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Abstract: Vivid main structure and rich texture detail are important factors with which to determine
the quality of high-resolution images after super-resolution (SR) reconstruction. Owing to the loss
of high-frequency information in the process of SR reconstruction and the limitation of the accurate
estimation of the unknown information in the inversion process, a gap still exists between the
high-resolution image and the real image. The main structure can better preserve the edge structure
of the image, and detail boosting can compensate for the missing high-frequency information in the
reconstruction process. Therefore, a novel single remote-sensing image SR reconstruction method
based on multilevel main structure and detail boosting (MMSDB-SR) is put forward in this paper. First,
the multilevel main structure was obtained based on the decomposition of the remote-sensing image
through use of the relative total variation model. Subsequently, multilevel texture detail information
was obtained by a difference process. Second, the multilevel main structure and texture detail were
reconstructed separately. The detail-boosting function was used to compensate for the missing
high-frequency details in the reconstruction process. Finally, the high-resolution remote-sensing
image with clear edge and rich texture detail can be obtained by fusing the multilevel main structure
and texture-detail information. The experimental results show that the reconstructed high-resolution
image has high clarity, high fidelity, and multi-detail visual effects, and the objective evaluation index
exhibits significant improvement. Actual results show an average gain in entropy of up to 0.34 dB for
an up-scaling of 2. Real results show an average gain in enhancement measure evaluation of up to
2.42 for an up-scaling of 2. The robustness and universality of the proposed SR method are verified.

Keywords: super-resolution reconstruction; main structure; detail boosting; remote-sensing image;
multilevel decomposition

1. Introduction

Super-resolution (SR) reconstruction is the technology of obtaining high-resolution (HR) images or
sequences from one or more low-resolution (LR) observation images by means of signal processing [1].
SR reconstruction is widely used in remote sensing, video surveillance, medical diagnosis, military
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reconnaissance, and other civil and military fields [2]. This research has important theoretical
significance and application value. In recent years, it has become one of the most active research topics
in the field of image reconstruction. In the field of remote sensing, with the rapid development of
optical remote-sensing satellite technology, the amount of remote-sensing data in China is becoming
increasingly abundant, but a gap still exists regarding the resolution of foreign optical satellite
images. Therefore, the resolution of optical satellite images can be improved with the help of SR
reconstruction technology at a small economic cost to meet the increasingly more refined applications
of remote-sensing images [3–5]. At present, in terms of the amount of image data involved in SR
reconstruction, the SR reconstruction method should be divided into SR reconstruction technology
based on single image and that based on multiple images.

The multiple-image-based SR methods mostly exploit the differences between LR images to
generate HR images. Owing to the fact that the complementary information contained in multiple
images can make up for the high-frequency information lost in the reconstruction process, it has
received the attention of many researchers and promising results have been forthcoming. In the remote
sensing field, the satellite has the return visit period, in which a multi-sensor can achieve multi-angle
observation, and different satellites can acquire images covering the same area with similar exposures.
That is to say, image data is easy to obtain. For example, three-line-array images captured seconds
apart in the same satellite overpass are shown in Figure 1. As shown in Figure 1, despite the fact
that the images are acquired easier, the television tower is different in the images due to the different
observation angles. However, beyond that, image distortion, terrain undulation, and shadow existence,
are much more challenging for multiple-image-based SR methods. These factors can exert a significant
influence on the quality of the reconstructed image. In addition, high-precision sub-pixel registration
accuracy of homologous or heterogenous images is still a bottleneck.
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Figure 1. Simultaneous-phase three-line-array remote-sensing images.

By contrast, single-image SR is a valuable and efficient method. However, the key issues remain
to be solved urgently, which are how to recover clear edges and finer texture details. Key challenges in
single-image SR reconstruction, then, are to fully exploit the information contained in the image and to
retain the clarity of the reconstructed image edge, with an aim toward reconstructing the HR image,
which can provide more detailed information about the target scene. In summary, to reconstruct a
high-resolution remote-sensing image with high clarity, high fidelity, and multiple textures, a flexible
single-remote-sensing-image SR reconstruction method based on multilevel main structure and detail
boosting (MMSDB-SR) is presented. One embodying a simple and yet effective method of achieving
retention of the edge structure of the reconstructed image and restoration of the high-frequency
texture details.
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2. Related Work

The existing single-image SR reconstruction methods can be divided into four categories [6,7]:
SR models based on interpolation, based on reconstruction, based on deep learning, and based on
information enhancement.

