of the above process, the visibility analysis and occlusion detection is necessary
during the back projection. The purpose of visibility analysis is to determine whether the selected
DIM point is within the selected image’s field of view (FOV) and face the image’s direction without
occlusion from other objects. In this paper, we make use of the collinear equations and an image’s
interior/exterior orientation parameters to determine whether the selected DIM point is within an
image FOV and applied the method in [53] for occlusion detection. If a non-ground DIM point is
invisible or occluded in the selected classified original aerial image, the value of the corresponding
element within L remains unchanged.

Here, we take a DIM point as an example to further describe the process of removing tree points
from non-ground DIM points. As is shown in Figure 4, the projected point of the selected DIM point is
marked as A and is invisible at the viewpoint of image IMG_147000509. Therefore, the value of the
corresponding element within L remains unchanged when the image IMG_147000509 is applied in
this process. In image IMG_147000345, due to the impact of illumination and texture, the region where
the projected point A falls is incorrectly divided into the tree category. Based on the description of
the above process, the value of the corresponding element plus 1. In the image IMG_147000413 and
IMG_147000449, the projected point A falls in the region marked as other objects. Hence, the value
of the corresponding element within the vector L minus 1, respectively. After 4 images are traversed,
the corresponding element value is less than 0. Obviously, the DIM point A will be regarded as a
building point.
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Figure 4. Process of removing tree points from non-ground DIM points: (a) the DIM point A which
can’t be seen at the viewpoint of this image; (b) the DIM point A which is incorrectly classified as trees;
(c,d) the DIM point A which is correctly classified as buildings.

The classification results are shown in Figure 5b. Figure 5c,d show the advantages of our proposed
method. The low building marked as B in Figure 5c is occluded at the nadir viewpoint, which results
in this building remaining undetected from the orthophoto. However, in our proposed method, this
low building can be detected from DIM points as is shown in Figure 5d.
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2.2.4. Extraction of Individual Building from the DIM Points

Some scattered points remain distributed in 3D space because of the wrong category of DIM
points. To remove these interference points, the octree method is used to divide the point cloud into
3D grids. If the number of the DIM points in a user-defined 3D grid is beyond a certain threshold,
the grid is preserved. This threshold is determined by the size of the grid and the density of the DIM
points. Generally speaking, the smaller the grid size is, the smaller this threshold is; and the higher the
density is, the larger the threshold is.

Project the 3D points onto the XY planar coordinates with the resolution of the orthophoto; and a
morphological close operator with a 3 × 3 square structuring element is used to generate an initial
binary image. This structuring element is estimated by the density of DIM points and the resolution of
planar coordinates. Then, a two-pass algorithm [54] is used to extract the connected components. Each
connected component represents an individual building blob.

2.3. Building Edge Detection Using a Feature-Level Fusion Strategy

The boundaries of individual buildings obtained in Section 2.2 are irregular. In this section, the
straight-line segments are extracted from the DIM points, orthophoto and building blob. Subsequently,
the coarse building edges from the DIM points, orthophoto, building mask, and height information
from DIM points are fused to help match extracted straight-line segments from aerial images so that
the matched line segments can be used for regularization of building boundaries.

2.3.1. Detection of Coarse Building Edges from the DIM Points, Orthophoto and Building Mask

In this section, three kinds of building edges are extracted: the building edges from DIM points,
the building edges from orthophoto and the building edges from extracted building blob. Figure 6a–c
shows the extracted results of the three kinds of building edges. All these building edges are mainly
used to assist the straight-line segments from original aerial images to match in the later stage. The
process of detecting the three kinds of building edges is described as follows:

• Detection of building edges from DIM points. In terms of DIM point clouds, the building facades
are the building edges. Hence, how to extract the building edges from DIM points is converted to
how to detect the building facades from DIM points. The density of DIM points at the building
façades is larger than that at other locations. Based on this, a method [55] named as the density
of projected points (DoPP) is used to obtain the building façades. If the number of the points
located in a grid cell is beyond the threshold DoPPthr, the grid is labelled 255. After these steps,
the generated façade outlines still have a width of 2–3 pixels. Subsequently, a skeletonization
algorithm [56] is performed to thin the façade outlines. Finally, a straight-line detector based on
the freeman chain code [57] is used to generate building edges.

• Detection of building edges from orthophoto. The process of extracting building edges from
orthophoto is divided into three steps. First, a straight-line segment detector [58] is used to extract
straight-line segments from the orthophoto. Second, a buffer region is defined by a specified
individual building blob obtained in Section 2.2. If the extracted straight-line segment intersects
the buffer region, this straight-line segment is considered as a building candidate edge. Finally,
the candidate edge is discretized into Numt points. The number of points located in buffer region
is Numi. Numi/Numt represents the length of the candidate edge falling into the buffer area.
The larger this ratio is, the greater the probability that this candidate edge is the building edge is.
In this paper, if this ratio is greater than 0.6, the candidate edge is considered a building edge.

