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Abstract: Monitoring the development of vegetation height through time provides a key indicator
of crop health and overall condition. Traditional manual approaches for monitoring crop height
are generally time consuming, labor intensive and impractical for large-scale operations. Dynamic
crop heights collected through the season allow for the identification of within-field problems at
critical stages of the growth cycle, providing a mechanism for remedial action to be taken against
end of season yield losses. With advances in unmanned aerial vehicle (UAV) technologies, routine
monitoring of height is now feasible at any time throughout the growth cycle. To demonstrate this
capability, five digital surface maps (DSM) were reconstructed from high-resolution RGB imagery
collected over a field of maize during the course of a single growing season. The UAV retrievals
were compared against LiDAR scans for the purpose of evaluating the derived point clouds capacity
to capture ground surface variability and spatially variable crop height. A strong correlation was
observed between structure-from-motion (SfM) derived heights and pixel-to-pixel comparison against
LiDAR scan data for the intra-season bare-ground surface (R2 = 0.77 − 0.99, rRMSE = 0.44% − 0.85%),
while there was reasonable agreement between canopy comparisons (R2 = 0.57 − 0.65, rRMSE = 37%
− 50%). To examine the effect of resolution on retrieval accuracy and processing time, an evaluation
of several ground sampling distances (GSD) was also performed. Our results indicate that a 10 cm
resolution retrieval delivers a reliable product that provides a compromise between computational
cost and spatial fidelity. Overall, UAV retrievals were able to accurately reproduce the observed
spatial variability of crop heights within the maize field through the growing season and provide
a valuable source of information with which to inform precision agricultural management in an
operational context.

Keywords: dynamic crop height; UAV; digital image processing; image matching; site-specific crop
management; intra-field spatial variability

1. Introduction

Over the last decade, there has been a surge of interest in the development and use of unmanned
aerial vehicles (UAVs) for agricultural and environmental applications [1–3]. The opportunities
presented by these emergent earth observation systems have revolutionized the manner in which
spatial information can be retrieved, offering new capacity for on-demand sensing and high
spatio-temporal coverage [4]. UAVs have the capacity to provide remotely sensed data in real time
and in the field and do not suffer from the inherent lag of satellite and aircraft-based imagery [3].
It is this increased speed of image interpretation, together with the associated spatial and temporal
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improvements, that show potential for changing how farmers interact with and respond to their fields.
Overall, advances in UAV platforms [5], sensors design and miniaturization [6], improvements in
imaging techniques and processing workflows [7], as well as the availability of ultra-high temporal and
spatial resolution data [4] are revolutionizing the way in which environmental monitoring applications
can be undertaken [8].

One area where UAVs have shown considerable potential is through their application in precision
agriculture. Precision agriculture involves the use of geospatial techniques and sensors to identify
variations within the field, with a purpose of aiding crop production via targeted use of inputs
and leading to reduced yield losses from nutrient imbalance, weed outbreaks or insect damage [9].
In line with this, a range of remote sensing system has been applied to investigate aspects such as
crop fraction [10], weed detection [11,12] and vegetation properties via both hyperspectral [13,14] and
multispectral [15] sensors. Thermal and LiDAR sensor have also been deployed to estimate evaporative
fluxes [16] as well as crop height monitoring [17,18], respectively.

Measuring canopy phenotypic variables such as crop height is of much interest to researchers and
agronomists, since it can be used to determine crop management strategies for maximizing crop yield.
Indeed, crop height is one of the most direct indicators of plant growth and development and can
be indirectly related to productivity and growth rate [19,20]. For instance, under normal conditions,
plants are expected to grow to a certain height during each growth state [21]. In contrast, if a plant
is stressed due to disease or a lack of water or nutrients, its growth rate may be negatively affected,
potentially reducing the final crop yield [22,23]. Several previous studies focusing on crop height
estimation have highlighted its importance as a key indicator for monitoring health and condition.
For instance, crop height has been positively correlated with the crop yield [24–26] and exhibits a close
relationship with crop biomass [27,28] and soil nitrogen supply [29].

As plant breeders strive to develop better hybrids to meet current and future food demand,
repeated phenotypic measurements of canopy properties over large fields are often required [30].
Commonly used manual approaches for monitoring crop height are time consuming, labor intensive
and impractical for large-scale commercial operations. Furthermore, they do not generally provide
the intra- or inter-field spatial variability, which is a key requirement of any precision agricultural
based approach. One of the main advantages of UAV-based crop height and growth estimation is that
retrievals can be obtained with relatively standard instrumentation, as compared to many other types
of remote sensing systems [31,32]. With advances in UAV technologies, routine monitoring of height is
now feasible at any time of the growth cycle, providing spatially explicit retrievals on an as-needed or
taskable basis [4]. This represents a valuable information resource not only in terms of crop production
but also for more general agricultural management, facilitating the detection of intra-field spatial
variability that may result from ineffective irrigation practices, fertilizer variability, as well as salinity
and other soil property issue. Through such knowledge, the concept of more “crop-per-drop” can be
better realized, as too the reduction of unnecessary fertilizer and pesticide application. In dryland
environments like Saudi Arabia [33], this concept is even more crucial, as the proportion of water use
in agricultural production has been estimated at more than 80% [34], much of which is derived from
already over-stressed groundwater systems [35]. It is clear that efforts to enhance food production in
such-regions need to consider parallel responses in terms of sustainability and effective management
of agricultural systems [36].

The collection of overlapping UAV imagery allows for the reconstruction of the Digital Surface
Map (DSM) through application of Structure from Motion (SfM) algorithms [37,38], a photogrammetric
imaging technique used to estimate three-dimensional structures from two-dimensional image
sequence. To do this, large collections of RGB imagery derived from miniaturized sensors onboard
UAVs can be automatically processed for aerial triangulation and camera orientation adjustments.
The image overlap is then exploited by computer vision algorithms to find correspondence between
images and features such as corner points (edges with gradients in multiple directions), which are
tracked from one image to the next. Over the course of the last decade, a number of commercial and
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open-source software has been developed with the aim of providing users with accurate DSMs [39].
In combination with appropriate georeferencing, these data provide a capacity to extract and assess
crop height and growth [40,41]. Nevertheless, estimating the absolute crop height above ground
from a DSM remains problematic because of a lack of knowledge on the elevation and variability
of the underlying terrain. Although different methodologies have been proposed to extract crop
height from a DSM, retrieving a bare soil map (without vegetation on the surface) that is subsequently
subtracted from a DSM, remains the most convenient method to retrieve crop height. A number of
previous studies have demonstrated the efficiency of the “difference method” in delivering reliable
crop height values [42,43]. When compared to methodologies that use landcover separation techniques
to discriminate between terrain (soil) and vegetation (hence enabling crop height to be determined from
a single flight without the need of a bare soil map) [31,32,44,45], the difference approach has proven to
be simpler, faster and requires significantly less expertise to produce useful results [46]. The required
terrain model (bare soil) for the difference method can be most easily derived by performing a UAV
survey immediately before and/or after the sowing date [46].

