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Abstract: Satellite products can provide spatiotemporal data on precipitation in ungauged basins.
It is essential and meaningful to assess and correct these products. In this study, the Precipitation
Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data
Record (PERSIANN-CDR) product was evaluated and corrected using the successive correction
method. A simple hydrological model was driven by the corrected PERSIANN-CDR data. The results
showed that the accuracy of the original PERSIANN-CDR data was low on a daily scale, and the
accuracy decreased gradually from the east to the west of the basin. With one correction step,
the accuracy of the corrected PERSIANN-CDR data was significantly higher than that of the initial
data. The correlation coefficient increased from 0.58 to 0.73, and the probability of detection (POD)
value of the corrected product was 18.2% higher than the original product. The temporal-spatial
resolution influenced the performance of the satellite product. As the resolution became coarser, the
correlation coefficient between the corrected PERSIANN-CDR data and the gauged data gradually
became lower. The Identification of unit Hydrographs and Component flows from Rainfall,
Evapotranspiration, and Streamflow (IHACRES) model could be satisfactorily applied in the Lhasa
River basin with corrected PERSIANN-CDR data. The successive correction method was an effective
way to correct the bias of the PERSIANN-CDR product.
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1. Introduction

Precipitation plays a significant role in hydrological and material cycles and is an important
input variable in hydrologic models [1,2]. On the Qinghai–Tibet Plateau, the meteorological
stations are located in areas of lower altitude and are scarce, with a highly heterogeneous spatial
distribution. Consequently, there are limited available and accessible high-quality precipitation data
for the Qinghai–Tibet Plateau. Weather radar, satellite, and reanalysis products provide important
supplementary data. Satellite-based data are especially useful. Satellite-based precipitation estimates
(SPEs) can provide in situ data without geographical constraints and compensate for insufficient
precipitation data from surface meteorological stations. In recent years, SPE products have been
widely used in rainstorm analysis, drought evolution, and hydrological simulations [3–6]. However,
the process of remote sensing image acquisition and data processing has led to many shortcomings in
SPE products. These shortcomings include gaps in the revisit times, precipitation data captured by
satellites disagreeing with the real precipitation data, and the complex underlying surface interfering
with the remote sensing signals [7]. Therefore, the reliability of SPE products in certain areas can be
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poor. To improve the reliability of SPE products in water resource management and allocation, it is
necessary to evaluate and correct the accuracy of SPE products to reduce system errors [8–12].

Meteorological satellites are equipped with various sensors, and SPE products retrieved from these
sensors can be divided into visible (VIS), infrared (IR), microwave (MW), and integrated systems [13,14].
VIS-based algorithms use albedo to represent the radiation characteristics of real objects that are only
measurable during the day. IR-based and MW-based algorithms use brightness and temperature to
represent the radiation characteristics of real objects (blackbody equivalent temperature). IR-based
algorithms derive precipitation information from cloud-top temperatures but are unable to detect
precipitation information for low-level clouds. MW-based algorithms can penetrate clouds and water
vapor and can provide precipitation information with a higher accuracy. Polar orbit satellites are
commonly equipped with microwave sensors. Active MW has a higher time resolution and is more
accurate than passive MW. Multiple sensors are more widely used for SPE products than single
sensors area. Various categories of SPE products are available. These include the Tropical Rainfall
Measuring Mission (TRMM), Multi-Satellite Precipitation Analysis (TMPA), Climate Hazards Group
Infrared Precipitation with Station data (CHIRPS), the Global Precipitation Measurement Mission
(GPM), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks
(PERSIANN), and PERSIANN-Climate Data Record (CDR) [15–19]. These products have been widely
applied in various regions throughout the world. Jiang et al. [20] evaluated TMPA 3B42 V6, TMPA
3B42RT, and CPC MORPHing technique (CMORPH) for South China using a Bayesian model averaging
method. Their research indicated that TMPA 3B42RT was best for simulating streamflow, and it
effectively reduced streamflow simulation errors in the Mishui basin. They concluded that all three
satellite precipitation products had great potential for application in hydrological process simulation,
especially for ungauged basins. Hirpa et al. [21] validated TRMM 3B42RT, CMORPH, and PERSIANN
across a large river basin in Ethiopia. The authors concluded that 3B42RT and CMORPH produced
similar spatial distributions, deviations, and elevation-dependent trends for precipitation statistics.
The authors also concluded that the PERSIANN data produced spatial distributions of precipitation
that were different to those of 3B42RT and CMORPH and that PERSIANN underestimated precipitation
at high altitudes. Ma et al. [14] conducted an evaluation of the Ensemble Multi-Satellite Precipitation
Dataset (EMSPD-DBMA) for the Qinghai–Tibet Plateau. EMSPD-DBMA data integrate TRMM 3B42RT,
TRMM 3B42 V7, CMORPH, and PERSIANN-CDR datasets. They found that EMSPD-DBMA data could
better reflect the spatial distribution characteristics of precipitation in the Qinghai–Tibet Plateau than
the other data products could. Their accuracy of moderate rain and heavy rain using EMSPD-DBMA
data was better than that using the Integrated Multi-satellite Retrievals for GPM (IMERG) and Global
Satellite Mapping of Precipitation-AMVK (GSMAP-AMVK) data sets. The GPM is a new-generation
satellite remote sensing precipitation observation plan based on the TRMM. The GPM data have a
larger coverage range and higher temporal and spatial resolution and enhance the detection capacity
for light and solid precipitation. However, the time range of its data is relatively short. Therefore, GMP
data were not selected in this study. PERSIANN-CDR datasets are widely used because they integrate
the Global Precipitation Climatology Project (GPCP) gauged data and are obtained using IR-based and
MW-based algorithms. Therefore, the PERSIANN-CDR product was chosen for the present study.