SR models based on interpolation comprise the most basic SR reconstruction method [8–10],
and they are widely used as a pre-treatment method for other SR reconstructions in practical
applications. Interpolation-based SR models have the performance advantages of simple operation
and fast speed, but image edge structure is not taken into account in the process of SR reconstruction
using them. This may lead to image edges spreading in different degrees and detail information
blurring in the reconstructed image. SR models based on reconstruction [11–13] are usually used
to incorporate some prior distribution of the corresponding HR image to constrain the constructed
result. Many models have been introduced in reconstruction-based SR models, such as the iteration
back-projection (IBP) [14], maximum a posteriori (MAP) [15], and the total variation (TV) [12]
models, among others. These models aim to solve the difficult problem of SR reconstruction and
obtain a stable and relative optimal solution. Although a SR model based on reconstruction is
simple to realize, it has the drawback of losing high-frequency information and blurring the edges.
Moreover, prior-knowledge-provided accuracy is still a difficult problem in remote-sensing images
with complex topography [16,17]. In recent years, a SR reconstruction method based on deep learning
was developed [18,19] in which a large number of convolution templates were utilized to learn the
features of images. The high-level structural features are learned from patches between LR and
HR images in deep-learning-based SR models. On the basis of the learning features, the quality of
reconstructed images can be improved effectively. In addition, other state-of-the-art SR methods
have been proposed. Image SR using deep convolutional networks (SRCNN) was put forward
by Dong et al. [20]. Accurate image SR using very deep convolutional networks (VDSR) was
introduced by Kim et al. [21]. These approaches have shown great promise, but a large-capacity
training-sample library is needed and the training process is very time-consuming. Such methods
can only realize the designated up-scaling factor reconstruction under the training model, and thus a
certain lack of flexibility exists. When the convolutional layer is less, there are still some deficiencies
in the reconstruction of high-frequency information. SR models based on deep learning often lack
high-frequency details and are perceptually unsatisfying in that they fail to match the fidelity expected
at the higher remote-sensing image resolutions. SR models based on information enhancement [22–24]
comprise a kind of method based on image pre-processing. A level of image-enhancement technology
has been introduced in some SR models to compensate the loss of high-frequency information in
the reconstruction process [25,26]. The problem of SR reconstruction model complexity is solved in
such information-enhancement-based SR models. Nevertheless, how to balance the scale of image
enhancement and to avoid reconstruction images appearing with excessively sharp edges are the
difficult problems introduced in their use.

In summary, a method of improving the visibility and texture details of a reconstructed image
from a LR remote-sensing image with clear edge structure and rich texture details based on the
multilevel main structure and detail boosting is presented in this paper, the rest of which is organized
as follows. We describe the SR reconstruction method and objective evaluation indexes are introduced
in Section 3. Experimental analysis and discussion of the SR reconstruction are provided in Section 4.
A review of SR applications in Section 5, and final remarks in Section 6.

3. Method

Here, contrary to previous works, a SR reconstruction method based on multilevel main structure
and detail boosting is put forward. This method aims to solve the existing problems of edge blurring
and lack of detail information in single-image SR reconstruction methods. Motivated by this, a
novel and flexible single-image SR method flow is introduced. First, the relative total variation
(RTV) algorithm is used to extract multilevel main structure information, and multilevel detail
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information is obtained by a difference method. Next, the multilevel main structure and texture-detail
information are up-sampled separately. Finally, a detail-boosting function is utilized to enhance
the texture-detail information in the HR image. Under the premise of controlling excessive edge
sharpening, the multilevel main structure and texture-detail information are fused. The complete
single remote-sensing image SR reconstruction flow is shown in Figure 2.
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3.1. RTV Algorithm