A number of UAV-based SfM studies have focused on a single UAV campaign to monitor crop
height. Such studies examined a variety of agricultural crops, including maize [47], sorghum [47,48],
alfalfa [49], vineyards [50,51], sugarcane [52] and olive tree plantations [53]. Despite positive
results, a single crop height extraction during the growing season is generally not able to provide
the information needed to inform precision agricultural management. Further progress in crop
height analyses have assessed the retrieval of multi-temporal crop height using LiDAR [44,54],
near-infrared [55] and RGB stereo images captured by UAVs. Among the latter, multi-temporal crop
height estimation has been undertaken for maize [32], sorghum [31,32], wheat [46,56] and barley [42,57].
Holman et al. [58] assessed the crop height retrieval of wheat with different nitrogen conditions, while
others have examined the relationship between multi-temporal crop height and biomass for forage monitor
in grassland [59] and for maize under different levels of nitrogen applications [45]. Bendig et al. [60]
estimated barley biomass using dynamic crop height data retrieved from a UAV, while Schirrman et al. [61]
evaluated the relationship among multiple biophysical parameters in wheat (i.e., multi-temporal
crop height, LAI, nitrogen status and biomass). More recently, Moeckel et al. [62] used the UAV-SfM
approach to monitor vegetable crops (i.e., eggplants, tomatoes and cabbage). Despite the successful
application of RGB imagery in UAV-based SfM approaches, all of the cited multi-temporal studies
have used rotary UAVs, which have tended to limit the crop monitoring to relatively small field scales
(i.e., they did not exceed 11 ha [61]). Ultimately, the physical constraints that characterize this type of
sensing systems (i.e., lower flight time, flying height and air-speed) enable crop monitoring only at
smaller scales.

One of the aims of this contribution was to assess the retrieval of multi-temporal crop height
from a fixed-wing UAV over a large commercial scale (50 ha) agricultural field and to examine the
practical implementation of this procedure. An extensive evaluation of the intra-field crop variability
throughout the growing season is presented and an assessment of the UAV derived crop height is
conducted using ground-based LiDAR data via a pixel-by-pixel scale comparison. We determine
whether the retrieval of dynamic crop height is applicable at industrial field scales and repeatable
over the growth cycle of the crops by conducting five unique surveys and a multi-temporal DSM
derived from ultra-high (2.5 cm) resolution RGB imagery. Specific objectives for this study include: (1)
evaluating the capacity of a fixed-wing UAV to drive SfM based 3D canopy models at the large field
scale, repeatedly and consistently over time; (2) testing and applying a repeatable processing workflow
to derive crop height; (3) investigating the accuracy of SfM plant height estimates when compared
directly to LiDAR ground measurements; and (4) assessing this comparison at multiple resolution
scales (2.5, 5, 10 and 20 cm). Considering the importance of crop height as a metric to assess the health
and status of agricultural crops, a further goal of this investigation is to demonstrate its applicability in
providing farmers (as well as the research community) with practical guidance for data collection and
processing that can be used to inform a typical precision agricultural application.
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2. Materials and Methods

2.1. Study Site and Field Conditions

Five UAV campaigns were undertaken over the Tawdeehiya farm (24.174◦N, 48.015◦E) in the Al
Kharj region of Saudi Arabia, approximately 200 km southeast of Riyadh (Figure 1a). 47 fields are
operated under center-pivot irrigation, which at the time of the UAV campaigns were planted with
a mix of Rhodes grass, alfalfa, maize, carrots and smaller quantities of other vegetables. The study
site is characterized as a hot desert climate [63] with a very low annual precipitation of 95 mm that is
concentrated between December and April [64]. Records from the farm meteorological station reported
that the average daytime maximum temperature during the growing season was 39.4 ◦C, while the
rainfall was limited to 13.5 mm and concentrated in the first two weeks of April. The focus of this
investigation is a single 50 ha center-pivot field with a diameter approaching 800 m, planted with
maize (Inovi hybrid variety) on 19 March and harvested on 26 June 2016. The cultivar was planted
with a row spacing of 50 cm and aiming for a total of 90,000 kernel/ha (which correspond to a plant
density of 9 plants/m2). Due to the hot weather conditions and the structure of the soil (mainly sandy
soil), the pivot is heavily (and constantly) watered throughout the duration of the growing season.
The center-pivot irrigation system has a speed of one revolution every 40 h during the first three
weeks of the season and every 60 h for the remaining period (i.e., until harvesting), with the sprinklers
delivering 1250 gallons of water per minute.
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Oxide-Semiconductor sensor (23.5 mm × 15.6 mm) and equipped with a 20 mm wide-angle lens, with 
max aperture f/2.8 (Figure 1c). 

Figure 1. UAV platform and associated flight path utilized for surveying the maize pivot: (a) location
of the Tawdeehiya commercial farm in Saudi Arabia; (b) the Quest UAV and (c) the Sony mirrorless
NEX-7 with 24 Mpx sensor deployed onboard of the UAV system; (d) the flight path and camera
location of where images were collected.

2.2. Description of UAV Flight Control and Sensor Payload

A remote controlled fixed-wing UAV (QuestUAV, Northumberland, UK) was employed for data
collection (Figure 1b). The simple architecture of the UAV (carbon fiber body with single propeller
engine and a wingspan of 195 cm) ensures more efficient aerodynamics, providing the advantage
of longer flight duration at higher speeds (up to 60 min at an average cruise speed of 35 knots) and
enabling a large survey area per given flight. The UAV was deployed with a 24 MP Advanced Photo
System type-C compact digital camera (Sony Nex-7) with Complementary Metal-Oxide-Semiconductor
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sensor (23.5 mm × 15.6 mm) and equipped with a 20 mm wide-angle lens, with max aperture f/2.8
(Figure 1c).

To retrieve the intra-field dynamic crop height of the maize field, multiple UAV flights were
conducted over the course of five field campaigns, starting from 15 days after planting and finishing
one day before harvesting. The campaigns were conducted under clear sky conditions on Day of Year
(DOY) 95, 109, 119, 130 and 177 of the year 2016. In order to ensure consistency amongst the image
sequence and to facilitate the DSM reconstruction during post-processing, all flights were planned with
a high-frequency shooting time of 1 s and with a high number of flight lines (14 per flight). This ensured
an almost 85% frontal overlap and 60% side overlap between each image, which is necessary to identify
sufficient key points and to create the 3D point clouds for surface model generation and consistent
with the recommended overlap for collected UAV imagery analyzed using SfM [65,66]. It should be
noted that due to a camera bay obstruction, the images collected on DOY 109 were partially blocked.
To ensure reliable post-processing, the dark portion of each picture was cropped and each EXIF header
file updated to include a lower image resolution compared to the other surveys (Table 1).

Table 1. Summary of captured image dataset, GCPs and GSD.

Flight Date
(2016) DOY Images Resolution

(Image Pixels) Flight Time GCP Elevation
Range (m)

Min GSD
(cm/Pixel)

4 April 95 892 6000 × 4000 10:57 a.m. 359.595–363.971 2.47
18 April 109 868 6000 × 3150 10:47 a.m. 359.492–363.984 2.52
28 April 119 882 6000 × 4000 10:51 a.m. 359.924–363.999 2.50
9 May 130 812 6000 × 4000 10:30 a.m. 360.274–364.004 2.56
25 June 177 813 6000 × 4000 10:12 a.m. 360.987–364.104 2.49

The UAV was auto-piloted along predefined flight paths created using the UgCS Mapper software
(Figure 1d). Flight elevation was set to 120 m above the ground and the flying time ranged between
14 and 15 min, depending on the survey. Based on the aforementioned specifications, a Ground
Sampling Distance (GSD) of 2.5 cm (which represents the distance between two consecutive pixel
centers measured on the ground) was achieved and subsequently used for the determination of
crop height.