SPE products inevitably have certain errors, especially in the case of the Qinghai–Tibet Plateau.
The high altitude and complex topography generate problems for the remote sensing image acquisition
process and precipitation data inversion. To improve water resource management in the Qinghai–Tibet
Plateau, it is necessary to evaluate and correct the accuracy of SPE products and thus improve the
quality of SPE products driving hydrological models. The correction methods can include successive
correction (SC), optimum interpolation, probability density functions, and linear models [22,23].
Habib et al. [24] and Bhatti [25] estimated the accuracy of CMORPH in the Gilgel Abbay basin and
concluded that there was a large bias between CMORPH and gauged data and that the bias was related
to rain generation mechanisms and sampling and retrieval errors. They chose three methods: Fixed
space-time, variable time, and variable space-time bias factors, to correct CMORPH. They found that
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the temporal variation was the most important factor in the correction process for comprehensively
reducing the precipitation deviation. Worqlul et al. [26] compared Estimated–Geostationary (MPEG)
data with gauged data in the Gilgel Abbay basin. They concluded that MPEG underestimated the gauged
data by 60%. In addition, they used a linear bias correction method to reduce the bias between the MPEG
and gauged data. Their results indicated that the linear bias correction method significantly reduced
the bias and maintained the coefficient of correlation value (Ccoef). The linear bias correction method
assumes that the ratios of the satellite data to the gauged data for both monthly and daily scales are the
same. However, this assumption cannot be used for the high-altitude Qinghai–Tibet Plateau, which has a
limited number of gauging stations and a complex topography. In this study, the SC method was used to
correct the satellite deviations. In the SC method, the deviation between the gauged data and the SPE
data is gradually reduced via linear iteration. The SC method is often used to correct radar precipitation
data, because it requires less computation and does not need to rely on any assumptions [10,22].

Recently, hydrological evaluation (HE) of SPE products has received a significant amount of
attention, especially for sparsely gauged or ungauged areas. The accuracy of SPE products is evaluated
by comparing measured runoff data with simulation data from hydrological models driven by SPE
products [27]. Using the HE method to evaluate the accuracy of satellite precipitation data reduces
the uncertainties caused by the scarcity of gauges in large-scale basins, as well as adds the runoff
data to the accuracy assessment of SPE products. Runoff data are used to cross-validate the accuracy
of SPEs [11,28]. Poméon et al. [27] found that it was difficult to obtain high-quality and complete
time-series meteorological data in West Africa, and therefore gauged data could not be used to verify
the accuracy of the satellite data. The authors used CHIRPS, CMORPHv1.0 CRT, CMORPHv1.0
RAW, PERSIANN-CDR, TMPA 3B42v7, and TMPA 3B42 RTv7 data to drive a Hydrologiska Byråns
Vattenbalansavdelning (HBV) model and compared the measured and simulated data for six basins in
West Africa. The authors’ research indicated that the HE method was suitable for evaluating SPE products
in sparsely gauged or ungauged regions. Because data in the Qinghai–Tibet Plateau are scarce and difficult
to obtain, a simplified hydrological model requiring less input data was chosen. As a result, the problem
of excessive parameter requirements for the model was avoided. The Identification of unit Hydrographs
and Component flows from Rainfall, Evapotranspiration, and Streamflow (IHACRES) hydrological model
was used to estimate the accuracy of the original and corrected SPE data in the Yarlung Zangbo River
basin. IHACRES is a lumped conceptual model with a simple structure, few parameters, and a high
robustness [29]. The IHACRES model has been successfully applied in various basins [30–32].

The objective of this study was to test whether a corrected SPE product could improve the accuracy
of an available SPE product for the Yarlung Zangbo River basin. PERSIANN-CDR was selected
as the SPE product, and basic statistical indices and probabilistic statistical indices were used as
statistical indicators. The PERSIANN-CDR data were compared with meteorological station data at the
daily scale. The SC method was chosen to correct the accuracy of the PERSIANN-CDR satellite data.
The meteorological station data, the original SPE data, and the corrected SPE data were used as input
data for the IHACRES model. The simulated discharge and measured discharge data were compared in
a sub-basin (Lhasa River basin) of the Yarlung Zangbo River basin. This paper is organized as follows.
The SC method for reducing the bias between the SPE and gauged data is introduced. The structure of
the hydrological model and the simulation evaluation method is then outlined (Section 2). Evaluation
results for the SPE and corrected SPE products using the IHACRES hydrological model for the Lhasa
River basin are presented (Section 3). The uncertainties in the SPE data accuracy assessment and
hydrological simulation are discussed (Section 4). Finally, conclusions are drawn in Section 5.

2. Materials and Methods

2.1. Study Area and Gauged Data

The Yarlung Zangbo River basin is situated in the southeast of the Qinghai–Tibet plateau (Figure 1)
between latitudes 26◦–39.8◦N and longitudes 73.5◦–104.7◦E. The Yarlung Zangbo River is one of the
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highest plateau rivers in this basin. The average altitude of the basin is 4000 m. The Yarlung Zangbo
River has numerous tributaries and an abundant supply of water and is the main freshwater resource
for Tibet and other countries downstream of China. The Yarlung Zangbo River basin experiences
many different climatic patterns, including alpine temperate semiarid, plateau temperate semiarid,
and tropical and subtropical monsoon. The annual average precipitation over the basin is 428.7 mm.
Because of the irregular topography and climate, the spatial precipitation distribution is very uneven.