• Detection of building edges from the building blob. The boundaries of buildings are estimated
using the Moore Neighborhood Tracing algorithm [59], which provides an organized list of points
for an object in a binary image. To convert the raster images of individual buildings into a vector,
the Douglas-Peucker algorithm [60] is used to generate the building edges.
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2.3.2. Detection of the Building Boundary Line Segments from the Original Aerial Images by Matching
Line Segments

In this section, the basic process unit is an individual building. Before the line matching, both
the straight-line segments from original aerial images and the DIM points of the selected individual
building are obtained; then, the height information from DIM points is used to obtain an alternative
matching line pool of a selected coarse building edge; finally, a line matching algorithm based on the
three-vision images is applied to obtain the matched building edges from the alternative matching line
pool. Specifically,

• Obtain the associated straight-line segments from multiple original aerial images and DIM points
of an individual building

� Select an individual building detected in Section 2.2.4.
� According to the planar coordinate values of the individual building, obtain the

corresponding DIM points.
� Project the DIM points onto the original aerial images, and obtain the corresponding

regions of interest (ROIs) of selected individual building from multiple aerial images.
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Employ the straight-line segments detector [58] to extract the straight-line segments from
corresponding ROIs. The extracted straight-line segments from ROIs are shown in Figure 7.
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• The generation of an alternative matching straight-line segments pool of a coarse building edge

Figure 8 shows the process of the generation of alternative matching straight-line segments of a
coarse building edge. We divide the process into three steps; and the details are described as follows.

� Choose a coarse building edge, and discretize this straight-line segment into 2D points according
to the given interval 0.1 m. Use the nearest neighbor interpolation algorithm [61] to convert
the discretized 2D points into 3D points by fusing the height information from the DIM points.
Notably, the points at the building facades which have been detected by the method DoPP
should be removed before interpolation so that we can obtain the exact coordinate values of each
3D point.

� Project the 3D points onto the selected original image according to the collinear equation. In this
step, occlusion detection is necessary.

� Fit the projected 2D points into a straight-line segment on the selected aerial image. A buffer
region with the given size is created. Check whether the associated line segments from aerial
image intersect the buffer region. If a straight-line segment from aerial image intersects within
the buffer, the line is labelled as an alternative line.
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The number of line segments that intersect the buffer may be more than one in an image. To reduce
the complexity of line matching, only the longest line is selected. After all the associated images are
processed, an alternative matching line pool of the selected coarse building edge is created. Figure 9
shows the generated alternative matching line pool. In Figure 9, the IMG-n represents the nth image in
the generated alternative matching line pool and the red line is the selected alternative matching line.
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Figure 9. The generated alternative matching line pool of a coarse building edge.

• Straight-line segments matching based on three-vision images

After the generation of alternative matching straight-line segments pool of a selected coarse
building edge, the straight-line segments matching process starts.

� Select two longest line segments from the alternative matching line pool. As is shown in
Figure 10a, it is obvious that the camera C1 is not on the straight-line segment Line 1. Similarly,
both the camera C1 and C2 are not on the straight-line segment Line 2 and Line 3, respectively.
Hence, a 3D plane is generated by the camera C1 and the straight-line segment Line 1. Another
plane is created by camera C2 and the line segment Line 2. Two planes intersect into a 3D
line segment.

� Project the 3D line segment onto the IMG-3. If the projected line and Line3 overlap each other,
calculate the angle α and normal distance d between Line 3 and the projected line; otherwise,
return to the first step. In the process, the occlusion detection is necessary. The normal distance d
is expressed as Equation (2), and d1, d2, d3, and d4 are shown in Figure 10b.

d = (d1 + d2 + d3 + d4)/4 (2)
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If the angle is less than 6
◦

and the normal distance is less than 0.5 m, the three straight-line
segments can be regarded as homonymous lines; otherwise, return to the first step.
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� To ensure the robustness and accuracy of line matching, the three homonymous lines should
be checked. In accordance with the method described in the previous step, use the camera C1
and the line segment Line 1 to generate a 3D plane, and use the camera C3 and the line segment
Line 3 to generate another 3D plane. Two planes intersect into a 3D line. Project the 3D line onto
IMG-2. Check whether the normal distance and the angle between Line 2 and the projected line
satisfy the given thresholds. Similarly, check the normal distance and angle between Line 1 and
the projected line, which is generated from Line 2 and Line 3. If the normal distance and angle
still satisfy the given thresholds, the three lines can be considered homonymous lines; otherwise,
return to the first step.