In order to correctly place the UAV images in relation to the Earth, several ground control points
(GCPs) were used for ensuring an accurate georeferencing of the entire dataset. For this purpose,
15 GCPs were deployed around and within the pivot (Figure 2a) prior to undertaking each UAV
flight, with their position measured with an RTK-GPS system (Leica Viva GS10 Base and GS15 Rover,
Leica Geosystem, St. Gallen, Switzerland), providing a horizontal and vertical accuracy of 0.8 and
1.5 cm, respectively. The spatial arrangement of the GCPs has been optimized in order to cover the
800 m diameter center pivot and to achieve high crop estimation accuracy over the entire maize
field. Previous studies have highlighted the importance of an adequate number and location of GCPs
in order to achieve an accurate outcome [67,68]. The GCPs used here were 50 cm × 50 cm plastic
frames consisting of a white canvas fabric on which two black triangles were painted from the corners.
The configuration provides the vertex in the middle of the frame, from which the GPS measurements
were taken (Figure 2c). Table 1 summarizes relevant information on each of the surveys, including the
number of images collected, GCPs elevation range and minimum GSD and the geolocation error for
each campaign flight.



Remote Sens. 2018, 10, 2007 6 of 25

Remote Sens. 2018, 10, x FOR PEER REVIEW  6 of 24 

 

 
Figure 2. (a) Spatial arrangement of the 15 ground control points (GCPs) across the maize field (first 
campaign with recently planted crop shown in this example); and (b) related digital surface model 
obtained after georeferencing; (c) Ground control point positioning and set up. The GCPs were placed 
in the field before each UAV flight and their coordinates measured using an RTK-GPS system. 

2.3. Image Processing: Georeferencing Using Computer Vision Approaches 

Agisoft PhotoScan Professional (Version 1.3) was used to process all the RGB images for each 
UAV collection, generating the digital surface maps and corresponding orthomosaics. For a reliable 
DSM reconstruction, consistency of the underlying image data is paramount. As such, prior to 
initiating the software workflow, a consistent image based specification of a coordinate system was 
needed. Therefore, we re-projected the WGS 84 coordinates into the UTM system (Zone 38 N). The 
3D processing workflow comprises three main stages: (i) camera alignment; (ii) point cloud 
densification; and (iii) DSM/orthomosaic generation. As a first step, PhotoScan employs the scale-
invariant feature transform (SIFT) algorithm [40,41] to detect and describe local features on 
photographs, as well as finding the positions of the cameras for refining the camera calibration 
parameters. A sparse point cloud and a set of camera positions are then generated. Default values for 
the key point limits (40,000 points) and tie point limits (4000 points) were used for this step in 
PhotoScan. After accurate image matching, a careful georeferencing of the point clouds using the 
deployed GCPs is needed. The introduction of GCPs with several millimeter accuracies allows an 
optimization of these parameters and a higher spatial fidelity. The software employs a guided marker 
placement approach [69], whereby the localization of the GCP on only two images is enough to make 
the software find all the GCP positions in the other photos. As a result, the 15 GCPs were incorporated 
by identifying each of them in the 12–20 images in which they appeared. 

Figure 2. (a) Spatial arrangement of the 15 ground control points (GCPs) across the maize field (first
campaign with recently planted crop shown in this example); and (b) related digital surface model
obtained after georeferencing; (c) Ground control point positioning and set up. The GCPs were placed
in the field before each UAV flight and their coordinates measured using an RTK-GPS system.

2.3. Image Processing: Georeferencing Using Computer Vision Approaches

Agisoft PhotoScan Professional (Version 1.3) was used to process all the RGB images for each UAV
collection, generating the digital surface maps and corresponding orthomosaics. For a reliable DSM
reconstruction, consistency of the underlying image data is paramount. As such, prior to initiating
the software workflow, a consistent image based specification of a coordinate system was needed.
Therefore, we re-projected the WGS 84 coordinates into the UTM system (Zone 38 N). The 3D processing
workflow comprises three main stages: (i) camera alignment; (ii) point cloud densification; and (iii)
DSM/orthomosaic generation. As a first step, PhotoScan employs the scale-invariant feature transform
(SIFT) algorithm [40,41] to detect and describe local features on photographs, as well as finding the
positions of the cameras for refining the camera calibration parameters. A sparse point cloud and a set
of camera positions are then generated. Default values for the key point limits (40,000 points) and tie
point limits (4000 points) were used for this step in PhotoScan. After accurate image matching, a careful
georeferencing of the point clouds using the deployed GCPs is needed. The introduction of GCPs with
several millimeter accuracies allows an optimization of these parameters and a higher spatial fidelity.
The software employs a guided marker placement approach [69], whereby the localization of the GCP
on only two images is enough to make the software find all the GCP positions in the other photos.
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As a result, the 15 GCPs were incorporated by identifying each of them in the 12–20 images in which
they appeared.

Based on the estimated camera positions and the pictures themselves, the software produces
a much denser points cloud with known ground coordinates [70] using the so-called dense stereo
matching algorithm [71]. Ultra-high, high, medium and low accuracy, in combination with disabled
depth filtering, were used to generate the dense clouds. This setting was chosen with the aim of
preserving as much as possible the plants’ structure (which would not be detected with a heavier
filtering solution) and emphasizing the intra-field crop variability. Finally, the generated dense point
cloud is interpolated to create a triangulated irregular network that consists of the digital surface
model. This step is followed by the orthomosaic and DSM generation procedure, with the image
exported in GeoTIFF Data format. On a 16 core, 2.4 GHz, 128 Gb RAM and 4 Gb GPU windows server
workstation, it took between 6 and 64 h, depending on the resolution, to process each day of collected
data, resulting in over 60 Gb of total storage. It should be noted that the point cloud generation is the
most time consuming step in the PhotoScan processing workflow. In particular, the different resolution
outputs have been obtained using different accuracy settings to create the point cloud. Ultra-high,
high, medium and low accuracy produce, respectively, 2.5, 5, 10 and 20 cm resolution outcomes, with
a computational cost, in terms of processing time, that reaches up to 64 h for the best quality and
decreases to 24, 9 and 6 h for high, medium and low accuracy (Table 2).

Table 2. Agisoft PhotoScan processing details for generating the final DSMs.