For remote-sensing images, the meaningful structure of images is the main data of the human
visual perception system, and thus the main structure forms an important basis for acquiring image
information. Therefore, it is valuable to extract meaningful structural data and texture details from
the image; it can also be powerful support for SR reconstruction based on a single remote-sensing
image. The RTV algorithm was proposed in the literature [27], and it can effectively decompose the
main structural and texture details of an image whether the texture is regular or symmetric. In other
words, this algorithm is general and arbitrary and is applicable to non-uniform or anisotropic textures.
The objective function of the RTV model is finally expressed as

ξ(ε, λ, I, S) = ∑
P
(SP − Ip)

2 + λ
(
Dx(p)
Lx(p)+ε

+
Dy(p)
Ly(p)+ε

)
S = argmin

S
ξ(ε, λ, I, S)

(1)

where I is the input image, p the pixel index of the two-dimensional image, S the output structure
image, λ a weight value that controls the degree of separation between the main structure and texture
detail of the image, and ε a small positive value introduced to avoid the case of the denominator
appearing to be 0, the fixed value of which is 0.001. A general pixel-wise windowed total variation
measure is contained in this method. Dx(p) and Dy(p) are windowed total variations in the x and y
directions, respectively, for pixel p. To help distinguish prominent structures from the texture elements,
a novel windowed inherent variation is defined. Lx(p) and Ly(p) are windowed inherent variations
in the x and y directions, respectively, for pixel p. expressed as
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Dx(p) = ∑
q∈R(p)

gp,q

∣∣∣(∂xS)q

∣∣∣
Dy(p) = ∑

q∈R(p)
gp,q

∣∣∣(∂yS)q

∣∣∣ ,
Lx(p) = | ∑

q∈R(p)
gp,q(∂xS)q|

Ly(p) = | ∑
q∈R(p)

gp,q(∂yS)q|
(2)

where q belongs to R(p), the window centered at pixel p. ∂x and ∂y are the partial derivatives in two
directions. gp,q is a weighting function, expressed as

gp,q ∝ exp

(
−
(xp − xq)

2 + (yp − yq)
2

2δ2

)
, (3)

where δ controls the spatial scale of the window, the size of δ is an important parameter in the process
of image structure and texture separation, the range of empirical values is between 0 and 8, and
the δ increase can suppress the texture very well and retain the effect of sharpening the edge of the
main structure. Next, we provide an example to introduce the solution process of Equation (3) in the
x direction:

∑
p

Dx(p)
Lx(p)+ε

= ∑
q

∑
p∈R(q)

gp,q
| ∑
q∈R(p)

gp,q(∂xS)q |+ε
|(∂xS)q|

≈ ∑
q

∑
p∈R(q)

gp,q
Lx(x)+ε

1∣∣∣(∂xS)q

∣∣∣+εs
(∂xS)2

q

= ∑
q

uxqwxq(∂xS)2
q.

(4)

Actually, the second line of Equation (4) is an approximate calculation, since the small value εs is
introduced. Here, the quadratic term (∂xS)2

q is reconstructed and the nonlinear parts uxq, wxq, uxq, wxq

are expressed as follows:

uxq = ∑
p∈R(q)

gp,q
Lx(p)+ε

=
(

Gδ ∗ 1
|Gδ∗∂xS|+ε

)
q
,

wxq = 1∣∣∣(∂xS)q

∣∣∣+εs
.

(5)

Here, Gδ is the Gaussian kernel function of standard deviation δ and * a convolution symbol.
The calculation in the y direction is similar to that in the x direction.

By deduction, we can transform Formula (1) into the following matrix form:

ξ(ε, λ, I, S) = (vS − vI)
T(vS − vI) + λ(vT

S CT
x UxWxCxvS + vT

S CT
y UyWyCyvS), (6)

where vS and vI represent the images are vectorized into column vectors, respectively; Cx and Cy are
the Toeplitz matrices from the discrete gradient operators with forward difference. Ux, Uy, Wx, and
Wy are diagonal matrices, the diagonal values of which are, respectively, Ux[i, j] = uxi, Uy[i, j] = uyi,
Wx[i, j] = wxi, and Wy[i, j] = wyi.