� Make use of the three homonymous lines to create a 3D line. Project the 3D line onto the other
aerial images. According to the given thresholds, search the homonymous line segments. The
results are shown in Figure 11a. Make use of the homonymous lines to create a 3D line, and
project the 3D line onto the XY plane. A new building edge can be created.
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• Iterate the second and third steps until all the coarse building edges are processed. The matched
lines of the selected individual building are shown in Figure 11b.

2.4. Regularization of Building Boundaries by the Fusion of Matched Lines and Boundary Lines

In this section, the matched straight-line segments from original aerial images and the straight-line
segments from building blob are fused to generate the building footprint. First, the boundary line is
adjusted to the specified angle. Then, the parallel line segments are merged. Finally, a new method for
building boundary regularization is proposed.

2.4.1. Adjustment of Straight-Line Segments

Buildings typically have one or more principal directions. The direction of the true building
edge should be in consonance with the building’s direction. Under this principle, the lines should be
adjusted to the building’s main direction. The matched straight-line segments from original aerial
images can be used to calculate the building’s direction. The selected straight-line segments are divided
into nine intervals according to the line angles. Given that there are n lines in an interval, the total
length of n straight-line segments can be calculated and labelled as Lengthi. A histogram is generated
using Lengthi. The peak of the histogram represents the building’s direction. The equation can be
expressed as follows.
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Domi =
n

∑
i=1

disi × anglei/
n

∑
i=1

disi (3)

Buildings are diverse; some buildings have complex structures and contain relatively more directions.
If the total value of an interval is more than 0.3 times the maximum value, the angle value can be
regarded as another direction of the building. After the estimation of the dominant directions, the lines
from the blob of individual buildings are adjusted slightly according to the dominant directions of
buildings. The line adjustment process can be described as follows. First, a line is selected, and the
adjustment angle is calculated; then, the line is rotated around the midpoint of the processing line. The
adjustment results are shown in Figure 12a.
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Figure 12. The process of building regularization: (a) results of adjusted line segments; (b) results of
merged line segments; (c) process of filling a gap between two line segments; (d) results of filling gaps;
(e) preserved polygons; (f) generated building footprint.

2.4.2. Merging of Straight-Line Segments

Figure 13 shows the process of five parallel line segments that are merged to one average line
segment. First, the longest line segment L2 is selected, and a buffer area is created by a given threshold
of 0.7 m, as shown in Figure 13a. Then, each line segment is checked for parallelism to L2. If a line is
parallel to L2 and intersects the buffer area, the line is added to the line segments set Lm. When all line
segments are processed, line segments L1, L3, L4 and L5 are selected. Given that the equation of the
straight-line Li is y = ax + bi, we conclude that the length of the line segment in Lm affects the location
of the merged line. A longer line segment corresponds to a greater weight. The equation of the merged
straight-line is expressed as follows.
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Figure 13. Merging of 5 straight-line segments: (a) five parallel line segments; (b) the merged line
segment of five five parallel line segments.

ax − y − ∑n
0 w2

i bi

∑n
0 w2

i
= 0 (4)

In this equation wi = li/ ∑n
0 li, and li represents the length of the line segment Li. To obtain the

merged line segment, the endpoint of each line segment is projected to the generated straight-line
segments. All the projected points are added to the point set P. The longest line segment within two
projected points is the merged line segment as shown in Figure 13b. The results of merged lines are
shown in Figure 12b.

2.4.3. Building Footprint Generation

Gaps exist between the two merged line segments. To obtain a complete building profile, these
gaps should be filled. As shown in Figure 12c, point B is an endpoint of the line segment AB, and a gap
exists between line segment AB and the line segment CD. To fill this gap, a new strategy is proposed.

• First, calculate the distances from the point B to the other line segments in three directions—along
the direction and two vertical directions of line segment AB. As shown in Figure 12c, the distance
from the point B to the line segment CD is BK; the distance from the point B to the line segment
EF is BM + ME; and the distance from the point B to the line segment HG is BN + NG.

• Search the minimum distance among the calculated distances from the point B to the other line
segments. The line segment BK is the gap between the line segment AB and CD.

• Continue the above two steps until all the gaps are filled. The results are shown in Figure 12d.

After the gaps are filled, the invalid polygons that contain a small amount of areas of the detected
building mask, such as the rectangle EFIJ in Figure 12d, should be removed. Before the process, we
need to search from the non-overlapping single polygon from the entire polygons. Figure 14 shows
the process of searching the non-overlapping single polygon.

• First, the endpoints are coded again, and the line segments are labelled. If the line segment is
located on the external contour of the entire polygon, the straight-line segment is labelled as 1;
otherwise, the line segment is labelled as 2, as shown in Figure 14a.

• Choose a line arbitrarily from the lines dataset as the starting edge. Here, the line segment EF
is selected.