Model Dense Cloud
Quality

Alignment Accuracy/Depth
Filtering

DSM Resolution
(cm/Pixel)

Total Processing
Time (h)

1 Ultra-High High/Disabled 2.5 64
2 High High/Disabled 5 24
3 Medium High/Disabled 10 9
4 Low High/Disabled 20 6

2.4. Crop Height Evaluation with LiDAR Data

A prerequisite for retrieving accurate crop height is the generation of precise ground surface
and digital surface models (DSMs). After performing the SfM photogrammetric processing described
in Section 2.3, the crop height maps are determined by taking the difference between the bare soil
map (derived immediately after sowing) from the DSM of each of the in-season flights [42,43,46].
To evaluate the SfM performance, LiDAR measurements from selected portions of the maize pivot
were collected during the UAV campaigns along the edge of the field (see Figure 3). Multiple scans
were performed using a 3D laser scanner (FARO Focus X330, Faro Technologies, Warwickshire, UK)
deployed on a 1.75 m tripod, positioned on top of a 4WD for a total height of 3.65 m AGL (Figure 3a,b).
Although the 3D measurement source is able to scan objects up to 330 m away, only the cloud points
within 20 m from the LiDAR setting location were considered for the comparison against the UAV
retrievals. Indeed, the low-altitude mounting point of the scanning system did not allow for a complete
reconstruction of the crop at further distances. This situation is particularly prominent at the end of
the season (maturity and harvesting time) where the dense and complex structure of the maize plant
shields the laser rays, blocking the LiDAR view beyond the first row of crops. Although the scans
performed early in the season enabled the reconstruction of a larger area (i.e., up to 120 m from the
LiDAR setting point on 4 April) due to lower vegetation heights that do not interfere with the scan
rays, the portion of the field considered for the following examination relies on the results from 9 May,
where vegetation density and crop height was higher.

The average point spacing was set at 1.2 cm at 10 m distance. For all the LiDAR surveys, a network
of seven wooden stakes was deployed around the perimeter of each scan grid (seven for each campaign)
and their location was recorded using the RTK-GPS system. These measurements were then employed
for point cloud registration in the FARO SCENE (Version 5.3) proprietary software package for
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georeferencing, which joins together the multiple scans into a unique cluster, for a total of about
70 m in length (Figure 3c). The area of the scans within the perimeter of the GCPs was extracted and
processed further using code written in-house. The scanned grids were georeferenced and the 4 April
terrain model (LiDAR bare soil) was subtracted from the DSM to determine the crop height for each
scan grid.
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Figure 3. (a) FARO Focus X330 system used for validating the UAV crop height retrievals; and (b) its
scanning location. To provide an adequate view angle of the edge of the field, the LiDAR has been
mounted on a 4WD. A network of wooden sticks was deployed around the perimeter of the grids,
whose coordinates were used for georeferencing; (c) FARO SCENE software representation of the seven
scan grids performed at about 10 m distance from each other, allowing for the reconstruction of a
reasonably wide area of the field. The scan grids retrieved on 9 May clearly show the “blocking effect”
caused by the first crop, producing an incomplete point cloud at further distances.

To enable the crop height comparison, the exported LiDAR point clouds from the FARO software
(with the elevation coordinates of each grid point) were imported into ArcGIS Desktop (Version 10.3.1)
and converted to vector point data. Interpolation with an inverse distance weighting algorithm was
then applied, hence retrieving the raster representing the digital surface model at the same resolution
as the SfM dataset to facilitate a cell by cell comparison. While the point cloud density of the LiDAR
data is not changing at the different resolutions (i.e., we just average the result at 2.5, 5, 10 and
20 cm), the UAV density outcomes are different at every resolution scale, as the processing workflow is
undertaken separately for each of them. The LiDAR scans were collected during each field campaign
excluding the last one, since the scanning angle of the instrument was not sufficient to capture the
density and height of the vegetation at the end of the growing season. As such, four unique datasets
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were used to assess the accuracy and performances of the UAV-based SfM methodology (Section 2.3).
All the LiDAR scans were recorded the same day (and close in time) to the UAV flights, hence providing
a reliable evaluation dataset. For the ground comparison, LiDAR data from an earlier scan (4 April
2016) were used, while the dynamic crop height comparison relied on the UAV coincident LiDAR
scans. To account for the lower scan density at the edge of the LiDAR scans and for the scanning angle
intrinsic in the LiDAR system, the comparison undertaken here is based upon the evaluation of a
50 m × 15 m area that was extracted from the overall collected LiDAR point cloud (approximately
70 × 20 m area).

Linear regression comparison analysis was performed between the LiDAR and SfM derived ground
and plant height gridded dataset. The root mean square error (RMSE), relative root-mean-square error
(rRMSE), coefficient of determination (R2) and the mean absolute variation (MAE) were used to assess
the performance of the UAV-SfM technique in estimating crop height across the maize field:

RMSE =

√
1
n

n

∑
i=1

(yi − xi)
2 (1)

rRMSE =

√
1
n

n

∑
i=1

(yi − xi)
2/x (2)

R2 =

(
cov(x, y)

σy·σx

)2
(3)

MAE =
1
n

n

∑
i=1
|yi − xi| (4)

where cov(x, y) is the covariance between the LiDAR scan values xi and the UAV retrievals yi, σ is the
standard deviation, x is the mean value of the LiDAR values and n is the total number of pixels in
each dataset.

3. Results and Discussion

3.1. Crop Height Determination with UAV Point Cloud

The GSD was resolved for the orthomosaic and digital surface elevation, with an average of
15.1 points/cm2 produced in the point cloud. The geolocation error of the generated data (reflected
in the RMSE) was calculated using the initial and reconstructed GCP locations and varied between
1.5 and 4 cm over time, representing an acceptable level of accuracy given the ground control point
error (<5 cm) and the high resolution of the DSM (~2.5 cm). Figure 4 (top row) presents the derived
DSM outputs from Photoscan (gained from the merged and filtered point cloud), together with the
crop height level estimates (middle row), retrieved as discussed in Section 2.4, that is, by subtracting
the baseline terrain map collected immediately after the crop sowing date (on 4 April), from each
subsequent DSM survey. Finally, the pattern of the crop height anomaly around the mean was also
evaluated (bottom row).

