
remote sensing  

Article

Nearshore Benthic Habitat Mapping Based on
Multi-Frequency, Multibeam Echosounder Data
Using a Combined Object-Based Approach: A Case
Study from the Rowy Site in the Southern Baltic Sea

Lukasz Janowski 1,* , Karolina Trzcinska 1 , Jaroslaw Tegowski 1, Aleksandra Kruss 1,
Maria Rucinska-Zjadacz 1 and Pawel Pocwiardowski 2

1 Institute of Oceanography, University of Gdansk, al. Marszalka Pilsudskiego 46, 81-378 Gdynia, Poland;
karolina.trzcinska@phdstud.ug.edu.pl (K.T.); j.tegowski@ug.edu.pl (J.T.);
aleksandra.kruss@ve.ismar.cnr.it (A.K.); maria.rucinska-zjadacz@ug.edu.pl (M.R.-Z.)

2 NORBIT-Poland Sp. z o.o., al. Niepodleglosci 813-815/24, 81-810 Sopot, Poland; pawel@norbit.com
* Correspondence: lukasz.janowski@ug.edu.pl or ocelj@ug.edu.pl; Tel.: +48-58-523-6820

Received: 29 October 2018; Accepted: 4 December 2018; Published: 7 December 2018
����������
�������

Abstract: Recently, the rapid development of the seabed mapping industry has allowed researchers to
collect hydroacoustic data in shallow, nearshore environments. Progress in marine habitat mapping
has also helped to distinguish the seafloor areas of varied acoustic properties. As a result of these
new developments, we have collected a multi-frequency, multibeam echosounder dataset from the
valuable nearshore environment of the southern Baltic Sea using two frequencies: 150 kHz and
400 kHz. Despite its small size, the Rowy area is characterized by diverse habitat conditions and the
presence of red algae, unique on the Polish coast of the Baltic Sea. This study focused on the utilization
of multibeam bathymetry and multi-frequency backscatter data to create reliable maps of the seafloor.
Our approach consisted of the extraction of 70 secondary features of bathymetric and backscatter
data, including statistic and textural attributes of different scales. Based on ground-truth samples,
we have identified six habitat classes and selected the most relevant features of the bathymetric and
backscatter data. Additionally, five types of image processing pixel-based and object-based classifiers
were tested. We also evaluated the performance of algorithms using an accuracy assessment based on
the validation subset of the ground-truth samples. Our best results reached 93% overall accuracy and
a kappa coefficient of 0.90, confirming that nearshore seabed habitats can be accurately distinguished
based on multi-frequency, multibeam echosounder measurements. Our predictive habitat mapping
of shallow euphotic zones creates a new scientific perspective and provides relevant data for the
management of natural resources. Object-based approaches previously used in various environments
and areas suggest that methodology presented in this study may be scalable.

Keywords: habitat mapping; multibeam echosounder; multi-frequency; image processing; feature
selection; object-based image analysis

1. Introduction

Shallow, coastal benthic habitats represent one of the most productive and valuable ecosystems
on Earth [1]. The particular hydrodynamic conditions of these environments are responsible for the
highly active exchange of nutrients, sediments, and biota. Their locations within euphotic zones
make them an ideal place for the growth of macroalgae, which provide good settlements for benthic
communities. Nearshore benthic habitats usually form complicated patterns, in which conducting
spatial determination analysis is very important for ecosystem management and protection. Finally,
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precise mapping of the seafloor substratum and geomorphology is a fundamental task for marine
spatial planning, especially with respect to marine protected areas (MPAs) or European Union (EU)
legislative frameworks (e.g., Water Framework Directive 2000/60/EC, Habitats Directive 92/43/EEC,
and Marine Strategy Framework Directive 2008/56/EC). In this study, we recognized and determined
spatial areas occupied by valuable habitats that occur in the southern Baltic Sea. We evaluated our
methods to obtain the most reliable maps of the studied area, which is one of the goals of the ECOMAP
EU BONUS project, promoting Baltic Sea environmental assessments by opto-acoustic remote sensing,
mapping, and monitoring.

The remote sensing methods used for seafloor mapping take advantage of sound propagation in
marine environments. Over the last few decades, the rapid development of hydroacoustic methods
utilizing single-beam echosounders, side-scan sonars, and multibeam echosounders (MBES) has
occurred [2]. The quick growth of statistical techniques, which has taken place in recent years, has
created great potential for precise mapping. Although global maps of the world’s oceans’ bathymetry
based on gravity measurements are currently available, their low resolution makes them unusable for
detailed analysis in such fields including benthic habitat mapping, mapping of sediments, underwater
archeology, etc. [3].

Recently developed multibeam echosounders have allowed researchers to acquire three types of
information: bathymetric data, which after processing is equivalent to interpolated digital elevation
model (DEM) data, the angular dependency of the backscatter intensity of the acoustic signals from
the seafloor, and the volume backscatter intensity of the water column. The spatial resolution of
multibeam echosounder data, especially as applied in shallow water environments, can be compared
to high-resolution LiDAR remote sensing data [4]. Up to now, only small areas of the world’s
oceans—much less than 15%—have been mapped with high-resolution bathymetry [5]. The availability
of MBES backscatter data is even more limited. Seafloor acoustic reflectivity is a phenomenon that
can be characterized as a measure of the acoustic energy coming back from the seafloor, reflecting the
properties of the seafloor [6]. The determination of backscatter is therefore the most useful technique
for creating categorical maps of the seabed. The backscatter of the water column is beyond the scope
of this study.

Backscatter measurements from multibeam echosounders are not yet fully supervised and
standardized [6]. For a better understanding of these phenomena, it is necessary to define the
characteristic properties of backscatter intensity for particular benthic habitats in different areas.
Seafloor substrata can be determined based on certain acquisition, processing, and interpretation
techniques, which should be specified [7,8]. Considering the abovementioned objectives, we
defined following research hypotheses: (1) different properties of backscatter intensity will allow
us to distinguish habitat types in the southern Baltic Sea (the Rowy area); (2) the use of two
frequencies significantly increases the amount of information gathered that will be useful for the correct
classification of seafloor habitats; and (3) image processing methods, together with the application of
statistical and textural analysis, will allow us to develop semi-automatic workflows to recognize and
determine benthic habitats in the southern Baltic Sea.

Despite the fact that they were designed to gather deep water measurements, recent models
of multibeam echosounders are capable of performing hydroacoustic surveys in shallow areas.
Consequently, an increasing amount of research is being conducted in coastal areas (e.g., [9–12]).
Nevertheless, hydroacoustic measurements in shallow water require especially careful sensor
calibration, proper survey design, and experience to obtain accurate geospatial data.

Maps of benthic habitats can be created from hydroacoustic measurements using three types
of analyses: manual expert interpretation of bathymetry and backscatter maps, acoustic signal
parametrization, and image processing [13]. Knowledge-based expert interpretation has many
disadvantages, such as lack of objectivity, high time consumption, and lack of repeatability; therefore,
it is less frequently used in modern applications. Signal processing methods are usually related
to unsupervised methods of classification and often work on one type of data (bathymetry or
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backscatter) [14]. They include, for example, angular range analysis (ARA, e.g., [15]), texture
analysis [16,17], spectral analysis [18], and neural network analysis (e.g., [19,20]). The image processing
approach benefits from different kinds of classification (often supervised) and allows researchers to
apply many geomorphometric attributes (e.g., [21,22]). The approach presented here is based on
object image analysis related to different acoustic products: backscatter and bathymetry combined in a
relational database.