• Search the line segments that share the same endpoint F. If only a straight-line segment is searched,
then the line segment is the next line segment. If two or more straight-line segments are found,
calculate the angle clockwise between each alternative line segment and this line segment EF.
The angle between the line FT and FE is 270◦, and the angle between the line FG and FE is 90◦.
Choose the straight-line segment FG as the target line segment based on the smaller calculated
angle value.

• Continue until the starting edge EF. For all the straight-line segments on the search path, subtract 1,
as shown in Figure 14b, and save the single polygon ABCDEFGHKLMNOPRA. If a line segment
is labelled as 0, the straight-line segment is removed from the polygons, as shown in Figure 14c.

• Search until all the straight-line segments are removed. The result is shown in Figure 14f.
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Figure 14. Process of searching the non-overlapping single polygon: (a) the initial state of line segments
of the polygon; (b–e) the state of line segments of the polygon in the search process; (f) the preserved
non-overlapping single polygons. Black line—line labelled as 2; blue line—line labelled as 1; red
line—line labelled as 0; the dashed line—removed line.

Within each preserved polygon, the total number of pixels is Num1, and the number of pixels
present in the building is Num2. If the Num2/Num1 is larger than the given threshold 0.5, the polygon
is preserved; otherwise, the polygon is removed. The preserved polygon is shown in Figure 12e. Merge
the preserved single polygon; the outline of the merged polygon is the building footprint, as shown in
Figure 12f.

3. Experiments and Performance Evaluation

3.1. Data Description and Study Area

The performance of the proposed approach is tested on three datasets: Vaihingen (VH), Potsdam
and Lunen (LN). The VH dataset consists of vertical aerial images; the Potsdam and LN datasets
are composed of oblique aerial images. These datasets have different complexities and surrounding
conditions. Each dataset is listed as follows:

• VH. The VH dataset is published by the International Society for Photogrammetry and Remote
Sensing (ISPRS), and has the real ground reference value. The object coordinate system of this
dataset is the system of the Land Survey of the German federal state of Baden Württemberg,
based on a Transverse Mercator projection. There are three test areas in this dataset and have
been presented in Figure 15a–c. The orientation parameters are used to produce DIM points,
and the derived DIM points of three areas have almost the same point density of approximately
30 points/m2.

� VH 1. This test area is situated in the center of the city of Vaihingen. It is characterized
by dense development consisting of historic buildings having rather complex shapes, but
also has some trees. There are 37 buildings in this area and the buildings are located on
the hillsides.

� VH 2. This area is flat and is characterized by a few high-rising residential buildings that
are surrounded by trees. 14 buildings are in this test area.
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� VH 3. This is a purely residential area with small detached houses and contain 56 buildings.
The surface morphology of this area is relatively flat.

• Potsdam. The dataset including 210 images was collected by TrimbleAOS on 5 May 2008 in
Potsdam, Germany and has a GSD of about 10 cm. The reference coordinate system of this
dataset is the WGS84 coordinate system with UTM zone 33N. Figure 15d shows the selected test
area, which contains 4 patches according to the website (http://www2.isprs.org/commissions/
comm3/wg4/2d-sem-label-potsdam.html): 6_11, 6_12, 7_11 and 7_12. The selected test area
contains 54 buildings and is characterized by a typical historic city with large building blocks,
narrow streets and a dense settlement structure. Because the collection times between the ISPRS
VH benchmark dataset and the Potsdam dataset differ, the reference data are slightly modified by
an operator.

• LN. This dataset including 170 images was collected by the Quattro DigiCAM Oblique system
on 1 May 2011 in Lunen, Germany and has a GSD of 8–2 cm. The object coordinate system of
this dataset is the European Terrestrial Reference System 1989. Three patches with flat surface
morphology were selected as the test areas. The reference data are obtained by a trained operator.
Figure 15e–f shows the selected areas.

� LN 1. This is a purely residential area. In this area, there are 57 buildings and
some vegetation.

� LN 2. In this area, there are 36 buildings and several of these buildings are the occluded
by tress.

� LN 3. This area is characterized by a few high-rising buildings with complex structures. In
this area, 47 buildings exist.
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3.2. Evaluation Criterion

The evaluation index system adopted by ISPRS [62] is applied for a quality assessment of
our proposed approach. In this evaluation system, three categories of evaluations are performed:
object-based, pixel-based, and geometric, where each category uses several metrics. The object-based
metrics (completeness, accuracy, quality, under- and over-segmentation errors, and reference cross-lap
rates) evaluate the performance by counting the number of buildings, while the pixel-based metrics
(completeness, accuracy, quality, area-omission, and area-commission errors) measure the detection
accuracy by counting the number of pixels. The geometric metric (root mean square error, i.e., RMSE)
indicates the planimetric distance in meters accuracy from extracted outlines to a reference outline.
The RMSE, correctness, completeness, and quality equations are shown in Equations (5).