As can be seen in Figure 4, an examination of the retrieved DSM and crop height from the UAV
provides considerable insights into the small-scale variability of the crop systems. The UAV-based
SfM methodology was able to discriminate areas with both abundant and sparse vegetation
(the heterogeneity in the maps highlights this aspect), allowing for the detection of intra-field
variability at specific times throughout the crop growing season. Several characteristics of the pivot
development can be depicted from the DSM and crop height retrievals. Areas with lower vegetation
can be seen throughout the field. Although some areas (stretching to the center) seem to recover
by the end of the season (i.e., around the access road on the right of the center pivot), many areas
identified as under-performing relative to the field average seem to be maintained in the 25 June
scene, including around the perimeter of the field. Certainly, it is likely that vegetation along the
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periphery of the pivot receives less water from the sprinkler irrigation system due to wind effects and
associated spray-losses. Such a vegetation buffer response is noted across many of the pivot systems,
with vegetation on the interior of the field faring better than that on the exterior. Additional factors
explaining the observed intra-field variability may include: (i) heterogeneity in the soil texture and
composition; (ii) chemical properties (i.e., salinity) influencing the growth and development of the
crop; and (iii) uneven distribution of irrigation and fertilizer application rates, which are delivered
through a combined fertigation system (with possible lower efficiency at the terminal end of the
pipe). In this context, regular monitoring of crop dynamics throughout the season represents an
important aspect of precision agricultural application and agricultural management decisions (e.g.,
for irrigation scheduling, fertilizer application and harvesting) [72]. Although some areas still remain
under-performing until harvesting date, it is evident from the crop height graphs that no areas within
the field get worse (in terms of crop height) during the season, demonstrating a good management
practice and the absence of any adverse conditions that may affect specific areas of the pivot (i.e.,
meteorological events). While evaluation of the temporal intra-field variability of crop status at
different growth stages has been reported in previous studies [45,57,58], these analyses were either
limited to smaller fields, or used a lower number of flights to characterize the variability.
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Figure 4. UAV derived digital surface models (top row) and crop height retrieval (middle row) for
each of the campaigns. A rapid crop development from ground level to approximately 2.5 m was
captured during the 3 month growth period. (bottom row) shows the anomaly of crop height around
their mean values for each UAV survey.
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More detailed information can be inferred from the texture of the DSMs (Figure 4, top row).
A wide range in elevation is present within the field, as emphasized by the SW-NE gradient. Indeed,
at its maximum, there is a vertical difference of almost 4 m from one side of the field to the other
(also verified by the GCP range in Table 1) with a spatial pattern that remains largely unchanged until
28 April. The presence of low (or no) vegetation within the field through the first three UAV campaigns
drives this consistency in the spatial pattern of surface elevation. In line with this, the crop height
derived on 18 April is characterized by the presence of dark areas in the upper part of the field where
the actual height presents some negative values. This is probably caused by the bare soil map (4 April)
that raises above the true terrain level, leading to negative height when subtracted from the DSM of
18 April. In practice, although negative values are often removed (as a crop height below zero has no
physical meaning), we decided to leave them to highlight the inconsistent retrieval that can arise from
typical UAV sensing systems. A better understanding of this behavior can be obtained by examining
Figure 4 (bottom row), which plots the anomaly of crop height around the mean value within the field,
from which the percentage of crop height localized between a certain range (−0.6:0.6 m) for each UAV
campaign was estimated. It should be noted though, that the negative values at 18 April represent
only 0.7% of the entire distribution and they are mostly localized in the left and right areas at the
top of the field, close to the perimeter (displayed as dark blue areas). It is clear from the localization
of these negative regions that this inconsistency is most probably arising from errors due to lower
overlap in the UAV imagery at the borders of the flight path compared to its center. This condition
affects the number of key points that can be detected between images, producing a point cloud with
lower density and therefore, with lower accuracy. Also, as stated in Section 2.2, the flight performed
during the second UAV campaign (18 April) was affected by a camera-bay blockage, which required a
cropping procedure to remove the dark area over each image. The reduced size (and overlap) of the
pictures definitely affected the imagery post-processing, as the vertical size of the image was reduced
by almost one quarter of its total length (Table 1).

On 18 April, there are two banded regions in the upper- and lower-middle areas of the field
that show positive anomalies above the mean (see bottom row of Figure 4), that do not seem to be
maintained in the subsequent campaigns. It should be noted that the crop height retrieved on this
date is likely affected by a higher level of uncertainty compared to those in later UAV flights, as the
thin structure of the vegetation at the early stage (emergence) is not well captured by the generated
point cloud. As reported by Grenzdörffer et al. [46], errors are strongly related to the stage of crop
growth. That is, crop height is better determined by the UAV-SfM system if the canopy surface is dense
and homogeneous. In early development stages, crop height is more challenging to retrieve as the
vegetation cover is lower and the individual stalks are small and do not normally form a closed canopy.

The pattern of the crop height anomaly around the mean (Figure 4, bottom row) is also able
to identify areas of higher and lower performances around the field, bringing attention to specific
areas that are seen to enhance the growth and development of the maize throughout the season.
In particular, the “positive” anomaly captured on 28 April in the S-E part of the field is followed by a
similar structure in the next two UAV flight dates, confirming the capacity of that particular area to
provide conditions more favorable to crop development (e.g., perhaps driven by better soil nutrient
and water content availability). Similar responses are shown for the vertical stripe on the left side of
the field, which is also repeated on 9 May and 25 June. Such improved crop height response in these
particular zones may be a consequence of a different soil texture, type or salinity properties, which led
the plants to be higher than the crop height average: by up to 75 cm on 9 May and 62 cm on 25 June.
A closer examination of the last two campaigns indicates that the anomaly around the mean is more
emphasized on 9 May rather than on 25 June, demonstrating a stabilization in terms of average height
within the field during the last month of the growing season. Based on the growth trend of the crop,
the penultimate field campaign matches the flowering period, after which the canopy structure is
subject to an increased density (with expanding leaves and corn cob) rather than any significant rise in
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height. This period between image collections could have given the plants time to stabilize in terms of
height, producing a smaller anomaly compared to the previous campaign.

To highlight the ability of the SfM to retrieve fine structural changes in crop height, three sub-areas
of 30 m × 30 m were extracted from within the field and presented in Figure 5. A healthy crop (Area 1),
a static no-crop region (Area 2) and a problematic area (Area 3), were retrieved throughout the growing
season, with changes in crop coverage and plant height depicted over the sampling dates. Perspectives
from Areas 1 and 3 illustrate that the crop canopies were adequately reproduced by the point clouds,
with crop growth well captured across the different stages. Visual interpretation of the images in
Figure 5 reflects the spatial agreement between the derived crop height and the underlying orthomosaic,
confirming the efficiency and accuracy of the UAV-SfM approach. As can be seen, Area 1 depicts a
relatively stable canopy coverage for all dates, especially when compared with Area 3, which shows the
impacts of soil or irrigation-related problems on the canopy structure. Further examination indicates
that Area 1 and 3 follow the same growth trend up until 28 April, after which the crop development
and subsequent canopy response diverge. For instance, by 9 May, Area 3 shows a loss in canopy
structure, with half of the area of the 3D model and underlying orthomosaic reflecting the low canopy
structure (although this is partly recovered by the time of the last retrieval on 25 June). Area 1 on the
other hand, manifests a more linearly increasing crop height trend and is absent of any significant
canopy alterations throughout the season. As expected, Area 2 remains consistent throughout the UAV
collection period, reproducing the static bare soil section in the center of the pivot.
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Figure 5. Dynamic crop height retrievals for three different sub-areas in the maize field, including:
a healthy region (Area 1), a static bare-soil region (Area 2) and an affected region (Area 3). The displayed
orthomosaic in the left panel, from which the areas are depicted, was derived from the UAV survey on
9 May.