Remote Sens. 2018, 10, x FOR PEER REVIEW  4 of 19 

 

the highest plateau rivers in this basin. The average altitude of the basin is 4000 m. The Yarlung 
Zangbo River has numerous tributaries and an abundant supply of water and is the main freshwater 
resource for Tibet and other countries downstream of China. The Yarlung Zangbo River basin 
experiences many different climatic patterns, including alpine temperate semiarid, plateau temperate 
semiarid, and tropical and subtropical monsoon. The annual average precipitation over the basin is 
428.7 mm. Because of the irregular topography and climate, the spatial precipitation distribution is 
very uneven. 

 
Figure 1. Map of the Yarlung Zangbo River basin. The green stars represent meteorological gauges 
inside the basin. 

Daily scale meteorological data from 1998 to 2014, downloaded from the National 
Meteorological Data Center of China (http://data.cma.cn), were used in this study. The data passed 
homogeneity and quality control tests, including (1) checking for extreme values of the gauged data, 
(2) checking the continuity of the gauged data, and (3) checking the spatial consistency of the gauged 
data [14]. These tests indicated that the quality of the data from the meteorological stations was high 
and could therefore be used in the accuracy evaluation of the Yarlung Zangbo River basin SPE data. 
There are only ten meteorological stations in the Yarlung Zangbo River basin. The meteorological 
gauges are mainly distributed in the middle of the basin, and there are only a few unevenly 
distributed gauges in the western region. Therefore, to fully reflect the spatial and temporal 
distribution of the SPE product in the Yarlung Zangbo River basin, 40 meteorological gauging 
stations from inside and outside the basin were selected for the accuracy correction of the SPE 
product, and 10 gauging stations from inside the basin were selected for verifying the accuracy of the 
SPE product. The stations in the Yarlung Zangbo River basin are referred to as S1–S10 in this study. 
The station names are shown in Table 1. 

Table 1. Station IDs and names used in this study. 

ID Station ID Station 
S1 Gyangz S6 Nyingchi 
S2 Lhatse S7 Lhasa 
S3 Shigatse S8 Bome 
S4 Zetang S9 Dangxiong 
S5 Nimu S10 Lhari 

2.2. PERSIANN-CDR 

In our study, we selected the PERSIANN-CDR product as the SPE product for the accuracy 
assessment and correction. The precipitation values of the PERSIANN-CDR that were developed 
from the PERSIANN product were obtained from IR and MW sensors. Bias in the precipitation data 

Figure 1. Map of the Yarlung Zangbo River basin. The green stars represent meteorological gauges
inside the basin.

Daily scale meteorological data from 1998 to 2014, downloaded from the National Meteorological
Data Center of China (http://data.cma.cn), were used in this study. The data passed homogeneity
and quality control tests, including (1) checking for extreme values of the gauged data, (2) checking
the continuity of the gauged data, and (3) checking the spatial consistency of the gauged data [14].
These tests indicated that the quality of the data from the meteorological stations was high and could
therefore be used in the accuracy evaluation of the Yarlung Zangbo River basin SPE data. There are
only ten meteorological stations in the Yarlung Zangbo River basin. The meteorological gauges are
mainly distributed in the middle of the basin, and there are only a few unevenly distributed gauges in
the western region. Therefore, to fully reflect the spatial and temporal distribution of the SPE product
in the Yarlung Zangbo River basin, 40 meteorological gauging stations from inside and outside the
basin were selected for the accuracy correction of the SPE product, and 10 gauging stations from inside
the basin were selected for verifying the accuracy of the SPE product. The stations in the Yarlung
Zangbo River basin are referred to as S1–S10 in this study. The station names are shown in Table 1.

Table 1. Station IDs and names used in this study.

ID Station ID Station

S1 Gyangz S6 Nyingchi
S2 Lhatse S7 Lhasa
S3 Shigatse S8 Bome
S4 Zetang S9 Dangxiong
S5 Nimu S10 Lhari

2.2. PERSIANN-CDR

In our study, we selected the PERSIANN-CDR product as the SPE product for the accuracy
assessment and correction. The precipitation values of the PERSIANN-CDR that were developed from
the PERSIANN product were obtained from IR and MW sensors. Bias in the precipitation data was
corrected by incorporating the GPCP data. These data are maintained by the University of California
and National Oceanic and Atmospheric Administration (NOAA) [19]. PERSIANN-CDR data have

http://data.cma.cn
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been available since 1983 at a 0.25◦ × 0.25◦ spatial resolution and a daily temporal resolution. These
resolutions make the data suitable for precipitation research and hydrological simulation. In this
study, the PERSIANN-CDR product covered the period from 1998 to 2014. Monthly and seasonal-scale
precipitation data were calculated by summing the daily data.

2.3. Evaluation Indicators

In the evaluation, the SPE product was compared with the gauged data. Two sets of statistical
indices were used (Table 2). Three basic statistical indices—correlation coefficient (Ccoef), root mean
square error (RMSE), and standard deviation (SDEV)—were used to describe the consistency between
the SPE data and the gauged data. Three probabilistic statistical indices—POD, false alarm ration
(FAR), and critical success index (CSI)—were used to describe the probability of precipitation detection
by the SPE product based on the gauged data [17,33].

Table 2. Statistical indices used in evaluating the performance of the satellite-based precipitation
estimate (SPE) product.