RMSE =
√

∑ d2

N
Correctness = TP/(TP + FP)

Completness = TP/(TP + FN)

Quality = TP/(TP + FP + FN)

(5)

where N represents the number of points for which a correspondence has been found within a
predefined search buffer, d is the distance between the corresponding points, TP represents the
number of true positives, FP represents the number of false positives, and FN represents the number
of false negatives. In the evaluation process of our proposed approach, the building area is taken
into consideration. The minimum areas for large and small buildings are set to 50 m2 and 2.5 m2,
respectively. The symbols used in the assessment are described in Table 1.

Table 1. Symbol descriptions in the performance evaluation.

Symbols Description

Cm, Cm,50 Completeness for all the buildings, over 50 m2 and over 2.5 m2 object-based detection
Cr, Cr,50 Correctness for all the buildings, over 50 m2 and over 2.5 m2 object-based detection
Ql, Ql,50 Quality for all the buildings, over 50 m2 and over 2.5 m2 object-based detection

Cmp, Cmp,50 Completeness all the buildings, over 50 m2 and over 2.5 m2 pixel-based detection
Crp, Crp,50 Correctness all the buildings, over 50 m2 and over 2.5 m2 pixel -based detection

Qlp Quality of all building pixel-based detection
RMSE Planimetric accuracy in meters
1 : M M detected buildings correspond to one building in the reference (over-segmented)
N : 1 A detected building corresponds to N buildings in the reference (under-segmented)
N : M Both over- and under-segmentation in the number of buildings

3.3. Results and Discussion

Sections 3.3.1 and 3.3.2 describe and discuss the evaluation results of our proposed technique on
the VH, Potsdam and LN datasets.

3.3.1. Vaihingen Results

Tables 2 and 3 show the official per-object and per-area level evaluation results for the three test
areas of the VH dataset. Figure 16 shows the per-pixel level visual evaluation of all the test areas
(column 1) for the building delineation technique (column 3) and their corresponding regularization
outcome (column 2).

Table 2 shows that the overall object-based completeness and accuracy are 83.83% and 98.41%,
respectively; the buildings over 50 m2 are extracted with 100% objective completeness and accuracy
before regularization. The missing buildings (marked “green circle” in Figure 16a,d,g) are eliminated
in the process of building detection. Building detection consists of two steps: DIM point clouds
filtering and object-oriented classification of original aerial images. Figure 17 shows the results of
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DIM point cloud filtering on the VH dataset. Only two small buildings (marked “green circle” in
Figure 17a,c) are removed due to the improper filtering thresholds. Most of the missing buildings
(marked “yellow circle” in Figure 17a–c) are removed in the process of object-oriented classification of
original aerial images, which indicates that the errors of building detection mainly occur at this stage.
To increase the detection rate, the accuracy of object-oriented classification of original aerial images
should be improved.

Certain close buildings were combined unexpectedly (marked as P, Q and R), as shown in
Figure 16i because the quality of DIM point clouds is lower than that of LiDAR point clouds,
particularly in the regions between two buildings. In addition to the many-to-1 (N : 1) segmentation
errors, many-to-many (M : N) segmentation errors marked as O in Figure 15b exist. These
many-to-many (M : N) segmentation errors are caused by two factors. On the one hand, the
filter threshold removes the low part of the building, as shown in Figure 16a, and the buildings
are segmented into several parts; on the other hand, a building and a segmented part are merged into
a building at the same time. Moreover, there are two incorrectly detected buildings (objects under a
tree and shuttle bus), as shown in Figure 16h marked as X, Y. After regularization, the object-based
results are the same as those before regularization.

After regularization, the per-area completeness, accuracy, and quality are improved. The
pixel-based completeness and accuracy are 91.15% and 94.91%, respectively. This increase might
be substantial if the straight-line segments from the DIM points, orthophoto and original images could
replace the line segments from the boundary of the detected building mask. After the boundary is
regularized efficiently, the planimetric accuracy is improved from 0.731 m to 0.69 m.

Table 2. Object-based building detection results on the VH dataset before and after the regularization
stage.

Method Areas Cm Cr Ql Cm,50 Cr,50 Ql,50 1:M N:1 N:M

Before
regularization

VH 1 81.00 100.00 81.00 100.00 100.00 100.00 0 2 1
VH 2 83.30 100.00 83.30 100.00 100.00 100.00 0 0 0
VH 3 87.20 95.23 81.60 100.00 100.00 100.00 0 2 0

Average 83.83 98.41 81.97 100.00 100.00 100.00 0 1.33 0.33

After
regularization

VH 1 81.00 100.00 81 100.00 100.00 100.00 0 2 1
VH 2 83.30 100.00 83.3 100.00 100.00 100.00 0 0 0
VH 3 87.20 95.23 81.6 100.00 100.00 100.00 0 2 0

Average 83.83 98.41 81.97 100.00 100.00 100.00 0 1.33 0.33

Table 3. Pixel-based building detection results on the VH dataset before and after the regularization
stage.