The dynamic crop height across the entire field was also visualized by considering the histograms
of all pixel-based elevations for each of the individual UAV campaigns. The histograms were
constructed by placing each z-coordinate of the crop surface models in a bin-size of 1 cm, providing an
accurate representation of the distribution and frequency of the crop height estimates. As can be seen
from Figure 6, the time-evolution of plant height is apparent across the growing season. The early stage
distribution from 18 and 28 April, presents a sharp peak and narrow Gaussian distribution, reflecting
the low crop height (25–50 cm) characteristic of the maize field at the beginning of the growth cycle.
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In the case of these low canopy retrievals, it can be observed that the distribution depicts some negative
values in the field for the April 18 campaign, suggesting some inconsistency in the results. As stated
before, negative values of crop height were obtained because ground values in the first campaign
had higher elevation compared to those created on 18 April, thereby leading to negative height in the
derived crop surface model. For this particular date, the crop coverage within the field is still low and
the captured bare soil is almost the same as the previous campaign (4 April). However, any error in
the UAV GPS coordinates, even though these have been corrected through the introduction of GCPs,
still presents as a source of uncertainty, ultimately producing lower crop height estimates relative to
the first survey (4 April). The plant height corresponding to the last two UAV surveys (9 May and
25 June) shows the highest intra-field variability, reflected by lower peaks and a wider range of the
distribution: from 0 to 1.6 m and from 0 cm to 2.35 m, for the respective campaigns. Despite the
similarity in the distribution of the last two UAV campaigns, 9 May shows a bimodal distribution that
is not present on 25 June. This is explained by the presence of areas with low vegetation and with
heights less than 50 cm, which represent 11.3% of the values in the distribution. On the other hand,
77% of the field has a height above 0.992 cm, which represents the average crop height. This intra-field
variability, clearly depicted in the histogram, is also emphasized in calculations of the 25th and 75th
percentile, whose values are 0.914 cm and 1.30 cm, respectively.
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Figure 6. Dynamic crop height estimation throughout the maize growing season. The multiple histograms
represent the retrieved crop height for each of the UAV campaigns.

Interestingly, it can be noted that the crop growth occurring in the two-weeks between 28 April
and 9 May (i.e., about 1 m in height) represented a more rapid height development relative to the
following month and a half between 9 May and 25 June (about 60 cm). The fast crop development
after 28 April, which may explain (in part) the high spatial variability captured by the fixed-wing UAV
on 9 May, is further confirmed by the differences in the median values recorded from the last three
campaigns: 0.25 cm, 1.20 cm and 1.86 cm.

The typical length of the maize season in the study region usually ranges between 70 and
90 days, depending on the sowing date as well as climatic and environmental variables [73,74].
Indeed, the timing of crop phenology from one growth stage to another (development periods) is
directly affected by temperature changes [75–77] and it is strongly correlated with the cumulative
daily temperature [78] (i.e., degree days). Generally, cool temperatures tend to slow down growth,
while warm temperatures hasten maturity [74,79]. The rapid development of crop height that
occurs between 28 April and 9 May reflects the crop reaching the end of its vegetative stage,
which starts approximately two weeks before flowering (around 9 May in our case) [80,81]. During
this rapid growth phase, the stalk follows a substantial development, leading plant height to increase
dramatically [82].

Being able to track crop growth at the intra field scale provides an important metric with which
to understand and assess the multiple developments that can occur in diverse areas within a field of
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such size. From this, specific management decisions can be implemented to improve the response
of problematic crop areas, hence reducing the risks of potential yield losses. Timely and accurate
prediction of crop height during the growing season is important in farm management, as it can be
used by farmers and operators for improved decision-making [83] and by government and researchers
agencies for informing food security policies [84]. Further assessment of the accuracy of these retrievals
is provided below.

3.2. Evaluation of UAV-Based Retrievals with LiDAR Scans

How accurately the digital surface model and baseline terrain map are able to be determined by the
UAV-SfM technique is critical to the accurate determination of crop height. Therefore, an evaluation
procedure is needed for assessing the UAV-SfM reconstructions. In the following, a comparison
between UAV and LiDAR scan data is presented, providing a mechanism to assess the accuracy of both
bare soil and digital surface model retrievals (from which the crop height is extracted). Despite the
higher spatial coverage of the fixed-wing UAV system, which allows for the survey of an entire 50 ha
field in a single flight, the ground-based LiDAR system provides a higher point density and accuracy
but over a much smaller area. A pixel-by-pixel comparison between the two datasets is performed,
with varying numbers of measurement (i.e., pixel-height) analyzed based on the sampled resolution
(i.e., 1,269,822; 317,455; 79,364; and 19,892 pixels were considered in dataset comparisons at 2.5, 5, 10
and 20 cm, respectively). Figure 7 presents a summary of the UAV and LiDAR retrievals for the bare
soil surface acquired on 4 April.
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Figure 7. Density scatter plots illustrating the ability of the UAV and the LiDAR systems in reproducing
the digital terrain model at 2.5, 5, 10 and 20 cm resolution (from top left to bottom right). The ground
comparison is referred to the first UAV campaign on 4 April, where a 50 by 15 m area was selected as a
sample for assessing the accuracy of the UAV-SfM system.
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Overall, the UAV-SfM results represented in the density scatter plots show very good correlation
and low RMSE (few centimeters) at the four different resolutions. In all cases, the data are consistently
retrieved and distributed around the 1:1 line. The 5 cm resolution result presents the lowest bias
compared with the other three resolution retrievals, each maintaining a fairly consistent positive bias of
approximately 5 cm. However, in all cases, the SfM elevation was slightly higher than the corresponding
LiDAR values, which is most likely explained by errors in the SfM point cloud reconstruction and
in the ground measurements [47]. As expected, the highest correlation was obtained for the data at
2.5 cm and 5 cm (r2 = 0.99), followed by the 10 cm (r2 = 0.98). The worse correlation was determined
for the 20 cm (r2 = 0.77), which also presents the highest value of RMSE, at 3.1 cm. RMSE values
for the 2.5 and 5 cm retrievals show a well contained error, with a range that varies between 1.6 and
1.8 cm, while 10 cm resolution was only slightly higher (2.4 cm). The mean absolute error (MAE) and
the relative root-mean-square error (rRMSE) further reinforce this response, with an observed range
amongst the pixel-by-pixel comparisons between 0.0126 and 0.0246 cm for the MAE and 0.45% and
0.85% for the rRMSE.

Overall, these results clearly illustrate the ability of the UAV-SfM approach to accurately model
the terrain surface elevation, which is critical for a reliable extraction of the crop height values.
Employing a different point cloud density, hence producing different resolution scales (i.e., obtained
from resolution-specific processing at each scale), did not particularly affect the results, whose accuracy
is maintained even at a lower level of detail (i.e., 10 cm). It should be noted that while the results are
only marginally different (in terms of correlation) using 2.5, 5 and 10 cm resolution, employing coarser
resolution (i.e., 20 cm) data reduces the reliability of the dataset, having an r2 of 0.77. The reduced point
cloud density obtained at 20 cm most likely explains the difference between the correlations obtained at
the other resolutions. The correlation between the baseline terrain map retrieved with the UAV-based
SfM approach and the LiDAR point cloud was also assessed by Malambo et al. [32], who confirmed the
importance of an accurate terrain map to extract reliable crop height. Also in that study, high values of
the coefficient of correlation were achieved (0.88–0.97), although fewer measurements were utilized for
the statistical comparison (n = 380), as a result of a raster grid interpolation.