Indices Formula Range Perfect Value

Cagegory1 (Basic Statistical Indices)

Correlation
coefficient (Ccoef)

Ccoe f =

n
∑

i=1
(SIMi−SIM)(OBSi−OBS)√

n
∑

i=1
(SIMi−SIM)

2·
n
∑

i=1
(OBSi−OBS)

2
−1~1 1

Root mean square
error (RMSE)

RMSE =

√
1
n

n
∑

i=1
(SIMi −OBSi)

2 0~∞ 0

Standard deviation
(SDEV)

SDEV =

√
1

n−1

n
∑

i=1

(
SIMi − SIM

)2 0~∞ 0

Category2 (Probabilistic Statistical Indices)

Probability of
detection (POD) POD = hit_num

hit_num+miss_num 0~1 1

False alarm ration
(FAR) FAR =

f alse_num
f alse_num+hit_num 0~1 0

Critical success index
(CSI)

CSI = hit_num
hit_num+miss_num+ f alse_num 0~1 1

In the above equations, n is the number of days with precipitation. OBS (mm) is the measured
precipitation data. SIM (mm) is the precipitation data retrieved from satellite sensing for the same
location as the gauged data. OBS (mm) is the average value of OBS. SIM (mm) is the average value of
SIM, hit_num are the events captured by the satellite and the gauged station, false_num are the events
captured by the satellite and missed by the gauged station, and miss_num are the events captured by
the gauged station and missed by the satellite.

2.4. Bias Correction

The SC method was used in this study to correct the PERSIANN-CDR product. The SC method
calculates the deviation between the gauged data and SPE data and interpolates the deviation into the
PERSIANN-CDR grid data through a weighting function. Through a continuous iterative calculation,
the corrected data with relatively small deviations are obtained. Determining the weighting function
is essential when using the SC method. The steps in the SC method are as follows:

1. Determining the initial field: The initial field of the precipitation data to be corrected is extracted
from the SPE data. In this study, the rectangular range [L, W] of the study area was determined,
and the satellite precipitation grid data in this range was the initial field Γ0. When the precipitation
field is corrected, the position of the meteorological stations may not match with the SPE grid
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data. In this study, the bilinear interpolation method was used to obtain the precipitation satellite
data value at the station position.

2. Determining the interpolation function: The initial field Γ0, obtained from the PERSIANN-CDR
grid, was calculated based on the difference between the measured value Mk of the kth gauged
station and the value Γ0k at the same position. The first-guess field Γ1 was obtained by
interpolating the difference into the initial field using the weighting function, and then repeating
the above steps with Γ1 as the initial field until the difference was sufficiently small:

Γ1 = Γ0 +

k
∑

k=1
Wijk

2(Mk − Γ0k)

k
∑

k=1
Wijk

, (1)

where Γ1 is the first-guess value at the position of the grid coordinates (i,j) of the first-guess field,
Γ0 represents the initial value at the position (i,j) of the initial field, Mk is the observed value at the
kth gauged station, Γ0k represents the initial SPE value at the position of the kth gauged station,
and Wijk is the weighting factor, which ranges from 0 to 1. The number of gauged stations in the
search radius is given by k.

3. Determining the weighting function: The weighting function Wijk has different forms (e.g., circle,
ellipse, and curvature ellipse). In this study, the circular form was chosen as the weighting function:

Wijk =


R2−d2

ijk

R2+d2
ijk

, dijk < R

0 , dijk ≥ R
, (2)

where R indicates the search radius with a value of 2◦. The length of the grid (i,j) to the kth station
is represented by dijk.

2.5. IHACRES Rainfall Runoff Model

A modified IHACRES model (https://github.com/TBenkHyd2/IHACRES_Model_Matlab) was
used for the hydrological assessments of the uncorrected PERSIANN-CDR (UCPC) and the corrected
PERSIANN-CDR (CPC) products. The IHACRES model is a lumped conceptual rainfall-runoff model
based on the unit hydrograph concept and has been widely used to simulate runoff in sparsely gauged
or ungauged areas. The IHACRES model requires fewer parameters than other hydrological models.
The input data include precipitation, discharge, air temperature, and drainage area. The model is
constructed from a series of nonlinear and linear modules. The nonlinear modules convert rainfall into
effective rainfall (the rainfall that flows out of the basin in the form of runoff), and the linear modules
convert the effective rainfall into runoff. All the water loss occurs in the nonlinear modules (Figure 2).
In our study, the shuffled complex evolution method developed at the University of Arizona (SCE-UA)
method was used to calibrate the IHACRES model [34,35]. The calibration period was 2009–2011, and
the verification period was 2012–2014.

https://github.com/TBenkHyd2/IHACRES_Model_Matlab
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Figure 2. Identification of unit Hydrographs and Component flows from Rainfall, Evapotranspiration,
and Streamflow (IHACRES) model structure [36].

Model Performance Evaluation

In this study, the Nash–Sutcliffe coefficient of efficiency (NSE) and the percent bias (PBIAS) were
chosen as indicators to evaluate the performance of the hydrological simulation [37]:

NSE = 1−

n
∑

i=1

(
Qi −Q′i

)2

n
∑

i=1

(
Qi −Q

)2
, (3)

where Qi (m3/s) is the daily measured discharge, Q′i (m3/s) is the daily simulated discharge, and Q
(m3/s) is the average daily simulated runoff. The integer n is the number of simulation days. The range
of possible NSE values is−∞ to 1. The closer the NSE value is to 1, the higher the accuracy of the model
simulation. If 0 < NSE < 1, then the model has some ability to simulate the streamflow. If NSE ≤ 0,
then the model has no ability to simulate the streamflow. If NSE ≤ 0.5, then the simulation results of
the model are unsatisfactory. If 0.5 < NSE ≤ 0.65, then the results of the model are satisfactory. Values
of 0.65 < NSE ≤ 0.75 indicate that the results of the model are good. Values of 0.75 < NSE ≤ 1 indicate
that the results of the model are very good [38].