Proposed Detection Areas Cmp Crp Qlp RMSE

Before regularization

VH 1 90.7 91.2 83.45 0.853
VH 2 89.14 95.47 88.55 0.612
VH 3 90.42 95.22 86.5 0.727

Average 90.09 93.96 86.17 0.731

After regularization

VH 1 90.38 92.29 84.04 0.844
VH 2 92.37 96.75 89.59 0.591
VH 3 90.7 95.68 87.13 0.632

Average 91.15 94.91 89.92 0.69
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3.3.2. Potsdam and LN Results

Tables 4 and 5 present the object- and pixel-based evaluation of the detection technique before
and after the regularization. Figures 18 and 19 show the extracted buildings and their corresponding
building footprints for Potsdam, LN1, LN2, and LN3. The proposed building detection method
extracted 49, 52, 35, and 39 buildings out of 54, 57, 36, and 47 reference buildings in the Potsdam, LN1,
LN2 and LN3, respectively.

Table 4. Object-based building detection results on the Potsdam and Lunen (LN) datasets before and
after the regularization stage.

Method Areas Cm Cr Ql Cm,50 Cr,50 Ql,50 1:M N:1 N:M

Before
regularization

Potsdam 90.74 100 90.74 100 100 100 1 4 0
LN1 87.71 96.15 84.75 97.06 100 97.06 0 8 0
LN2 94.4 97.14 91.89 100 100 100 0 3 0
LN3 86.05 94.59 82.22 100 100 100 0 2 0

Average 89.73 96.97 87.4 99.27 100 99.27 0.25 4.25 0.25

After
regularization

Potsdam 90.74 100 90.74 100 100 100 1 3 0
LN1 87.71 96.15 84.75 97.06 100 97.06 0 8 0
LN2 94.4 97.14 91.89 100 100 100 0 2 1
LN3 86.05 94.59 82.22 100 100 100 0 2 0

Average 89.73 96.97 87.4 99.27 100 99.27 0.25 4.25 0.25

Table 5. Pixel-based building detection results on the Potsdam and LN datasets before and after the
regularization stage.

Proposed Detection Areas Cmp Crp Qlp RMSE

Before regularization

Potsdam 94.9 95.1 90.5 0.913
LN1 93.15 89.33 83.82 0.882
LN2 91.81 93.05 85.92 0.816
LN3 95.72 93.78 90 0.754

Average 93.9 92.82 87.56 0.841

After regularization

Potsdam 94.61 95.7 90.76 0.843
LN1 93.32 90.02 84.56 0.813
LN2 92.3 94.12 87.27 0.742
LN3 96.4 93.69 90.52 0.715

Average 94.16 93.38 88.28 0.778
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Figure 18. Building detection on the Potsdam and LN datasets: (a,b) building detection and
regularization on the Potsdam dataset; (c,d) building detection and regularization on LN1; (e–g)
building regularization example in Potsdam; (d,e); and (f–h) building regularization examples in LN1.
Areas marked in (b) and (d) are magnified in (e–g) and (h–i), respectively.
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Figure 19. (a,b) Building detection and regularization on LN 2; (c,d) Building detection and
regularization on LN 3; (e–g) Building regularization example in LN 2; and (g–i) Building regularization
examples in LN 3.

The object-based completeness and accuracy on all the buildings are 89.73% and 96.97%,
respectively, as shown in Table 4. A building over 50 m2 marked as i in Figure 18d is missed due to
the influence of shadows in the process of tree removal. Table 5 shows the total per-area evaluation
(completeness and accuracy 93.9% and 92.82%, respectively) of the proposed building detection method
for Potsdam and Lunen before regularization. The per-area completeness in LN2 is lower than that of
the three remaining areas (Potsdam, LN1, and LN3), mainly because the roof of the buildings is not
detected completely because of the misclassification of the tree and building, as shown in Figure 19f.
Moreover, there are some sundries surround the building; these objects are regarded as the parts of
the true building, which causes the per-area accuracy in LN1 to be lower (89.33%) than that in the
other three areas. Figure 18j shows this example. The average pixel-based completeness and accuracy
increase significantly from 93.9% and 92.82% to 94.16% and 93.38% after the regularization, respectively.
Similarly, three factors hinder the detection of buildings in the process of building detection.

• Initially, the filtering threshold may be larger than the height of low buildings. In our test
arrangement, some low buildings (< the given thresholds) are excluded in the filtering process.
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Fortunately, the height of most buildings is higher than the given thresholds in the Potsdam and
Lunen test areas. Only the building marked as e in Figure 18b is removed.