2. Materials and Methods

2.1. Study Site

This study focused on the nearshore shallow area located within the Polish Exclusive Economic
Zone (EEZ). The detailed location of the aforementioned area is presented in Figure 1. The research
area has dimensions of around 1.0 × 1.4 km, covering approximately 1.4 km2. The outer boundary is
located at a distance ranging between 0.5 and 2.0 km from the shoreline. The depth of the analyzed
area varies from 4 to 20 m with a mean of 10 m. The geomorphology of the seabed is diversified,
including valleys and crests of irregular shapes.
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to marine areas up to a depth of 10 m as Ramsar site no. 757 [23]. The Rowy site is also located within 
the area of Natura 2000, no. PLB990002 [24]. 

The substratum of the study site is made of glacial tills that belong to a large moraine area 
occurring at the coast. The till outcrops represent relicts of postglacial structures that are crossed by 
valleys filled with modern marine sand and gravelly sand deposits, which form structures similar to 
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Figure 1. Location of the Rowy area in the southern part of the Baltic Sea near Poland. Sources: our
study, OpenStreetMap, and the European Environment Agency.

The Rowy site neighbors and is partly within the nearshore coastal area of Slowinski National
Park in northern Poland, near Gardno lake, at the coast. The protection of the surrounding marine
environments has been established since 1995, when the borders of the National Park were expanded
to marine areas up to a depth of 10 m as Ramsar site no. 757 [23]. The Rowy site is also located within
the area of Natura 2000, no. PLB990002 [24].

The substratum of the study site is made of glacial tills that belong to a large moraine area
occurring at the coast. The till outcrops represent relicts of postglacial structures that are crossed by
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valleys filled with modern marine sand and gravelly sand deposits, which form structures similar to
ripple marks [25]. Glacial tills are often covered by large, dense boulder areas, and such terrain is rare
within the Polish part of the southern Baltic Sea. Such a hard substratum provides a good base for
various vegetation and benthic communities. Within the immediate surroundings of the Rowy area
there is a lack of big urban or industrial areas, sources of contamination, and big river estuaries, so
the environment maintains its relatively original nature. Previous research has confirmed the high
biodiversity of the benthic communities within the analyzed area [26]. The presence of six species of
red algae has been found there, such as Bangiophyceae, which is very rare in the Polish coast of the Baltic
Sea, including unique Furcellaria lumbricalis and Polysiphonia fucoides. Moreover, boulder sites are often
colonized by dense, cemented communities of Mytilus trossulus bivalves, with over 2500 individuals
per m2 in some locations [27]. The presence of large patches of such macroalgae is very valuable in
terms of the functioning of the ecosystem and increasing the diversity of the phytophile fauna [28].

2.2. Hydroacoustic Data Acquisition and Processing

Hydroacoustic data were acquired during two surveys on 26–27 May 2018, using a small boat
equipped with a multibeam echosounder (MBES) NORBIT iWBMS (model STX). The MBES was
mounted on a pole and oriented vertically downwards during the measurements. The device allowed
us to collect bathymetric data in a depth range of 2–150 m. Its angular spread across the ship’s track
was 150◦, allowing us to collect 512 beams. The beam width had dimensions of 0.9 × 0.9◦ at the
working frequency of 400 kHz. The maximum angular coverage at the aforementioned frequency
could be set up to 210◦. The MBES worked with an integrated GNSS/INS navigation system (Wave
Master, manufactured by Applanix: 85 Leek Crescent, Richmond Hill, ON Canada, L4B 3B3), including
online RTK corrections for high positioning accuracy. During each survey, the working frequency of
the MBES was set to a fixed value of 150 kHz or 400 kHz, depending on the day of the acquisition.
In the case of a survey with the 150 kHz frequency, the maximum angular coverage was reduced to
160◦. Our measurements were performed with a maximum ping rate of 30 Hz and a sweep time of
500 µs. To provide accurate profiles of the sound speed in the water column, the sound speed was
measured consistently using a sound velocity profiler. Multibeam echosounder surveys were designed
and performed to provide full spatial coverage (150%) of the area at a constant speed of 5.5–6 knots.

The hydroacoustic data were processed and cleaned using QPS Qimera 1.6.3 and Fledermaus
Geocoder Toolbox (FMGT) 7.8.4 software. We gridded the bathymetric and backscatter data from the
MBES with the maximum reliable resolution, which helped to avoid data gaps between the survey lines
and to maintain consistency. Therefore, for the 150 kHz frequency, the data was gridded with a grid
size of 0.75 m, and for the 400 kHz frequency, the grid size was 0.5 m. In order to determine the sensor
errors, we utilized the combined uncertainty and bathymetric estimator (CUBE) algorithm, which
obtains multiple estimations of depths related to the variation of the acoustic data [29]. We obtained
standard deviations of the CUBE surface of lower than 30 cm. The backscatter mosaic was created
using the ‘flat’ mode of the angle varying gain (AVG) correction tool with ‘blend’ mosaicking style
and a window size of 300 [30]. The AVG correction in Fledermaus Geocoder Toolbox normalizes the
backscatter data without angular dependency based on the calculations of the average backscatter
response, between 20 and 60 degrees (or grazing angles [8]). ‘Flat’ mode is a standard type of
AVG calculation, which smooths small variations of the backscatter signal and reduces its noise [31].
The window size indicates a series of a specified number of consecutive pings that is used for AVG
normalization. The selected number of corrected curves (in our study, 300 pings) is used as a sliding
window, moving along the survey lines (e.g., [32]). ‘Blend’ mosaicking style is a standard method
for the management of overlapping lines in FMGT [8]. It blends nadir pixels with other overlapping
pixels [31]. The bathymetric and backscatter data were created in reference coordinate system UTM 33
N based on WGS 84.
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2.3. Ground-Truth Sampling and Analysis

The ground-truth samples were collected on 7 September 2018. They included sediment and
video sampling using a Van Veen grab sampler and a remotely operated vehicle. The locations of the
samples were carefully selected, chosen because of the particular characteristics of the seafloor based
on prior knowledge of the research area [26]. Because of the difficulties of taking sediment samples
from tills and boulders, of the total number of 31 samples, 29 were documented by video recordings
and 14 were collected by the grab sampler. The sediment ground-truth data were analyzed using
granulometric and sieve analysis, including the use of Folk and Ward parameters and Wentworth
classification of the sediments [33,34]. A ROV was used in almost all the point locations, and apart
from the video recordings in the target place, it was directed to carefully investigate the seafloor of
each ground-truth point sampling area. Using mounted sensors, it obtained additional information,
such as time, depth, direction, and temperature data, but its positioning and driving path were not
capable of being precisely obtained during such seabed investigations. Therefore, despite having over
100 min of video recordings, we decided to generalize the obtained material and identify one class
of ground-truth sample per specific point location. A deep investigation of the video recordings in
conjunction with sediment analysis and hydroacoustic data distinguished six classes of habitats [6],
which are presented in Table 1. The characteristic examples of the backscatter images shown in Table 1
occupy a spatial area of 9 m2 and were presented using a false composite with R and G bands that
corresponded to the backscatter intensity at 400 kHz and 150 kHz, respectively. The image descriptions
shown in Table 1 also refer to fragments of backscatter images presented as false RGB composites.
The geographic coordinates of the ground-truth samples with their descriptions are shown in Table A1.
It should be noted that despite the fact that Samples 11 and 11b were acquired in similar locations,
the distance between them was 15 m in a straight line, which was reflected in the different seafloor
types at those locations. Because one class of acoustic facies represented artificial structures, such as a
shipwreck located at a single, certain site of the area, we decided to perform classification algorithms
for five distinct classes and assign the class of artificial structures manually at the end of the process.