The function of PBIAS is given by the following:

PBIAS =

n
∑

i=1

(
Qi −Q′i

)
· 100

n
∑

i=1
Qi

, (4)

where the variables in the formula have the same meanings as in Equation (3). The closer PBIAS is to
0, the higher the accuracy of the model. A PBIAS > 0 indicates the model underestimates the runoff,
while PBIAS < 0 indicates that the model overestimates the runoff.
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3. Results

3.1. Accuracy Assessment for the Original SPE Product

3.1.1. Basic Statistical Indices

Readings from meteorological stations are affected by altitude, topography, and spatial
distribution. The accuracy of data from each station can be different. To better evaluate the accuracy
difference at each station, the values of Ccoef, RMSE, and SDEV for the ten stations in the Yarlung
Zangbo River basin were calculated. The Taylor diagram [39] can visually represent the statistical
relationship between PERSIANN-CDR and gauged data. The length of the radius from the origin to
a point in the Taylor diagram represents the SDEV, the angle with the ordinate indicates the Ccoef,
and the distance from the observation point indicates the RMSE. Therefore, the deviation of the
PERSIANN-CDR data from the gauged data in the Taylor chart is assessed as follows: The closer
the SPE simulation value is to the gauged position on the x axis, the larger the correlation coefficient
between the SPE data and the gauged data. The smaller the value of the RMSE is, the higher the
accuracy of the SPE product. Figure 3 shows that the PERSIANN-CDR data had some instability
in gauged precipitation data inversion. In the Yarlung Zangbo River basin, the Ccoef ranged from
0.33 to 0.48. The Shigatse station had the maximum Ccoef value (0.48), and the Jiali station had the
minimum Ccoef value (0.33). The Ccoef values for the satellite data in the midstream were slightly
higher than the upstream and downstream values. The values for the RMSE ranged from 3.90 to
6.07 mm. The Dangxiong station had the smallest RMSE value (3.90 mm), while the Jiali station had
the highest value (6.07 mm). The values of SDEV ranged from 3.57 to 5.91 mm. The Dangxiong station
had the smallest value (3.57 mm), while the Jiali station had the largest value (5.91 mm). On the Taylor
diagram, point S10 (Lhari) is located in the upper left corner of the figure, which was the farthest
from the gauged point, indicating that the PERSIANN-CDR product had the worst accuracy at the
S10 point. The S9 (Dangxiong) station was closest to the gauged point, indicating that the accuracy at
the S9 position was the highest. The accuracy of the PERSIANN-CDR product in the midstream was
relatively high, and the accuracy in the upstream and downstream was slightly worse.
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Remote Sens. 2018, 10, 2031 9 of 18

3.1.2. Probabilistic Statistical Indices

The probabilistic statistical indices of the original SPE data and gauge observation data are shown
in Figure 4. Of the entire basin, the average value of the POD of the uncorrected SPE product was 0.77,
which indicated that the detection of some precipitation events must have been missed in the Yarlung
Zongbo River basin. There were differences in the spatial distribution of probabilistic statistical indices.
The POD values in the western Yarlung Zangbo River basin were the smallest, with a range of 0.54
to 0.57, especially in the Shigatse station, where the value was 0.54. The POD values in the central
part of the Yarlung Zangbo River basin ranged from 0.73 to 0.86, and the values in the northeastern
part ranged from 0.88 to 0.94. The original PERSIANN-CDR data had a certain ability to capture
precipitation events in the Yarlung Zangbo River basin. However, this ability decreased gradually
from the east to the west of the basin.
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SPE product.

Of the entire basin, the average value of the FAR of the uncorrected SPE product was 0.65.
The POD values in the western Yarlung Zangbo River basin were the largest with a range of 0.76
to 0.77, while those in the eastern region of the basin were the smallest, ranging from 0.46 to 0.69.
The values in the central part of the basin were between that of the eastern part and the western part.
The original PRSIANN-CDR satellite data missed more precipitation events on a daily scale, and from
the east to the west of the basin, the missed precipitation events by satellite data gradually increased.

The value of the CSI showed the ability of the SPE product to capture all precipitation events,
including the missed and false events. Of the entire basin, the CSI value of the original SPE was 0.32.
The CSI and the POD had the same spatial distribution characteristics. In the eastern part of the basin,
the values of the CSI ranged from 0.3 to 0.49, while in the western part, it was only 0.2. In the central
part of the basin, the values of CSI ranged from 0.22 to 0.28.