• Second, the misclassification of trees and other objects in the process of object-oriented
classification of original aerial images is the main reason that affects the accuracy of building
detection. Some buildings are removed due to the influence of similar spectral features and
shadow. Figure 18f,g,i and Figure 19h,i shows examples of missed buildings. Similarly, some
trees are classified as buildings, as shown in Figure 18f.

• Third, the noise of DIM points degrades the accuracy of building detection. Uncoupled to
the over-segmentation error, under- and many-to-many segmentation errors exist in Table 4.
Figure 19g shows the many-to-many segmentation error example. The shadow on the surface
of the building leads to the over-segmentation of the building, and the adjacent buildings are
combined with the building at the same time due to the small connecting regions between these
two buildings.

3.4. Comparative Analysis

In our proposed method (PM), we solely employed aerial images as the data source to extract
buildings in complex urban scenes. To compare our proposed method with other methods, we select
those which use aerial images alone and the supervised classification strategy. According to the ISPRS
portal and the classified methods in [8], three methods—DLR, RAM and Hand—are selected for the
comparative analysis. In addition, we hope that our proposed method is superior to other methods
combining the images and LiDAR data. Hence, in addition to these three methods just mentioned,
Fed_2, ITCR and MON4 are also chosen. In Fed_2, LiDAR data are used to detect buildings, and the
footprint of buildings are generated by the straight-line segment from the orthoimagery. In ITCR,
the LiDAR data and the original images are fused, and a supervisory strategy is used for building
detection. MON4 make use of a method named as Gradient-based Building Extraction (GBE) to extract
the building planes and their neighboring ground planes from images and Lidar; then, analyzes the
height difference and connectivity between the extracted building planes and their neighboring ground
planes to extract low buildings. These chosen methods can be seen in Table 6.

Table 6. Six existing methods compared with our proposed technique.

Benchmark Data Set Methods Data Type Processing Strategy Reference

VH

DLR Image supervised [8]
RMA Image data-driven [8]
Hand Image Dempster-Shafer [8]
Fed_2 LiDAR + image data-driven [39]
ITCR LiDAR + image supervised [17]

MON4 LiDAR + image Data-driven [28]

Table 7 presents a comparison between our proposed method and six other methods. From the
comparison results of the different methods in the VH dataset, several conclusions can be obtained
as follows:

• Relative to RMA and Hand, our proposed method can obtain similar object-based completeness
and accuracy in VH1 and VH3. The object-based accuracy of RMA and Hand in VH2 is 52% and
78%, respectively, and is significantly lower than that of the proposed method because NDVI
is the main feature in RMA and Hand. The wrong NDVI estimate decreases the object-based
accuracy in VH2 due to the influence of shadow pixels. The results show that our proposed
method is more robust than RMA and Hand due to the use of additional features.

• The DLR not only divides the objects into buildings and vegetation but also takes into account
vegetation shadowed in the separation of buildings and other objects. Therefore, the pixel-based
completeness and accuracy of DLR is slightly higher than that of our proposed method in VH1,
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VH2 and VH3. Moreover, the pixel-based completeness and accuracy of DLR is also higher
than that of other 4 methods. The object-based completeness of DLR is lower than that of our
proposed method in VH2 and VH3, mainly because the features from original aerial images are
used to detect buildings and because the small buildings can be easily detected in the two areas.
Actually, there are seldom buildings that are occluded in the three test areas of Vaihingen. The
advantages of our proposed method are not thoroughly demonstrated. The buildings labelled as
k in Figures 18 and 19 are partially or completely occluded, and DLR cannot detect the occluded
buildings. In our proposed method, the occluded building can be detected. Notably, because
the noise of DIM points is higher than that of LiDAR point cloud, the object-based accuracy of
the proposed method is slightly lower than that of DLR in VH3. Large buildings (50 m2) were
extracted with 100% accuracy and completeness.

• The proposed method offers better in object-based completeness and accuracy than ITCR, mainly
because the LiDAR point clouds need to be segmented into 3D segments that are regarded as
the processed unit in ITCR. The process produces segmented errors that damage the building
detection results. Furthermore, the segmentation of DIM points is more challenges because the
quality of DIM points is lower than that of the LiDAR point cloud. Therefore, we make use of the
aerial images to detect buildings from non-ground points to replace the segmentations of the DIM
point cloud in our proposed method.

• Fed_2 and our proposed method obtain better performance than ITCR and IIST because the
segmented errors are avoided in the process of building detection. The performance of Fed_2,
MON4 and our proposed method is approximately the same.

Table 7. Comparison of the results of different methods in Vaihingen.