2.4. Feature Extraction and Selection

We extracted 70 secondary features from the bathymetric and backscatter data, 35 for each of the
two analyzed frequencies (150 kHz and 400 kHz). Together with the primary datasets (bathymetry
150 kHz, bathymetry 400 kHz, backscatter 150 kHz, and backscatter 400 kHz), we had 74 parameters
in total. Table 2 presents all the extracted secondary features. The bathymetry-based features included
the following: slope, aspect, eastness, northness, curvature, planar curvature, profile curvature, surface
area to planar area (arc–chord ratio) [35], vector ruggedness measure (VRM) ruggedness [36], kurtosis,
standard deviation of bathymetry, variance, fine-scale bathymetric position index (BPI), and broad-scale
bathymetric position index [37]. While a majority of the features were calculated based on a sliding
window size of 3 × 3 pixels, for some of them (slope, VRM ruggedness, bathymetry standard deviation,
and kurtosis), we tested a multiscale approach [38]. For these features, we applied the following scales:
3 × 3, 5 × 5, 7 × 7, and 9 × 9. The backscatter secondary features included the following: backscatter
standard deviation and various kinds of grey level co-occurrence matrices (GLCMs) [39], including
homogeneity, contrast, dissimilarity, entropy, angular second moment, mean, standard deviation,
and correlation. The backscatter secondary features were extracted based on object-based statistics.
The spatial extent of all the secondary features (of both the bathymetric and backscatter data) was
almost the same within the analyzed dataset (150 kHz or 400 kHz). The sizes of the sliding windows
resulted in the occurrence of no data in some parts of the area, which slightly reduced its dimensions
in the case of some secondary features, but it did not affect the further analysis.
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Table 1. Acoustic facies, their descriptions, and the corresponding backscatter and seabed images

Class ID/Color Backscatter Image
(9 × 9 m) Image Description Seabed Image Seabed

Composition

VFS
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2.4. Feature Extraction and Selection 

We extracted 70 secondary features from the bathymetric and backscatter data, 35 for each of the 
two analyzed frequencies (150 kHz and 400 kHz). Together with the primary datasets (bathymetry 
150 kHz, bathymetry 400 kHz, backscatter 150 kHz, and backscatter 400 kHz), we had 74 parameters 
in total. Table 2 presents all the extracted secondary features. The bathymetry-based features 
included the following: slope, aspect, eastness, northness, curvature, planar curvature, profile 
curvature, surface area to planar area (arc–chord ratio) [35], vector ruggedness measure (VRM) 
ruggedness [36], kurtosis, standard deviation of bathymetry, variance, fine-scale bathymetric 
position index (BPI), and broad-scale bathymetric position index [37]. While a majority of the features 
were calculated based on a sliding window size of 3 × 3 pixels, for some of them (slope, VRM 
ruggedness, bathymetry standard deviation, and kurtosis), we tested a multiscale approach [38]. For 
these features, we applied the following scales: 3 × 3, 5 × 5, 7 × 7, and 9 × 9. The backscatter secondary 
features included the following: backscatter standard deviation and various kinds of grey level co-
occurrence matrices (GLCMs) [39], including homogeneity, contrast, dissimilarity, entropy, angular 
second moment, mean, standard deviation, and correlation. The backscatter secondary features were 
extracted based on object-based statistics. The spatial extent of all the secondary features (of both the 
bathymetric and backscatter data) was almost the same within the analyzed dataset (150 kHz or 400 
kHz). The sizes of the sliding windows resulted in the occurrence of no data in some parts of the area, 
which slightly reduced its dimensions in the case of some secondary features, but it did not affect the 
further analysis. 

All the secondary features were imported (or created within the software in the case of the 
GLCMs) to eCognition software. The object-based statistics were extracted on the basis of the 
multiresolution segmentation of the backscatter intensity images with different ‘scales’ of 
segmentation (see Sections 2.4 and 3.4). The image objects were simply classified based on the point 
locations of the training samples (see Table A1). The mean scalar statistics of the classified objects, 
including all the investigated secondary features, were exported as georeferenced data. 

All the secondary features were selected using the Boruta feature selection algorithm in the R 
software, using the ‘Boruta’ and ‘rgdal’ libraries [40,41]. Boruta is a wrapper function based on the 
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2.4. Feature Extraction and Selection 

We extracted 70 secondary features from the bathymetric and backscatter data, 35 for each of the 
two analyzed frequencies (150 kHz and 400 kHz). Together with the primary datasets (bathymetry 
150 kHz, bathymetry 400 kHz, backscatter 150 kHz, and backscatter 400 kHz), we had 74 parameters 
in total. Table 2 presents all the extracted secondary features. The bathymetry-based features 
included the following: slope, aspect, eastness, northness, curvature, planar curvature, profile 
curvature, surface area to planar area (arc–chord ratio) [35], vector ruggedness measure (VRM) 
ruggedness [36], kurtosis, standard deviation of bathymetry, variance, fine-scale bathymetric 
position index (BPI), and broad-scale bathymetric position index [37]. While a majority of the features 
were calculated based on a sliding window size of 3 × 3 pixels, for some of them (slope, VRM 
ruggedness, bathymetry standard deviation, and kurtosis), we tested a multiscale approach [38]. For 
these features, we applied the following scales: 3 × 3, 5 × 5, 7 × 7, and 9 × 9. The backscatter secondary 
features included the following: backscatter standard deviation and various kinds of grey level co-
occurrence matrices (GLCMs) [39], including homogeneity, contrast, dissimilarity, entropy, angular 
second moment, mean, standard deviation, and correlation. The backscatter secondary features were 
extracted based on object-based statistics. The spatial extent of all the secondary features (of both the 
bathymetric and backscatter data) was almost the same within the analyzed dataset (150 kHz or 400 
kHz). The sizes of the sliding windows resulted in the occurrence of no data in some parts of the area, 
which slightly reduced its dimensions in the case of some secondary features, but it did not affect the 
further analysis. 

All the secondary features were imported (or created within the software in the case of the 
GLCMs) to eCognition software. The object-based statistics were extracted on the basis of the 
multiresolution segmentation of the backscatter intensity images with different ‘scales’ of 
segmentation (see Sections 2.4 and 3.4). The image objects were simply classified based on the point 
locations of the training samples (see Table A1). The mean scalar statistics of the classified objects, 
including all the investigated secondary features, were exported as georeferenced data. 