Overall, the original SPE product had the ability to detect precipitation events, but missed 23% and
falsely detected 65% of the precipitation events. A density scatter plot of the original SPE product shows
the area of precipitation concentration and the trend of precipitation change (Figure 5a). The daily
precipitation of the PERSIANN-CDR product was mainly between 0 and 0.45 mm, the majority of
which were small precipitation events, constituting 32% of all precipitation events. There was a certain
correlation between the uncorrected PRESIANN-CDR product and the gauged station data, but there
was a large deviation between the original PRESIANN-CDR product and the gauged station data.
The accuracy of the original PRESIANN-CDR product in the basin gradually decreased from the
eastern to western regions of the basin.
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3.2. Accuracy Assessment for the Corrected SPE Product

The SPE product has a wide geographical scope, high speed, good continuity, and can effectively
supplement data for alpine regions where gauged data are sparse. The SPE product has limitations
in its image acquisition algorithm and precipitation inversion and should be corrected before its
application in alpine regions. In this study, the PERSIANN-CDR product was corrected using the
SC method. A PERSIANN-CDR data grid, covering forty stations within and outside of the Yarlung
Zangbo River basin, was selected as the initial field to be corrected. The search radius was set at 2◦.
The calibration results are shown in Table 3. It can be seen from the table that with one correction
step, the PERSIANN-CDR data corrected by the SC method had a significant accuracy improvement.
The value of Ccoef increased from 0.58 to 0.73, and the values of SDEV and RMSE decreased. Thus,
the accuracy of the SPE product was greatly improved. However, as the number of correction steps
was increased, the Ccoef values began to decrease, and the Ccoef was less than that of the UCPC
product. The RMSE and SDEV values of the CPC product were also much higher than the RMSE and
SDEV values of the UCPC product. This indicated that with an increase in the number of correction
steps, the accuracy of the PERSIANN-CDR product initially increased and subsequently decreased
and that the CPC had the highest accuracy when only one correction step was used. Therefore, this
study selected the results from one correction step as the final correction result.

Table 3. PERSIANN-CDR satellite precipitation data correction results.

SDEV (mm) Ccoef RMSE (mm)

UCPC 3.99 0.58 3.24
Step 1 3.98 0.73 2.77
Step 2 16.16 0.35 15.46
Step 3 174.19 0.26 173.56

A scatter density map for the CPC products is shown in Figure 5b. It can be seen that the data
of stations in the Yarlung Zangbo River basin from 1998 to 2015 mainly represent small precipitation
events. These events accounted for 94.68% of all events and were mainly in the 0–5 mm range. From the
fitting line of the scatter density map, it can be seen that, overall, the PERSIANN-CDR product
overestimated the stations’ precipitation data, especially for small precipitation events. With the CPC
product, the scatter points were closer to the fitting curve, especially in the case of slight precipitation,
and the overestimates were reduced. After the SPE product was corrected, the value of Ccoef increased
from 0.585 to 0.727, the scatter of the PERSIANN-CDR product showed clear convergence, and the
bias was reduced.
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The probabilistic statistical indices of the corrected SPE data and gauge observation data are
shown in Figure 6. The average POD value of the original SPE product was 0.91 in the entire basin,
and the POD value of the corrected SPE product was 18.2% higher than the uncorrected SPE product,
which indicated that the ability to detect precipitation events of the SPE product was improved by the
SC method. There also existed some differences in the spatial distribution of the SPE product in the
Yarlung Zangbo River basin. The POD values of the corrected SPE product in the eastern region of the
Yarlung Zangbo River basin ranged from 0.77 to 0.90, and in the western region from 0.94 to 0.95, while
in the central region, the POD values ranged from 0.94 to 0.96. The performance of the corrected SPE
improved the capacity of detecting precipitation events, especially in the western region of the basin.
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The value of the corrected SPE product was 0.58 in the entire basin and 10.8% lower than the
original SPE product, which indicated that the condition of the missed SPE product was relieved to a
certain extent. The POD values in the central region were the smallest, with a range of 0.65 to 0.71.
The values of FAR in the eastern part of the basin had a low range from 0.38 to 0.64, while the values
in the western basin were between that of the eastern region and the central region, which indicated
that the performance of the corrected SPE product in FAR was improved in the western region of the
Yarlung Zangbo River basin, while the improvements in FAR were not as significant as that of POD.

The CSI value of the corrected SPE was 0.39 in the entire basin. The CSI of the corrected SPE
product showed the same spatial distribution characteristics as the uncorrected product. In the eastern
part of the basin, the values of CSI ranged from 0.52 to 0.53, while in the central region, the values
ranged from 0.29 to 0.35. In the western part of the basin, the values of CSI ranged from 0.32 to 0.35.

In conclusion, the accuracy of the corrected PERSIANN-CDR product by the SC method and
the capacity of detecting precipitation events improved in the daily scale. The correlation coefficient
between the corrected and original SPE product improved. From the perspective of spatial distribution,
the SC method mainly improved the accuracy of the SP product in the central and western regions of
the basin.

3.3. Discharge Simulation with Gauged Data, Uncorrected SPE Data, and Corrected SPE Data

The Lhasa River basin, a typical sub-basin of the Yarlung Zangbo River basin, was selected as the
CPC verification area. The gauged data, UCPC data, and CPC data were used to drive the IHACRES
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model, and the model was validated in the Lhasa River basin. The NSE for the model, determined using
the SCE-UA algorithm calibration, reached 0.836 for the calibration period (2009–2011). The model
performance was very good. This indicated that the calibrated IHACRES model could be applied
in the Lhasa River basin. In the verification period (2012–2014), the IHACRES model was driven
using gauged, UCPC, and CPC data. The simulation results are shown in Figure 7. The NSE for the
gauged data simulation was 0.816, and the PBIAS was 9.79%. The model simulation achieved very
good results: The gauged precipitation data generated simulations with a relatively high accuracy that
better reflected the runoff in the basin. When the UCPC was used to drive the IHACRES model, the
NSE was −1.673, and the PBIAS was −135.32%. This indicates that the simulation performance of
the model was very poor when using UCPC. The simulated runoff value was much higher than the
actual runoff value in the Lhasa River basin, especially in the summer and autumn seasons (Figure 7b).
Therefore, the UCPC data increased the uncertainties in the model and reduced the accuracy of the
simulation results. In contrast, when the CPC product was used to drive the IHACRES model, the
resulting NSE value was 0.702, and the BPIAS value was −23.24%. This indicates that the simulation
provided by the model was generally good. Compared to the UCPC simulation results, the CPC data
greatly improved the runoff simulation results.