Area Method Cm Cr Cm,50 Cr,50 Cmp Crp RMSE 1:M N:1 N:M

VH1

DLR 83.8 96.9 100 100 91.9 95.4 0.9 - - -
RMA 83.8 96.9 100 100 91.6 92.4 1.0 - - -
Hand 83.8 93.9 100 100 93.8 90.5 0.9 - - -
Fed_2 83.8 100 100 100 85.4 86.6 1.0 0 6 0
ITCR 86.5 91.4 100 100 91.2 90.3 1.1 - - -

MON4 89.2 93.9 100 100 92.1 83.9 1.3 - - -
PM 81 100 100 100 90.38 92.29 0.8 0 2 1

VH2

DLR 78.6 100 100 100 94.3 97 0.6 - - -
RMA 85.7 52.2 100 100 95.4 85.9 0.9 - - -
Hand 78.6 78.6 100 100 95.1 89.8 0.8 - - -
Fed_2 85.7 100 100 100 88.8 84.5 0.9 0 2 0
ITCR 78.6 42.3 100 100 94 89 0.8 - - -

MON4 85.7 91.7 100 100 97.2 83.5 1.1 - - -
PM 83.8 100 100 100 92.37 96.75 0.6 0 0 0

VH3

DLR 78.6 100 100 100 93.7 95.5 0.7 - - -
RMA 78.6 93.9 100 100 91.3 92.4 0.8 - - -
Hand 78.6 92.8 92.1 100 91.9 90.6 0.8 - - -
Fed_2 82.1 95.7 100 100 89.9 84.7 1.1. 0 5 0
ITCR 75 78.2 94.7 100 89.1 92.5 0.8 - - -

MON4 76.8 95.7 97.4 100 93.7 81.3 1.0 - - -
PM 85.11 95.23 100 100 90.7 95.68 0.6 0 2 0

The above analysis shows that our proposed algorithm is robust and can obtain similar
performance of building detection methods that fuse LiDAR data and images. Moreover, the RMSE
is decreased due to the boundary lines being replaced with the matched lines from the original
aerial images.
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3.5. Performances of Our Proposed Building Regularization

Section 3.4 shows that the directions of buildings are the precondition for the building
regularization. To evaluate the performance of the regularization technique, we divide the buildings
into three categories: single-direction buildings, multi-direction buildings and complex structure
buildings. The regularization results of single-direction buildings and multi-direction buildings are
shown in Figure 20a–n.
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In our proposed method, the matched lines are used in the process of searching the direction
of building. According to the line segments from the mask of the detected buildings, the usage of
adjusted lines increases the RMSE. Figure 20a–f,k–l shows relevant examples. Nevertheless, incorrectly
adjusted line segments remain, particularly involving the multi-direction buildings, as shown in
Figure 20g–j,m,n, mainly because building’s directions cannot be computed completely due to the
absence of line segments that provide the directions of buildings. As shown in Figure 20g–j,m–p, these
buildings have two directions. However, only one direction is calculated correctly; the other direction
is ignored in the examples. As a result, some lines deviate from the true direction.

In terms of the complex structure building, holes exist. To obtain the accurate footprint, both the
external contours and inner contours from the mask of detected building are calculated, respectively.
According to the contours, we group the lines and regularize the contours. These regular contours
construct the footprint of the complex structure building. Figure 20o,p shows the examples of this
building. Notably, if the size of the hole is smaller than the given thresholds, we can ignore the
inner contour.

4. Conclusions

This paper focuses on both building detection and footprint regularization using solely aerial
images. A framework for building detection and footprint regularization using a feature-level-fusion
strategy is proposed. Following a comparison with six other methods, the experiment results show that
the proposed method can not only provide comparable results to building detection methods using
LiDAR and aerial images but also generate building footprints in complex environments. However,
several limitations for our proposed method cannot be ignored:

• In the building detection stage, the results of building detection rely on the results of
object-oriented classification of original aerial images. Shadows are an important factor
influencing the classification of original aerial images. In the process of classification, we categorize
the objects into only two classes (trees and other objects) and do not train and classify shadows
as separate objects. As a result, the classification results cannot perform perfectly. In the further
work, we will make use of the intensity and chromatic to detect the shadow so that we can get
better performance.

• The noise of the DIM point cloud produced by dense matching is higher than that of the LiDAR
point clouds. The buildings detection results and footprint regularization are affected by noise.

• A threshold exists in the process of DIM point cloud filtering. The filtering threshold cannot
ensure that all the buildings can be preserved. In fact, the low buildings may be removed, while
some objects that are higher than the threshold are preserved. The improper threshold causes
detection errors.

• At the stage of building footprint regularization, only straight lines are used. Therefore, for a
building with a circular boundary, our proposed method cannot provide satisfactory performance.

• Finally, the morphology of buildings also influences the accuracy of building detection results.
In fact, the more complex the building morphology is, the more difficult the building boundary
regularization is.
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