All the secondary features were selected using the Boruta feature selection algorithm in the R 
software, using the ‘Boruta’ and ‘rgdal’ libraries [40,41]. Boruta is a wrapper function based on the 
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2.4. Feature Extraction and Selection 

We extracted 70 secondary features from the bathymetric and backscatter data, 35 for each of the 
two analyzed frequencies (150 kHz and 400 kHz). Together with the primary datasets (bathymetry 
150 kHz, bathymetry 400 kHz, backscatter 150 kHz, and backscatter 400 kHz), we had 74 parameters 
in total. Table 2 presents all the extracted secondary features. The bathymetry-based features 
included the following: slope, aspect, eastness, northness, curvature, planar curvature, profile 
curvature, surface area to planar area (arc–chord ratio) [35], vector ruggedness measure (VRM) 
ruggedness [36], kurtosis, standard deviation of bathymetry, variance, fine-scale bathymetric 
position index (BPI), and broad-scale bathymetric position index [37]. While a majority of the features 
were calculated based on a sliding window size of 3 × 3 pixels, for some of them (slope, VRM 
ruggedness, bathymetry standard deviation, and kurtosis), we tested a multiscale approach [38]. For 
these features, we applied the following scales: 3 × 3, 5 × 5, 7 × 7, and 9 × 9. The backscatter secondary 
features included the following: backscatter standard deviation and various kinds of grey level co-
occurrence matrices (GLCMs) [39], including homogeneity, contrast, dissimilarity, entropy, angular 
second moment, mean, standard deviation, and correlation. The backscatter secondary features were 
extracted based on object-based statistics. The spatial extent of all the secondary features (of both the 
bathymetric and backscatter data) was almost the same within the analyzed dataset (150 kHz or 400 
kHz). The sizes of the sliding windows resulted in the occurrence of no data in some parts of the area, 
which slightly reduced its dimensions in the case of some secondary features, but it did not affect the 
further analysis. 

All the secondary features were imported (or created within the software in the case of the 
GLCMs) to eCognition software. The object-based statistics were extracted on the basis of the 
multiresolution segmentation of the backscatter intensity images with different ‘scales’ of 
segmentation (see Sections 2.4 and 3.4). The image objects were simply classified based on the point 
locations of the training samples (see Table A1). The mean scalar statistics of the classified objects, 
including all the investigated secondary features, were exported as georeferenced data. 

All the secondary features were selected using the Boruta feature selection algorithm in the R 
software, using the ‘Boruta’ and ‘rgdal’ libraries [40,41]. Boruta is a wrapper function based on the 
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2.4. Feature Extraction and Selection 

We extracted 70 secondary features from the bathymetric and backscatter data, 35 for each of the 
two analyzed frequencies (150 kHz and 400 kHz). Together with the primary datasets (bathymetry 
150 kHz, bathymetry 400 kHz, backscatter 150 kHz, and backscatter 400 kHz), we had 74 parameters 
in total. Table 2 presents all the extracted secondary features. The bathymetry-based features 
included the following: slope, aspect, eastness, northness, curvature, planar curvature, profile 
curvature, surface area to planar area (arc–chord ratio) [35], vector ruggedness measure (VRM) 
ruggedness [36], kurtosis, standard deviation of bathymetry, variance, fine-scale bathymetric 
position index (BPI), and broad-scale bathymetric position index [37]. While a majority of the features 
were calculated based on a sliding window size of 3 × 3 pixels, for some of them (slope, VRM 
ruggedness, bathymetry standard deviation, and kurtosis), we tested a multiscale approach [38]. For 
these features, we applied the following scales: 3 × 3, 5 × 5, 7 × 7, and 9 × 9. The backscatter secondary 
features included the following: backscatter standard deviation and various kinds of grey level co-
occurrence matrices (GLCMs) [39], including homogeneity, contrast, dissimilarity, entropy, angular 
second moment, mean, standard deviation, and correlation. The backscatter secondary features were 
extracted based on object-based statistics. The spatial extent of all the secondary features (of both the 
bathymetric and backscatter data) was almost the same within the analyzed dataset (150 kHz or 400 
kHz). The sizes of the sliding windows resulted in the occurrence of no data in some parts of the area, 
which slightly reduced its dimensions in the case of some secondary features, but it did not affect the 
further analysis. 

All the secondary features were imported (or created within the software in the case of the 
GLCMs) to eCognition software. The object-based statistics were extracted on the basis of the 
multiresolution segmentation of the backscatter intensity images with different ‘scales’ of 
segmentation (see Sections 2.4 and 3.4). The image objects were simply classified based on the point 
locations of the training samples (see Table A1). The mean scalar statistics of the classified objects, 
including all the investigated secondary features, were exported as georeferenced data. 

All the secondary features were selected using the Boruta feature selection algorithm in the R 
software, using the ‘Boruta’ and ‘rgdal’ libraries [40,41]. Boruta is a wrapper function based on the 
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2.4. Feature Extraction and Selection 

We extracted 70 secondary features from the bathymetric and backscatter data, 35 for each of the 
two analyzed frequencies (150 kHz and 400 kHz). Together with the primary datasets (bathymetry 
150 kHz, bathymetry 400 kHz, backscatter 150 kHz, and backscatter 400 kHz), we had 74 parameters 
in total. Table 2 presents all the extracted secondary features. The bathymetry-based features 
included the following: slope, aspect, eastness, northness, curvature, planar curvature, profile 
curvature, surface area to planar area (arc–chord ratio) [35], vector ruggedness measure (VRM) 
ruggedness [36], kurtosis, standard deviation of bathymetry, variance, fine-scale bathymetric 
position index (BPI), and broad-scale bathymetric position index [37]. While a majority of the features 
were calculated based on a sliding window size of 3 × 3 pixels, for some of them (slope, VRM 
ruggedness, bathymetry standard deviation, and kurtosis), we tested a multiscale approach [38]. For 
these features, we applied the following scales: 3 × 3, 5 × 5, 7 × 7, and 9 × 9. The backscatter secondary 
features included the following: backscatter standard deviation and various kinds of grey level co-
occurrence matrices (GLCMs) [39], including homogeneity, contrast, dissimilarity, entropy, angular 
second moment, mean, standard deviation, and correlation. The backscatter secondary features were 
extracted based on object-based statistics. The spatial extent of all the secondary features (of both the 
bathymetric and backscatter data) was almost the same within the analyzed dataset (150 kHz or 400 
kHz). The sizes of the sliding windows resulted in the occurrence of no data in some parts of the area, 
which slightly reduced its dimensions in the case of some secondary features, but it did not affect the 
further analysis. 

All the secondary features were imported (or created within the software in the case of the 
GLCMs) to eCognition software. The object-based statistics were extracted on the basis of the 
multiresolution segmentation of the backscatter intensity images with different ‘scales’ of 
segmentation (see Sections 2.4 and 3.4). The image objects were simply classified based on the point 
locations of the training samples (see Table A1). The mean scalar statistics of the classified objects, 
including all the investigated secondary features, were exported as georeferenced data. 