The IHACRES simulations using the CPC data for the Lhasa River basin were superior to the
simulations performed using the UCPC data. The simulated values using the CPC data overestimated
the peak measured runoff, especially during the 2012 season, which had abundant rainfall. Possible
reasons for the poor peak runoff simulation include the following: (1) The model used the gauged data
to calibrate the parameters, the calibrated parameters favored good simulation results for the gauged
data, and the runoff simulated by the SPE was inadequate for capturing the peak capture runoff; and
(2) the precipitation was still overestimated as a whole, even though the PERSIANN-CDR product
was corrected. The IHACRES simulated runoff results were highly dependent on precipitation values,
and thus the corrected data still overestimated peak runoff.

Figure 7. Cont.
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Figure 7. Observed and simulated daily hydrographs for validation purposes using (a) gauged data,
(b) UCPC data, and (c) CPC.

4. Discussion

The sparseness of precipitation stations in the Qinghai–Tibet Plateau has brought serious
challenges for local water resource management and sustainable use. SPE products can provide
precipitation data with a relatively high spatial resolution, which can serve as effective supplementary
gauged data in the Qinghai–Tibet Plateau. Because of local topography and climatic effects, there are
uncertainties associated with the SPE data for the Qinghai-Tibet Plateau. Therefore, the accuracy of SPE
products should be evaluated and corrected before the data are applied to analyze local precipitation
characteristics and drive hydrological models. There are significant temporal and spatial differences of
the precipitation in the Yarlung Zangbo River basin, and the differences have a profound impact on
the applicability and correction effect of the SPE product in the basin. In this study, the monthly and
seasonal precipitation data were calculated by accumulating the daily precipitation data, and 0.15◦,
0.25◦, 0.35◦, and 0.45◦ spatial resolution were used by downscaling and upscaling methods to discuss
the impacts of the temporal-spatial resolution on the accuracy performance and effect of the SC method.
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4.1. Effect of Temporal Resolution on the Accuracy of Corrected and Uncorrected SPEs

The statistical indices between the original and corrected SPE product were calculated on a
monthly scale (Table 4). The monthly Ccoef values (0.96 and 0.97) between the original and corrected
PERSIANN-CDR data and the gauged data were much higher than those on the daily scale (0.58 and
0.73). This showed that the original and corrected PERSIANN-CDR product had a good consistency
with the gauged data on a monthly scale, with a high accuracy. The average RMSE values were
34.57 mm and 33.47 mm, respectively, and the average SDEV values were 77.25 mm and 77.01 mm,
respectively. The values of the probabilistic statistical indices on the monthly scale were much higher
than the values of indices on the daily scale. The values of the monthly scale were higher than those
of the daily scale, which indicated that the deviation of the PERSIANN-CDR product was higher on
the monthly scale. Thus, the correlation between the PERSIANN-CDR data and gauged data was
better on the monthly scale than on the daily time scale, but the deviation also increased. Overall,
the original and corrected PERSIANN-CDR product had a better performance on the monthly scale.
In addition, the effect of the SC method on the accuracy improvement of SPE data was not obvious on
the monthly scale: The correlation coefficient increased by only 0.01 on the monthly scale, and FAR
and CSI changed only by 0.01.

Table 4. The values of statistical indices for four temporal resolutions.

Spatial Resolution RMSE (mm) Ccoef SDEV (mm) POD FAR CSI

UCPC

0.15 3.24 0.59 4.00 0.84 0.66 0.32
0.25 3.24 0.58 3.99 0.77 0.65 0.32
0.35 3.24 0.59 3.99 0.86 0.66 0.32
0.45 3.24 0.59 4.00 0.87 0.66 0.32

CPC

0.15 3.71 0.70 5.02 0.93 0.60 0.39
0.25 2.77 0.73 3.98 0.91 0.58 0.39
0.35 5.14 0.64 6.37 0.95 0.61 0.38
0.45 9.22 0.54 10.31 0.96 0.62 0.37

4.2. Effect of Spatial Resolution on the Accuracy of Original and Uncorrected SPEs

It is important and essential to discuss the impact of spatial resolution of the SPE product in
the process of correction and evaluation. We calculated the basic statistical indices and probabilistic
statistical indices in different spatial resolutions (Table 4) [18]. With a decrease in the resolution from
0.15◦ to 0.45◦, the original SPE product changed little in the various indices, while the value of the
correlation coefficient of the corrected SPE product decreased gradually from 0.7 to 0.54, and the value
of the RMSE and SDEV increased gradually. Therefore, the spatial resolution of the SPE product
mainly affected the basic statistical indicators of the corrected SPE product. The correlation between
the SPE data and gauged station data decreased and the deviation increased with a gradual reduction
of the resolution. Omranian [17] assessed the impact of the spatial resolution on the satellite effect
evaluation. He believed that almost all of the performance measures were sensitive to changes in the
spatial resolution. However, the conclusion of this study was that only the CPC product had an impact
on the spatial resolution. This may be related to the calculation method in this study. In this study, the
bilinear interpolation method was used to obtain the satellite values at the site location. The site was
close to the grid points after upscaling and downscaling and was insensitive to the spatial resolution.