During the course of crop development, vegetation growth is not a continuous or linear
phenomenon but follows a series of generally well-defined crop stages [81]. In the early development
phase (emergence stage), the height of the crop is challenging to retrieve, as the vegetation density
is low and lacking a closed canopy structure. Hence, UAV technologies will generally struggle to
identify small stems and leaves, especially if the flight altitude is high (such as in this case, at more than
100 m). From an optical sensing perspective, the resolvable resolution in these conditions can result
in a poor discrimination of vegetation from the underlying ground surface, resulting in a relatively
homogeneous response signal. Furthermore, if the crop structure is either sparse or particularly thin,
the UAV will deliver a lower crop height compared to the LiDAR. This “height dampening” is a
consequence of the filtering step embedded in the SfM algorithms [58], which smooths out the solution,
hence leading to a poorer identification of single plants in the emergence stage. As the crop density and
structure change during the development stages, crop height should be resolved with an increasing
level of accuracy. The challenging retrieval of crop height in early development stages has been
highlighted by Grenzdörffer et al. [46], who considers the UAV-SfM limitation increasing at coarser
resolution because within a single pixel, portions of one or multiple plants (and their shadows) merge
into one single signal (canopy level). In Shi et al. [47], the weak correlation between UAV estimates
and ground truth was found to be a result of the inadequate image resolution, which was not able to
distinguish the small tassels on top of the plants, that were measured on the ground. Furthermore,
Bendig et al. [42] and Malambo et al. [32] pointed out the lower fidelity of the UAV-SfM system as a
consequence of the restricted viewing perspective (nadir angle), which does not allow for a full 3D
reconstruction of the canopy.

Following these considerations and the similarity in the statistical results achieved for the terrain
base map at the four different GSDs, we carry out a subsequent evaluation of retrieved crop height
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using the same resolution scales, with the aim of testing their accuracy in providing the necessary
intra-field variability: a key requirement for any precision agriculture based approach. For this purpose,
the same portion of the field evaluated in the bare soil analysis, is now considered for crop height
estimation on the penultimate UAV campaign (9 May), where the crop height variability is much more
noticeable. It should be noted that due to the “blocking effect” caused by the first crop (see Section 2.4
for more details), some small areas at further distances could not be fully represented by the LiDAR
scanned point cloud, hence generating “No Value” at those particular locations. For consistency in the
UAV/LiDAR comparison of the results, the pixels of the UAV crop height map located at the same
coordinates of the LiDAR “No Value,” have been removed. Figure 8 shows a pixel-by-pixel comparison
of the UAV and LiDAR systems, which are reported in density scatter plots, while the comparison of
their crop height maps is presented in Figure 9. From our analysis, UAV-based crop height retrievals
are shown to be quite reliable in detecting the variability within the considered area at the edge of the
field. The pattern of the crop, depicted in the underlying maps (Figure 9), is accurately predicted by
the UAV system, which is also able to distinguish the adjacent crop rows that are separated by about
50 cm from each other. From these analyses, the heterogeneity in the vegetation along the periphery
of the pivot is clearly impacted relative to the pivot average, with losses in canopy structure that are
most likely explained by reduced irrigation efficiencies at the terminal end of the sprinkler system
(see Section 3.1 for more details). It should be noted that scatter plots and crop height maps clearly
represent two distinct distributions: the majority being bare soil, which is reflected by a high density
area in the scatter plots (in yellow, where the height is nearly close to zero) and a smaller proportion
being crop, which presents a linear trend with similar values for both UAV and LiDAR.
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In terms of error, the high values of the rRMSE (with a range between 37% and 50%), are therefore
the consequence of these different (and multiple) distributions in the scatter plots. As expected,
the significant differences in crop structure within the area are better delineated using higher resolutions
(i.e., GSD of 2.5 and 5 cm), which also produce the lowest RMSE (0.21 cm–0.22 cm). The solution at
10 cm seems to produce a less similar pattern to that generated by the LiDAR, which further worsens
when using a 20 cm GSD. However, good similarity in crop height is reflected in the correlation indices
of the density scatter plots (Figure 8), with values of 0.57 at 20 cm resolution, 0.60 at 10 cm and 0.62
and 0.65 using 2.5 cm and 5 cm GSD, respectively.

In general, all the resolution scales generate lower crop height estimates compared to the LiDAR,
reflecting the “height dampening” typical of the SfM filtering process [58]. Although a negative bias is
clearly visible at every resolution scale, the crop height above 0.5 m seems to be accurately predicted
by the UAV systems, with values that remain close to the 1:1 line in all cases, albeit with some evident
underestimation by the UAV system across all resolutions. It can be noted that a gradual reduction of
the maximum crop height detectable by the UAV is present from 2.5 to 20 cm. In particular, the highest
values of crop height (1.4 m) are retrieved using a 2.5 cm GSD, whilst the solution at 20 cm only
managed to detect values up to 1 m height. This gradual reduction can be explained by the heavier
height dampening factor produced by averaging the point cloud over a larger area (i.e., 20 cm).

Interquartile statistics of the two datasets plotted in Figure 8, show that the 75th percentile of
2.5, 5, 10 and 20 cm GSD are 2.7, 9.3, 21.2 and 30 cm lower than the LiDAR, while the 25th percentile
are 9.2, 11.3, 21.7 and 23.1 cm higher, testifying to a reduced range in the UAV crop height estimation.
While the lower 75th percentiles may be explained by the smoothing effect embedded in the SfM
algorithms, the higher 25th percentiles are likely explained by a reduced capacity of the UAV system
in retrieving the smallest and thinnest plants, which present the lowest crop heights [46]. However,
although the UAV lacks the capacity to effectively retrieve the outliers (i.e., the min and max crop
height), it provides a fairly strong correlation, even at courser resolution (10 cm GSD).

A further discussion can be made from Figure 8, where a vertical feature is present on the left
side of all the scatter plots. The UAV-SfM approach is generating crop height values up to and over
1 m, while the LiDAR system is not. One main source of discrepancy can be represented by unstable
data acquisition conditions. As previous studies have explained [46], the vegetation surface should
be stationary during the aerial survey to ensure a successful image matching in post-processing
and a highly accurate positioning determination. Nevertheless, in most agricultural environment,
wind effects are a key factor influencing retrieved imagery [85]. Crop movement due to high winds
impacts the quality of the imagery by introducing positional error, since the same feature of the
crop can be recorded in different positions. In addition, errors in the vertical crop height are most
common during the later growth stages when the plants are taller and may be slanted during wind
condition [31]. Records from the farm weather station, reported that the wind speed at the time of
the UAV flight on 9 May (10:30 a.m.), was about 10 km/h, which can partially explain the errors
in the UAV retrievals. As shown in Figure 9, the UAV at the highest resolutions (i.e., 2.5 and 5 cm)
was able to distinguish the crop rows and the adjoining soil. The wind effect during the time of the
flight may have bent some of the plants, which consequently covered the adjacent soil pixels. As a
consequence, the UAV can retrieve higher values, as shown in the scatter plots. Another source of
uncertainty is represented by small geolocation errors that could also have affected the reliability of the
results, especially at the higher resolution (i.e., 2.5 cm). It should be noted that a UAV versus LiDAR
pixel-by-pixel comparison at such a high resolution has not previously been reported in the literature.
Similar evaluations of UAV derived crop height against LiDAR point cloud have relied on either an
interpolation of the LiDAR data onto a 2 m grid [32], or averaging the crop height onto a 0.3 m [57] or
a 0.5 × 0.6 m grid [56], resulting in comparatively few measurements for the evaluation, relative to
the present study. The correlation obtained between LiDAR and UAV plant height is consistent with
previous findings in maize [32] and barley [57]. In line with these studies, a better correlation has been
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obtained between crop height measurements at the flowering stage, confirming that imagery captured
at the end of the stalk elongation (flowering stage) is better correlated with ground truth data [86].
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As Figure 9 shows, crop height can vary considerably within the same field, even though irrigation
and fertilizer application are applied with a consistent management practice across the pivot. However,
other conditions can also influence the observed intra-field variability. These conditions can be quite
variable and involve natural fluctuations in biological and plant physiological processes, soils and
climate, all of which influence production levels and ultimately, potential profit at the farm gate.
However, they are also impacted by ineffective irrigation practices, fertilizer variability, salinity and
other soil property issues, as well as the decision-making skills of the farmer. Being able to “scout” for
these intra-field issues offers insight not only for yield prediction but also in taking remedial action to
address changes as they appear. When combined with GPS technology commonly deployed on farm
equipment, such information can help guide the delivery of agricultural inputs to increase yield and
the profitability of crops. While UAVs may provide the capacity to deliver such guidance, they also
come with some caveats, some of which are discussed in the following section.