All the secondary features were selected using the Boruta feature selection algorithm in the R 
software, using the ‘Boruta’ and ‘rgdal’ libraries [40,41]. Boruta is a wrapper function based on the 
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2.4. Feature Extraction and Selection 

We extracted 70 secondary features from the bathymetric and backscatter data, 35 for each of the 
two analyzed frequencies (150 kHz and 400 kHz). Together with the primary datasets (bathymetry 
150 kHz, bathymetry 400 kHz, backscatter 150 kHz, and backscatter 400 kHz), we had 74 parameters 
in total. Table 2 presents all the extracted secondary features. The bathymetry-based features 
included the following: slope, aspect, eastness, northness, curvature, planar curvature, profile 
curvature, surface area to planar area (arc–chord ratio) [35], vector ruggedness measure (VRM) 
ruggedness [36], kurtosis, standard deviation of bathymetry, variance, fine-scale bathymetric 
position index (BPI), and broad-scale bathymetric position index [37]. While a majority of the features 
were calculated based on a sliding window size of 3 × 3 pixels, for some of them (slope, VRM 
ruggedness, bathymetry standard deviation, and kurtosis), we tested a multiscale approach [38]. For 
these features, we applied the following scales: 3 × 3, 5 × 5, 7 × 7, and 9 × 9. The backscatter secondary 
features included the following: backscatter standard deviation and various kinds of grey level co-
occurrence matrices (GLCMs) [39], including homogeneity, contrast, dissimilarity, entropy, angular 
second moment, mean, standard deviation, and correlation. The backscatter secondary features were 
extracted based on object-based statistics. The spatial extent of all the secondary features (of both the 
bathymetric and backscatter data) was almost the same within the analyzed dataset (150 kHz or 400 
kHz). The sizes of the sliding windows resulted in the occurrence of no data in some parts of the area, 
which slightly reduced its dimensions in the case of some secondary features, but it did not affect the 
further analysis. 

All the secondary features were imported (or created within the software in the case of the 
GLCMs) to eCognition software. The object-based statistics were extracted on the basis of the 
multiresolution segmentation of the backscatter intensity images with different ‘scales’ of 
segmentation (see Sections 2.4 and 3.4). The image objects were simply classified based on the point 
locations of the training samples (see Table A1). The mean scalar statistics of the classified objects, 
including all the investigated secondary features, were exported as georeferenced data. 

All the secondary features were selected using the Boruta feature selection algorithm in the R 
software, using the ‘Boruta’ and ‘rgdal’ libraries [40,41]. Boruta is a wrapper function based on the 
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All the secondary features were imported (or created within the software in the case of the GLCMs)
to eCognition software. The object-based statistics were extracted on the basis of the multiresolution
segmentation of the backscatter intensity images with different ‘scales’ of segmentation (see Sections 2.4
and 3.4). The image objects were simply classified based on the point locations of the training samples
(see Table A1). The mean scalar statistics of the classified objects, including all the investigated
secondary features, were exported as georeferenced data.

All the secondary features were selected using the Boruta feature selection algorithm in the
R software, using the ‘Boruta’ and ‘rgdal’ libraries [40,41]. Boruta is a wrapper function based on
the random forest classifier, which selects the most important attributes after conducting multiple
executions, evaluating performance by combining different subsets of input variables [22]. The result
of the algorithm is expressed via feature importance (Z-score). The Z-score expresses a number of
standard deviations between the result and the mean score. Features with the highest importance
have Z-scores that are significantly higher than their shadow attributes and therefore are selected as
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confirmed [42]. Features without a decision at the end of the analysis are marked as tentative [43].
We used the ‘rgdal’ library to properly import the georeferenced data to the R software [41].

Table 2. List of extracted secondary features of the bathymetric and backscatter data for each of the
analyzed frequencies (150 kHz and 400 kHz). VRM—vector ruggedness measure; BPI—bathymetric
position index; and GLCM—grey level co-occurrence matrix.

ID Bathymetry Feature Window Size ID Backscatter Feature Segmentation
Scale

1–4 Slope 3 × 3, 5 × 5, 7 × 7, 9 × 9 27 Standard deviation 5/10
5 Aspect 3 × 3 28 GLCM Homogeneity 5/10
6 Eastness 3 × 3 29 GLCM Contrast 5/10
7 Northness 3 × 3 30 GLCM Dissimilarity 5/10
8 Curvature 3 × 3 31 GLCM Entropy 5/10

9 Planar curvature 3 × 3 32 GLCM Angular Second
Moment 5/10

10 Profile curvature 3 × 3 33 GLCM Mean 5/10

11 Surface area to planar area
(arc–chord ratio) 3 × 3 34 GLCM Standard

Deviation 5/10

12–15 VRM ruggedness 3 × 3, 5 × 5, 7 × 7, 9 × 9 35 GLCM Correlation 5/10
16–19 Kurtosis 3 × 3, 5 × 5, 7 × 7, 9 × 9
20–23 Standard deviation 3 × 3, 5 × 5, 7 × 7, 9 × 9

24 Variance 3 × 3
25 Fine scale BPI 3 × 3
26 Broad scale BPI 3 × 3

2.5. Image Processing and Evaluation

The backscatter mosaics created using the FMGT software were classified using image processing
techniques. We evaluated pixel-based (PB) and object-based (OB) approaches. In our study, we used
one unsupervised pixel-based (PB) method of image clustering—Jenks natural breaks classification.
The algorithm works by maximizing the variance between the clusters and minimizing the variance
within them [44]. We applied the method separately for grey-level backscatter images of different
frequencies in the ArcGIS 10.4 software. According to our analysis of the ground-truth data, we
computed the algorithm for the five classes of habitats.

The object-based image analysis (OBIA) of the acoustic facies was performed based on a
multi-frequency, georeferenced backscatter image. We created objects in the eCognition Developer
9 software based on the multiresolution segmentation algorithm [45]. The technique creates images
of objects using a bottom-up region merging method from one pixel based on a defined ‘scale’ of
multiresolution segmentation. The merging process is based on the specific features of the relevant
objects, such as their spectral properties or shapes. When the algorithm reaches the homogeneity
criterion expressed by the ‘scale’ parameter, the fusion of neighboring objects stops [45]. Similarly,
such as in other OB habitat mapping studies, we used the following multiresolution segmentation
parameters: shape 0.1 and compactness 0.5 [46–49]. We tested the image objects created for the ‘scales’
of the multiresolution segmentation from 1 to 20 (with steps of 1).

The classifications of the image objects were performed based on a supervised approach using a few
algorithms: classification and regression trees [50], support vector machines [51], random forests [52], and
k-nearest neighbors. A supervised method assumes the utilization of a subset of ground-truth samples as
training sites. Table A1 shows a description of all the ground-truth samples with separation for training
and validation types. During the training process, the classifier computed the relationships between the
image and the separated ground-truth data. The next step—application—used the inferred function to
assign the unclassified areas implicitly [53].

The classification and regression tree (CART) technique generates a decision tree based on
recursive partitioning. Decision trees are organized in branches and leaves (or nodes) that concentrate
on similar groups of objects. Tree splitting increases the similarity within the groups until the terminal
nodes are reached, and the splitting process stops [50]. The strength of the CART classifier is the easily
interpreted result of the classification, which is explained as a series of questions. It does not assume
any underlying relationships between the predictor and the response features. The weaknesses of the
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CART classifier include the need for a primary estimation of the right size of the trees and the risk of
overfitting due to a large number of splits [54].

The support vector machine (SVM) is machine learning algorithm based on the support vector
approach. It partly belongs to the kernel-based classification methods [51]. The kernel is responsible
for the transformation of datapoints from the input space to a higher dimensional feature space.
The classifier creates the finest decision boundaries (called hyperplanes) that separate the feature
vectors inside this feature space [55]. The feature vectors that are nearest (in terms of distance) to a
hyperplane are called support vectors. The goal of the classifier is to obtain the largest possible margin
that will separate the features in the best way.