In terms of the spatial distribution, the Ccoef was relatively small in the western region. This might
be because the western region of the Yarlung Zangbo River basin is located in the northwest of the
plateau, which is seldom impacted by warm and humid air masses and has very low precipitation.
Consequently, the correlation between the SPE data and gauged data was relatively poor. Small values
of Ccoef were also obtained for the eastern and southeastern parts of the Yarlung Zangbo River basin.
There are two possible reasons for this: (1) The meteorological stations in this area are sparse, especially
at the outlet of the basin; and (2) the inversion of satellite data for light and heavy precipitation was
relatively poor.
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4.3. Assessment of Extreme Storm Events by the Corrected SPE Product Data

Tong et al. [12] verified the performance of TRMM 3B42, TRMM 3B RT, CMORPH, and PERSIANN
in the Qinghai–Tibet Plateau. The Variable Infiltration Capacity (VIC) model was used to simulate
streamflow at the Tangnaihai and Zhimenda stations on the Yellow and Yangtze Rivers, respectively.
The authors observed that CMORPH exhibited the best performance of the four SPE products for
streamflow simulations. The precipitation satellite has the advantages of a wide coverage and strong
timeliness, which can make up for the insufficiency of the incomplete coverage of ground stations
and radar. Therefore, it plays a very important role in the monitoring of floods and disasters [40].
In July 2014, continuous precipitation occurred in Lhasa. On 23 July, a medium-sized mudslide
occurred in Nimu county in Lhasa. Houses were damaged, roofs collapsed, roads were washed away,
and farmland was flooded, with more than 800 people affected. The original and corrected SPE data
were used to simulate the summer 2014 runoff of the Lhasa River (Figure 8). The runoff of the Lhasa
River continued to increase in mid-to-late July 2014, reaching a peak around 23 July, 2014. The runoff
data simulated by the original product were always overestimated, while the corrected product could
fit the trend of the runoff data well, especially in mid-to-late July. Therefore, the satellite precipitation
data corrected by the SC method could better simulate the flood disaster, which is of great significance
for disaster prevention and mitigation.Remote Sens. 2018, 10, x FOR PEER REVIEW  16 of 19 
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5. Conclusions

Using the PERSIANN-CDR product, the IHACRES model, and gauged data, a variety of statistical
indicators were selected to evaluate the performance of the PERSIANN-CDR product for the Yarlung
Zangbo River basin at various time scales. The accuracy of the PERSIANN-CDR product was corrected
at a daily scale using the SC method. UCPC data and CPC data were used to drive the IHACRES
model. The main conclusions are as follows:

1. The correlation between the uncorrected SPE data and gauged observation data was low on
a daily scale, and the deviation was large. The original PERSIANN-CDR data could detect
precipitation events to a certain extent, but 23% of the precipitation events were not captured,
and 65% of the precipitation events were missed. The accuracy of the SPE product decreased
gradually from the east to the west of the basin.
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2. The precipitation satellite data corrected by the SC method using one step showed a clear
improvement at the daily scale, as well as a notable bias range convergence. The Ccoef
increased from 0.58 to 0.73, and the values of SDEV and RMSE declined. The CPC product
data moved toward the direction of the fitting curve, especially in the case of light precipitation.
The overestimation by satellite precipitation data of the gauged data was reduced. The POD
value of the corrected SPE product was 18.2% higher than the uncorrected SPE product, which
indicated that the capability of detecting precipitation events improved. The SC method mainly
improved the accuracy of the SPE product in the central and western regions of the basin.

3. The temporal-spatial resolution influenced the performance of the SPE product in the Yarlung
Zangbo River basin. When the temporal resolution changed from day to month and season, the
values of statistical indices greatly improved, especially on the monthly scale. The SC method
was not sensitive to the time scale, and the variations of the indices before and after correction
on the monthly and seasonal scales were not obvious (except the variation of the correlation
coefficient on the seasonal scale). With a change in the spatial resolution of the SPE data through
downscaling and upscaling, only the corrected data were sensitive to the correlation coefficient.
As the resolution became coarser, the correlation coefficient between the corrected SPE data and
the ground station data gradually became lower.

4. The IHACRES Model was calibrated using the SCE-UA algorithm and could be satisfactorily
applied in the Lhasa River basin. The NSE values for models driven by gauged, UCPC, and
CPC data were 0.816, −1.673, and 0.702, respectively. The UCPC product provided poor runoff
simulations, while the CPC product provided greatly improved runoff simulations. The corrected
product data were sufficiently accurate to fit the trend of the debris flow disaster in the Lhasa
river in mid-to-late July 2014, which plays a very important role in flood disaster monitoring
and prevention.
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Glossary

Ccoef Correlation Coefficient
CPC Corrected PERSIANN-CDR
GPCP Global Precipitation Climatology Project
SC Successive correction
SPE Satellite-based precipitation estimate
HE Hydrological evaluation
IHACRES Identification of unit Hydrographs and Component flows from Rainfall,

Evapotranspiration, and Streamflow data
IR Infrared
MW Microwave
NSE Nash–Sutcliffe coefficient of efficiency
PBIAS Percent bias
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PERSIANN-CDR Precipitation Estimation from Remotely Sensed Information using Artificial Neural
Networks-Climate Data Record

RMSE Root mean square error
SDEV Standard deviation
UCPC Uncorrected PERSIANN-CDR
VIS Visible
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