3.3. Application and Limitations

The dynamic estimation of the maize crop height was monitored quite accurately by the fixed-wing
UAV throughout the growth cycle. While some previous studies have highlighted the limitation of
poor point cloud generation by the UAV-SfM technique in landscapes where vegetation was dense
and complex (i.e., dead or dry bushes with many overlapping branches in coastal areas) [87,88] as
well as in maize crop monitoring [89], the work presented here provides additional insights on the
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structural variations within deep canopies. Results suggest that the UAV-SfM technique performs
reasonably well in terms of reproducing the canopy cover at later stages of the growing season
(flowering and maturity) and when complex crop structure and density increase. The comparison of
the retrieved DSM, from which the crop height maps were generated, revealed some of the issues with
the UAV-based retrievals: especially in reproducing the vegetation at early stages of development.
In these cases, the UAV-based SfM approach generates a point cloud that struggles to detect the
small-scale plant structure but which is captured by the LiDAR system. While one solution to this
would be to reduce the flight altitude of the UAV (to obtain a higher resolution), current technologies
still demand a compromise between areal coverage and flying height, due to power and related flight
time constraints. In an ongoing (but unrelated) study, a lower flight height (20 m) and higher resolution
(0.5 cm) digital surface model was able to distinguish leaves and fruit within a single plant, providing
considerable insight on the health and condition of the vegetation. However, the covered area was
limited to 0.5 ha due to the low flying speed of the rotary UAV, which was required to generate
sufficient overlap between the images at such altitude and due to power supply constraints that kept
flights to less than 30 min. The limited area coverage that characterizes rotary UAV versus fixed-wings
systems represents an issue for precision agricultural application at larger scales (i.e., commercial
scale monitoring). Because of the lower cruise speeds typical of rotary UAVs, an increased flight
altitude (relative to that used in this study) would be necessary to cover the same 50 ha agricultural
field in a single flight. However, this would also result in a coarser resolution retrieval (i.e., larger
GSD) unsuitable for precision agricultural purposes. While LiDAR onboard a UAV could undoubtedly
increase the level of detail with which a crop can be retrieved [90], obtaining crop height (and hence
crop status and intra field variability information) using relatively cheap instrumentation with a good
level of accuracy remains a priority to encourage broad user-uptake. In this context, to improve the
accuracy of the UAV systems retrieval, Harwin et al. [87] suggested to perform the RGB data collection
from multiple points of view. Although this allows a more reliable 3D reconstruction of the dense cloud,
it would dramatically increase the time required for the data collection and subsequent processing.

A more generic limitation to the UAV based retrievals is the computational cost involved in image
processing. In this study, the time needed to generate a final crop height map can be considerable:
up to 2.5 days if an ultra-high resolution of 2.5 cm is required. These times decrease to 24 h, 9 h
and 6 h for 5 cm, 10 cm and 20 cm, respectively. It should be noted that the processing undertaken
here was achieved using a high-performance server (16 core, 2.4 GHz and 128 Gb RAM server
workstation), which delivers solutions at a much faster rate compared to a standard desktop system.
For a rapid assessment of the field variability and condition of the crop, an efficient but still accurate
methodology is required. Certainly, it is not feasible for a farmer or farm manager to reproduce
the type of processing performed herein, especially if they are to manage the multiple fields of a
commercial-scale concern. While tuning the resolvable resolution provides some computational relief
(by a factor of 7; see Section 2.3), it remains impractical to suggest this as an operational methodology
in a real world scenario.

In providing some practical guidance, the employed SfM approach is able to deliver insights into
intra-field crop variability with relatively good accuracy and timing at a 10 cm GSD. While higher
resolutions result in improved insights, these come at the cost of an unacceptable processing time.
It should be noted that the SfM workflow can deliver a 10 cm resolution product by lowering the
accuracy in the point cloud generation (hence reducing the processing time). In practice, the same
resolution could be achieved with a UAV flight performed at 500 m altitude but which would be
challenging for both safety and operational reasons due to increased risk of wind effects and line of
sight restrictions. This represents an important aspect of the fixed-wing UAV-based SfM approach
described herein, which can provide precision agricultural solutions as needed and in a timely manner.
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4. Conclusions

The study presents an evaluation of a fixed-wing UAV-based SfM technique to retrieve the 3D
structure of a 50 ha maize crop at the commercial field scale. Imagery collected from a UAV were used
to reconstruct Digital Surface Models (DSM) and orthomosaics over five distinct dates throughout
the growth cycle from which crop height was extracted. Results from this analysis show that the
methodology is able to reproduce the observed spatial variability of the crop height within the maize
field across all crop development stages. Comparison against LiDAR point clouds shows that UAV-SfM
data were in good agreement, with a correlation up to 0.99 and RMSE 0.0164 cm for retrieving ground
surface elevation after sowing (4 April). For the estimation of absolute crop height at flowering time
(9 May), when complex structure and high intra-field variability of the maize crop were present,
correlations of 0.65 and RMSE of 0.21 cm were obtained.

Despite these positive results, further improvements in image collection and processing [1,91,92]
are required to reduce bias in the UAV-based SfM retrievals. Also, decreasing the time required for
a fast and accurate delivery of precision agriculture solutions is necessary for practical application.
The retrieved ground sampling distance represents a compromise between physical constraints of
flying height (and thus flying time) and areal coverage, together with more practical considerations
such as providing information about the status of the crop within the field relatively quickly (i.e.,
processing time) and with the necessary accuracy (retrieval fidelity). Our results demonstrate that the
use of a 10 cm resolution product represents a suitable compromise between accuracy and processing
time, delivering a reliable product with a processing time of approximately half a day.

Sustained growth in agricultural productivity represents one of the anchors of food security [93]
and shortfalls in farm food production need to be efficiently addressed in order to ensure increased
yield [94]. Frequent temporal observations of crop height aid in this effort but traditional manual
methods to assess intra-field crop status are time consuming and impractical to perform at scale.
Proximal remote sensing approaches offer a clear alternative to rapid identification or early detection
of problems within a field. As illustrated here, high-resolution UAV-based data can be readily employed
to reliably extract details on the status and development of crops on a taskable basis, informing the
implementation of precision agriculture applications. From a practical perspective, the observable
variations in crop behavior represent valuable information that can aid farmers in improving or
tailoring management responses.
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