Similarly to the CART method, random forest (RF) is a classification technique based on a decision
tree approach [52]. The algorithm is responsible for the generation of many simple decision trees
based on a random set of variables. The classifier considers an input feature vector, classifying it with
all the trees in the forest and resulting in a class with the highest number of ‘votes’ [56]. One of the
best advantages of the RF classifier is the high level of performance that can be achieved after the
evaluation of many decision trees.

The k-nearest neighbors (KNN) algorithm is one of the simplest classifiers used in this study.
The algorithm classifies a certain query object based on a specified number (K) of training samples
located at the direct neighbor of the query point. To measure the influence of the neighbors, the
classifier calculates the Euclidean distance between the query point and each instance. The value of
K has a significant impact on the classification results. A number that is too small can cause a large
variance in the prediction, whereas a number that is too large may result in large model bias. Therefore,
it is typically recommended to choose a small value for K but to choose one that is large enough to
avoid the probability of misclassification [57].

The performance of the chosen classifiers was evaluated based on an accuracy assessment. Error
matrices were calculated for each classification result with cross-tabulation performed between the
generated map and the validation subset of the ground-truth samples [58]. We calculated the common
accuracy assessment statistics, such as the following: user’s and producer’s accuracy [59,60], overall
accuracy, and kappa index of agreement (KIA) [61]. We anticipated the possibility of several good
results related to different methods of classification. In such a case, we combined the best results to
strengthen the accuracy, similar to the approach used in a previous study [12]. The general workflow
of all the steps required to generate the predictive habitat maps in this study is presented in Figure 2.
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3. Results

3.1. Discrimination of Ground-Truth Samples

Our analysis of the ground-truth sediment samples and the ROV video inspections distinguished
5 main habitat classes. One additional class of artificial structures, visible in Table 1 was assigned
manually, so it was not considered as an input for the purposes of image processing. Figure 3A,B
present the distribution of the mean backscatter intensity versus the specified habitat class for both
of the frequencies used: 150 and 400 kHz. The values of the backscatter intensity were expressed
as relative intensity values in the logarithmic scale in dB [6]. In general, the diagrams depicting the
discrimination of the habitat classes showed a clear separation between the two groups of habitat
classes. Sands and very fine sands were characterized by a low return of the acoustic signal, whereas
the three remaining classes showed high backscatter. Moreover, the spread of the boxplots for the
150 kHz dataset was wider than the spread of the boxplots for the 400 kHz dataset. The thinner spread
of the latter suggested that it could separate the habitat classes more clearly than the 150 kHz dataset.

3.2. Multibeam Echosounder Data Processing

The results of the multibeam data processing using the QPS Qimera and FMGT software are
presented in Figure 4. The multi-frequency backscatter mosaic contained bands R (red) and G (green).
We assigned the backscatter mosaic for the 400 kHz frequency to band R and backscatter grid
of the 150 kHz frequency to band G. Figure 4B shows the location sites of the acquisition of the
ground-truth samples. The bathymetric and backscatter datasets were used as a basis to compute
70 secondary features.
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3.3. Feature Selection

The Boruta feature selection algorithm was used as a basis for the supervised classifiers. For each
scale of tested multiresolution segmentations, we extracted values of all the secondary features.
We predicted the habitat maps using different sets of important and tentative attributes of the Boruta
results. Figure 5A,B present the boxplots of the application of the feature selection algorithm for the
best results in this study. For multiresolution segmentation scale 5, Boruta confirmed the importance
of three features: backscatter 400 kHz, backscatter 150 kHz, and curvature 400 kHz. Three additional
tentative features were suggested: bathymetry 150 kHz, GLCM homogeneity 400 kHz, and bathymetry
400 kHz. For multiresolution segmentation scale 10, the Boruta feature selection technique confirmed
the importance of backscatter 400 kHz, backscatter 150 kHz, and bathymetry 400 kHz. It suggested
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three additional tentative attributes: slope 400 kHz, GLCM entropy 150 kHz, and the standard
deviation of bathymetry 400 kHz created with sliding window size 9. Other secondary features were
not relevant, so they were left for further analysis.
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3.4. Image Processing

As described above, object-based image analysis was performed based on multiresolution
segmentation of different scales, from 1 to 20. The best classification results were obtained for image
objects scales 5 and 10. For scale 5, the highest performance used the k-nearest neighbors classifier
with K = 1, after applying six selected secondary features (with tentative attributes). Another best
classification result was calculated using the random forest classifier for multiresolution segmentation
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scale 10. In this example, a set of four secondary features was applied: backscatter 400 kHz, backscatter
150 kHz, bathymetry 400 kHz, and slope 400 kHz.

Independently of the object-based image analysis, we performed pixel-based image processing
using Jenks natural breaks clustering algorithm with unsupervised separation of single-frequency
backscatter intensity images (150 kHz and 400 kHz) for the five classes. The results of all the applied
methods of classification are presented in Figure 6.
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Figure 6. Results of the image analysis for the images of backscatter intensity from the Rowy area in
the southern Baltic Sea: (A) multi-frequency backscatter of the analyzed area; (B) PB Jenks classification
for the 150 kHz frequency; (C) PB Jenks classification for the 400 kHz frequency; (D) object-based
(OB) KNN classification; (E) OB random forest (RF) classification; and (F) combined OB KNN and
RF classification.
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A visual inspection of the generated results supported by knowledge of the ground-truth samples
allowed us to determine that both of the pixel-based results (Figure 6B,C) had difficulties with
separating between the very fine sand (VFS) and sand (S) classes. These difficulties were visible
in the pixel-based results as large noise in the areas with low backscatter return (the darkest areas in
corresponding Figure 6A). It may have been caused by similar and slightly overlapping distribution
of the backscatter intensity between these two classes (Figure 3). Moreover, the pixel-based results
probably underestimated the class of red algae (R) and simultaneously overestimated the class of
boulders (B). This was visible especially in the results of the Jenks natural breaks algorithm for the
150 kHz frequency, where the areas of red algae, represented in the backscatter false color composite
by dark orange areas (see Figure 6A), were almost not separated from the boulder class (Figure 6C).
The separation of the sandy gravel and gravelly sand (SG_GS) class was similar in both PB results
(Figure 6B,C) and one OB result (KNN, see Figure 6D), and it was probably underestimated in the
case of the random forest result (Figure 6E). For comparison with the PB results, it seems that the
performance of both of the OB classifiers was good in separating between the very fine sand (VFS) and
sand (S) classes. The noise within the areas of low backscatter intensity visible in both PB results was
almost absent in the OB results. Between the two OB results there was, however, visible bias in the
spatial separation between the boulder (B) and sandy gravel–gravelly sand (SG_GS) classes (compare
Figure 6D,E).

3.5. Accuracy Assessment of Results

The performances of all the applied approaches of image analysis were evaluated based on error
matrices and accuracy assessment statistics, shown in Tables A2–A5. Both object-based results had
similar statistics with an overall accuracy of 86% and a kappa index of agreement of 0.81 (Tables A4
and A5). The accuracy assessment of the pixel-based results indicated much lower statistics with an
overall accuracy of 42% and a kappa index of agreement of 0.24–0.27 (Tables A2 and A3). The error
matrices confirmed our visual evaluations of the classifiers for certain classes suggested in the
previous section. The highest user’s and producer’s accuracy per class indicated that apart from
the VFS class, the KNN classifier perfectly determined the SG_GS class, while the RF method ideally
separated the R class in comparison with all the other results. We took advantage of these perfect
separations by combining both OB results. The predictive model that combines the object-based
KNN and RF algorithms is presented in Figure 6F. This model increased the overall accuracy to 93%
and the KIA measurement to 0.90. The error matrix of the combined model is shown in Table A6.
Despite receiving high statistics in the accuracy assessment, we should note that the small number
of ground-truth samples meant that each sample represented a high kappa value. This issue should
be paid close attention as a potential source of errors when comparing this study with other marine
habitat mapping studies.

4. Discussion

Multi-frequency, multibeam echosounder data is a promising new approach in the characterization
of seabed habitats. Recent research confirms that the simultaneous analysis of many frequencies
leads to a better understanding of seafloor properties [62]. Although we did not use a multibeam
echosounder with multispectral mode (such as the R2Sonic 2026) for our measurements, we repeated
the hydroacoustic surveys with different frequencies. Similar research has been presented in [62], where
the surveys were repeated with three different frequencies: 200, 400, and 600 kHz. This approach helped
us to make a detailed acoustic characterization of the seabed sediments. In our case, we performed
hydroacoustic research at two frequencies: 150 kHz and 400 kHz. The additional information from the
ground-truth data allowed us to define the distributions of the acoustic backscatter for all the classes of
habitats, which differed depending on the frequency used. All the feature selection results confirmed
that attributes of both frequencies were useful to explain the variability of the analyzed data.
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The Boruta feature selection algorithm has been tested in the benthic habitat mapping literature a
few times, giving promising results [22,63]. Our results confirmed the usefulness of the application of
this feature selection method in habitat mapping. We recommend that if the algorithm would work on
statistics gathered from object-based image analysis, then the classification should be performed on
the same segmentation setting.

Our study confirmed that beyond the primary features, such as backscatter and bathymetry,
some other secondary features were useful, such as slope, GLCM entropy, GLCM homogeneity, and
the standard deviation of bathymetry. We suggest remembering such attributes for further feature
selection actions. The list of suggested secondary features is not yet finished and may include, for
example, spatial autocorrelation [63]; hue, saturation, and intensity [64]; angular range analysis [65],
Q-values [66]; and maximum orbital velocity [64].

The scale of multiresolution segmentation is a very important setting of OBIA, which has an
impact on further analysis, including the results of the classification [45]. Up to now, at least a few
benthic habitat mapping studies have included the application of different scales of multiresolution
segmentation [46,49]. To estimate the parameter in a proper way, we tested many scales from 1 to 20,
with a step of 1—similar to the approach in [49]—for a wider range of the parameters. The best scale
was chosen for the best accuracy assessment of the evaluated classification methods. Although the
investigation of the dependency between the accuracy and the multiresolution segmentation scale
used was not the aim of this study, we tested 80 sets of the OB segmentation–classification results
(20 scales × 4 classifiers). Our attempts confirmed that the scale of the multiresolution segmentation
was imperfect, and its incorrect determination may have led to poor results in the object-based
classification. Future research should take a closer look at this phenomenon and investigate the
changes in accuracy depending on the scale of the multiresolution segmentation parameter.

In this study, we performed a robust object-based methodology on a relatively small test area,
characterized by diverse habitat conditions with the occurrence of unique red algae. Considering
the regional conditions, there are no areas with similar characteristics within the Polish coast of the
southern Baltic Sea. It should be noted that in the marine habitat mapping literature, there have
been studies based on similar or smaller spatial extents, such as 0.056 km2 [48] or 0.39 km2 [12].
Other methods of benthic habitat mapping based on object-based image analysis were previously
applied in various environments and areas, from smaller areas [48] to slightly less diverse areas within
the Polish coast of the southern Baltic Sea [49] to larger areas [67]. Therefore, we can state that our
methodology would be scalable.

In this study, we designed a ground-truth survey to encompass the representativeness of all kinds
of habitats. It is necessary to keep in mind that a set of samples that is too small can lead to a falsified
accuracy result [68]. Some studies have presented results of seabed mapping after analysis of similarly
small but representative numbers of ground-truth samples [10,17,42,49]. In any such case, there is
a possibility of errors, for which the sources have been described in detail (e.g., [69]). Despite the
relatively small number of samples, we used varied methods of sampling, including Van Veen grabs
and ROV video inspections within all the sites. Thus, our ground-truth survey was designed to obtain
strict and diverse knowledge of the analyzed area.

Considering the unit of analysis, the methods of classification could be separated between
pixel-based (PB) and object-based (OB) methods. The utilization of ground-truth samples allowed for
further division between unsupervised and supervised techniques. The Jenks natural breaks method
has been applied in habitat mapping studies several times [48,70]. In comparison with similar research,
we obtained poor accuracy using this classification in this study. In our pixel-based classifications,
there were visible ‘salt and pepper’ effects caused by the noise of the input data, which was obvious
in comparison with the OB approaches [71]. The reason for the poor accuracy may be related to the
overlapping distribution of the backscatter intensity for the habitat classes described in Section 3.1.

Different approaches of machine learning or decision trees have been widely used in recent
predictive habitat mapping (e.g., [12,22,46,48,67,72,73]). Such approaches belong to both PB and OB
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techniques and supervised classification methods, executing top-down strategies: “assemble first,
predict later” [13]. The OB approach of supervised classifiers has been developed over the last few
years in marine habitat mapping (e.g., [12,46,48,65,67]). Many of the aforementioned studies concerned
evaluations of classification methods. In particular, the random forest method seems to be a promising
method for the automatic classification of benthic habitats. For example, in [65], the RF method
achieved an excellent result of 94% overall accuracy and a KIA of 90%. Results with 80% overall
accuracy are common in marine habitat mapping when using the random forest classifier [12,22,67].

The KNN classifier has been applied much less often in marine habitat mapping studies with
other well-known examples [46,48]. In these studies, the KNN classifier separated classes with an
overall accuracy from 52% to 66%. Considering the KIA value (from 0.38 to 0.43), the performance
of the KNN classifier in these studies can be described as fair to moderate [46]. In our study, we
obtained better accuracy using this method, but possible sources of errors should be kept in mind (see
Section 3.5). We recommend continuing to evaluate this method of classification in further habitat
mapping studies.

The application of two frequencies of MBES measurements is very interesting from the viewpoint
of marine habitat mapping. The acoustic responses of the habitats are dependent on the frequency;
therefore, distinct frequencies may reveal different attributes. With two frequencies, we have a better
possibility of achieving habitat discrimination. One recent study has suggested that the combination of
PB and OB methods can lead to a better separation of classes, resulting in better accuracy [12]. In the
aforementioned study, the application of such an approach increased the overall accuracy by 5.1% and
the kappa value by 0.06 (overall accuracy—83.6%, KIA—0.78). In comparison, the combination of
two OB classifiers in our study allowed us to increase the overall accuracy by 7.1% and the KIA by
0.10. Both results suggest that the combination of the best classification outcomes might be useful and
promising in future marine habitat mapping studies.

5. Conclusions

In this study, we developed a robust workflow for predictive habitat mapping based on
multi-frequency, multibeam echosounder data. For the first time, we recognized and distinguished six
nearshore habitats of the Rowy area in the southern Baltic Sea. The identified habitats included very
rare seascapes for the Polish coast of the Baltic Sea, encompassing species of red algae and boulder
sites colonized by Mytilus Trossulus bivalves. Future research will be conducted using the same model
of multibeam echosounder device but with an acoustically calibrated option regarding the backscatter
strength. Therefore, the composition of the seafloor will be represented from a physical point of view,
which would create new perspectives in benthic habitat mapping, such as the ability to track spatial
changes of habitats over time [42].

An important part of our workflow was the feature extraction and selection. We extracted
70 secondary features of the bathymetric and backscatter data. They included either pixel-based
statistics or object-based GLCM textures. Some features were calculated based on multiscale or
object-based approaches. The Boruta feature selection algorithm allowed us to choose relevant
attributes, which included the following (beyond bathymetry and backscatter): slope, GLCM entropy,
GLCM homogeneity, and the standard deviation of bathymetry. Our results confirmed the usefulness
of the application of the Boruta feature selection method in habitat mapping. The proper feature
selection helped us to discriminate habitat classes with similar distributions of backscatter intensity.
However, the list of secondary features is not yet complete. We suggest expanding it for other attributes
and a multiscale approach.

We tested different aspects of image processing, such as pixel-based and object-based image
analysis, unsupervised and supervised methods of classification, and habitat mapping based
on single-frequency and multi-frequency multibeam echosounder (MBES) datasets. Our results
demonstrated the great usefulness of object-based image analysis and supervised classifiers, such as the
random forest and k-nearest neighbors algorithms. Because, in our case, each classifier performed better
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with respect to specific classes of habitats, we took advantage of the best results and combined them,
obtaining very good agreement—93% overall accuracy and a 0.90 Kappa coefficient. We applied such
a combination based on two object-based results. In our study, the application of the multi-frequency,
MBES dataset with the proper selection of secondary features significantly increased the accuracy of
the habitat maps with respect to the single-frequency results.

Our workflow encouraged us to offer some additional suggestions. We recommend taking a
closer look at the scale of multiresolution segmentation in object-based marine habitat mapping studies.
A particularly interesting topic is the changes in accuracy depending on the scale of multiresolution
segmentation parameter. We also recommend evaluating the k-nearest neighbors method of classification
in future habitat mapping studies.

The rapid development of the hydroacoustic industry will bring about the greater availability of
multi-frequency, multibeam echosounder data. Our predictive habitat mapping of shallow euphotic zones
creates a new scientific perspective and provides relevant data for the management of natural resources.
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Appendix A

Table A1. Specifications of the ground-truth samples with their ID numbers, types, and geographic
coordinates. The symbols of the habitat classes correspond with those in Table 1.

ID Habitat Class Type 1 Grab 2 Latitude Longitude

1 S T + 54.677560 17.054628
2 S V + 54.677732 17.050173
3 B T 54.678197 17.046282
4 S T + 54.677502 17.044602
5 S T + 54.677612 17.040122
6 SG_GS V + 54.677525 17.036633
7 S V + 54.677740 17.035105
8 B T 54.678568 17.035853
9 B V 54.678383 17.038660
10 SG_GS T + 54.678663 17.042602
11 B T 54.679515 17.048127

11b SG_GS T ++ 54.679627 17.048258
12 B V 54.679442 17.052195
13 S V + 54.680213 17.053486
14 R T 54.681648 17.050273
15 R+A T 54.681360 17.047902
16 R V 54.680400 17.041873
17 B T 54.681088 17.035512
18 B V 54.682185 17.035162
19 VFS V + 54.685313 17.034647
20 VFS T ++ 54.684372 17.037770
21 SG_GS T + 54.683967 17.037770
22 VFS T + 54.684997 17.045757
23 SG_GS V + 54.685348 17.053240
24 R V 54.683367 17.050290
25 R T 54.682583 17.046350
26 B V 54.683652 17.044187
27 B T 54.682180 17.040230
28 R V 54.681417 17.044258
29 R T 54.684967 17.041220
30 B V 54.680248 17.038418

1 The types of samples are as follows: T—training and V—validation; 2 the methods of acquisition include the
following: video recordings and grab samples (+), only video recordings (blank cells), or only grab samples (++).
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Appendix B

Table A2. Error matrix and accuracy assessment statistics for the Jenks classification of the PB results
based on the backscatter intensity grid of 150 kHz.

Reference Class

User S SG_GS B R VFS Sum

S 0 0 0 0 0 0
SG_GS 0 1 1 0 0 2

B 1 1 3 2 0 7
R 0 0 1 1 0 2

VFS 2 0 0 0 1 3
Sum 3 2 5 3 1

Producer 0 0.5 0.6 0.333333 1
User 0 0.5 0.428571 0.5 0.333333

Overall Accuracy 0.428571
KIA 0.243243

Table A3. Error matrix and accuracy assessment statistics for the Jenks classification of the PB results
based on the backscatter intensity grid of 400 kHz.

Reference Class

User S SG_GS B R VFS Sum

S 1 0 0 0 0 1
SG_GS 0 1 3 0 0 4

B 0 1 2 2 0 5
R 0 0 0 1 0 1

VFS 2 0 0 0 1 3
Sum 3 2 5 3 1

Producer 0.333333 0.5 0.4 0.333333 1
User 1 0.25 0.4 1 0.333333

Overall Accuracy 0.428571
KIA 0.272727

Table A4. Error matrix and accuracy assessment statistics for the KNN classification of the results
based on multiresolution scale 5.

Reference Class

User S SG_GS B R VFS Sum

S 2 0 0 0 0 2
SG_GS 0 2 0 0 0 2

B 1 0 5 1 0 7
R 0 0 0 2 0 2

VFS 0 0 0 0 1 1
Sum 3 2 5 3 1

Producer 0.666667 1 1 0.666667 1
User 1 1 0.714286 1 1

Overall Accuracy 0.857143
KIA 0.805556
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Table A5. Error matrix and accuracy assessment statistics for the RF classification of the results based
on multiresolution segmentation scale 10.

Reference Class

User S SG_GS B R VFS Sum

S 2 0 0 0 0 2
SG_GS 1 1 0 0 0 2

B 0 1 5 0 0 6
R 0 0 0 3 0 3

VFS 0 0 0 0 1 1
Sum 3 2 5 3 1

Producer 0.666667 0.5 1 1 1
User 1 0.5 0.833333 1 1

Overall Accuracy 0.857143
KIA 0.808219

Table A6. Error matrix and accuracy assessment statistics for the combined model of classification
based on the KNN and RF results.

Reference Class

User S SG_GS B R VFS Sum

S 2 0 0 0 0 2
SG_GS 0 2 0 0 0 2

B 1 0 5 0 0 6
R 0 0 0 3 0 3

VFS 0 0 0 0 1 1
Sum 3 2 5 3 1

Producer 0.666667 1 1 1 1
User 1 1 0.833333 1 1

Overall Accuracy 0.928571
KIA 0.904110
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