The form in Equation (6) enables a special iterative optimization procedure. A numerically stable
approximation is naturally obtained, the optimization is as follows. First, the values of u and w are
straightforward to calculate based on Equation (5). Second, the values of Ux, Uy, Wx and Wy are used,
minimization boils down to solving a linear system in each iteration as

vt+1
S =

(
1 + λLt)−1vI . (7)

Here, 1 is a unit matrix, Lt = CT
x Ut

xWt
xCx + CT

y Ut
yWt

yCy the weight matrix, and
(
1 + λLt) the

symmetric positive-definite Laplacian matrix and an invertible matrix. We can directly solve the
inverse operation of the matrix or use a conjugate gradient algorithm to solve it. The result is obtained
after t-th iteration. The whole optimization process is summarized in Reference [27].
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3.2. Multilevel Main Structure and Detail-Information Extraction

From the psychological point of view, the overall structure of the image is the main source of
human visual perception. Definition of the edge main structure is one of the important indicators that
determine the resolution of an image. Owing to the RTV algorithm being applicable to non-uniform or
anisotropic textures, it can be used to extract the main structure of edges from remote-sensing images
with complex textures. Therefore, the RTV algorithm is used to decompose the main structure and
texture detail in single remote-sensing-image SR reconstruction. The accuracy of HR-image-structure
estimation can be improved based on edge main structure reconstruction. Multilevel main structural
information is obtained by adjusting the parameters of the RTV algorithm. For example, the target of
multilevel decomposition is to acquire a set of main structure information vSj (scale j = 0, 1, . . . , m).
Suppose that the input original remote-sensing image is decomposed into an m-layer main structure.
The image must then be decomposed at m + 1 levels. When the main structure level is j = 0, we set
vS0 = I. Then, the RTV algorithm is iteratively applied to the input image and a series of multilevel
edge main structures b1, · · · , bj are obtained. The progressive main structure is mainly structured by
the parameter increase at each level j. We set the initial parameters λj=1 = 1 × 10−2 and δj=1 = 0.5,
and then set λj = j ∗ λj=1 and δj = j ∗ δj=1 for all j ≥ 1. The multilevel main structure information can
be described as b1, · · · , bj, and the mathematical description of multilevel main structure extraction is
expressed as follows:

vt+1
sj

=

{
RTV(vs0 , λj, δj) i f j = 1
RTV(vsj−1 , λj, δj) otherwise

. (8)

To fully extract the information carried by a single image, multilevel texture detail is acquired
through multilevel main structure difference processing. The specific computational process of
extracting different levels of texture-detail information is as follows.

d1 = I − vS1 , d2 = vS1 − vS2 , . . . , di = vSj−1 − vSj(i = 1, 2, . . . , m). (9)

An edge-guided image-interpolation algorithm via directional filtering and data fusion [10]
is used as an up-sampling method in this paper. Up-sampling the multilevel main structure and
detail information. Related information of multiple-direction known pixel points is taken into
consideration in this interpolation algorithm. Clear and saliency edge main structure can be retained
in the reconstruction result. The multilevel main structure vSj was reconstructed VSj , the multilevel
detail information di was reconstructed Di.

3.3. Detail Boosting and Fusion

Compared with a SR reconstruction based on multiple images, it is difficult for a single image to
provide complementary information and compensate the lost detail information in the reconstruction
process. To solve this problem, we converted the image into a signal. The middle part of the signal
is the texture detail of the image and the two sides are mostly the edge main structure of the image.
To make the reconstruction of HR image restore more vivid texture detail, a flexible detail-boosting
function is proposed in this paper, one that can compensate for the lost high-frequency detail in the SR
reconstruction process. The mathematical description is:

F(Di; α, βi) = (1− βisign(
1− e−2Diα

1 + e−2Diα
))·1− e−2Diα

1 + e−2Diα
, (10)

where Di is the reconstructed multilevel texture detail information, i refers to the range of samples
of Di, α controls the amount of detail boosting, β controls the high-frequency range compression,
and sign is better known as signum function. The value of α typically varies in a small range (1,10],
βi(i = 1, · · · , m) are usually fixed to 0.5, 0.25 and 0.25, respectively.
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The function has the task of boosting the texture detail of the image and of suppressing the
reconstruction image oversaturation. We set function f equal to 1 − e−2Diα/1 + e−2Diα, where f
belongs to the hyperbolic tangent function and is a sigmoid function. A sigmoid function is an
S-shaped function commonly seen in biology, and is also known as an S-shaped growth curve.
A sigmoid function is often used as a threshold function in deep-learning convolution neural networks.
In information science, the sigmoid function has the inverse function. A sigmoid function can map
variables to [0,1] and the function-value range is [−1,1]. For multiple-scale SR experiments, different
detail-boosting parameters were applied to the multilevel detail information and a series of differently
enhanced texture-detail levels D1, . . . ,Di obtained. The progressive detail-boosting information was
realized by increasing the parameter α. We set α×η = 2(j− 1)α×2, set the initial parameter α×2 = 2,
the subscript ×η is an up-scaling factor of SR reconstruction. The detail-boosting function is used to
activate the details of the middle texture. The detail-boosting information can be exploited to infer
high-frequency components. While Di is acquired by difference processing from the reconstructed
multilevel main structure, Di is mixed with a certain marginal main structure. When the texture-detail
information Di is improved, the edge main structure information may be promoted simultaneously.
This may lead to whole-image oversaturation. Consequently, the symbolic function and the parameter
control the high-frequency range compression.

Finally, the multilevel main structure and texture-detail information are fused. An HR image
is generated that contains the clear edge and rich texture detail. The fusion process is expressed as
Equation (11) and the proposed SR reconstruction (SRR) method is outlined in Algorithm 1:

HR =
m

∑
i=1

F(Di; α, βi) +
m

∑
j=1

vSj /m. (11)

Algorithm 1. Multilevel Main Structure and Detail-Boosting SRR

1: Input: image I, up-scaling factor η,
2: Initialization
3: For band=1: n do
4: Decompose and obtain multilevel main structure, vSj = I, RTV(vsj−1 , λj, δj)

5: Calculate multilevel detail information, di = vSj−1 − vSj

6: Up-sample multilevel main structure and texture detail, and get VSj and Dj

7: Detail boosting with Equation (10)
8: Fusion with Equation (11)
9: End for
10: Output: HR image

3.4. Objective Evaluation

How to evaluate quality improvement is also one of the key points of SR reconstruction.
Referring to the evaluation method of most SR methods in the literature, the full-reference-image
quality-assessment index Peak Signal-to-Noise Ratio (PSNR) [28] and Structural Similarity (SSIM) [29]
were used in the simulation experiment. The full-reference-image quality-assessment algorithm needs
a reference image that is the same size as the evaluated image. For remote-sensing satellites, a complete
reference image cannot be obtained, which is also the significance of studying SR reconstruction of
remote-sensing images. Under the circumstances, entropy [30] and enhancement measure evaluation
(EME) [31] are used to evaluate the quality of SR reconstruction results in terms of whether they are
satisfactory or not.

Peak Signal-to-Noise Ratio (PSNR). PSNR is one of the commonly quantitative evaluation methods
and mainly used to evaluate the SR reconstructed image quality by calculating the mean square error
between the real HR image and the reconstructed HR image. The higher PSNR value is, the better
reconstruction image will be. The description of this index can be expressed as follows:
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PNSR = 10lg
L2mn

m
∑

i=1

n
∑

j=1
[IHR(i, j)− ISR(i, j)]2

, (12)

where IHR(i, j) is the real HR image and ISR(i, j) is the SR reconstruction image, m and n represent
the line number and column number of the image, respectively, and L generally represents the gray
distribution range of image.

Structural Similarity index (SSIM). SSIM is widely used in the SR reconstruction quality evaluation
when the HR image exist. The mathematical description of the SSIM index is defined as:

SSIM =
(2µxµy + C1)(2δxy + C2)

(µ2
x + µ2

y + C1)(δ2
x + δ2

y + C2)
, (13)

where µx, µy is the average of x and y respectively, δ2
x, δ2

y are the variance of x and y respectively, δxy is
the covariance of x and y, C1, C2 are the constants.

Entropy. It is used to represent the degree of uniform distribution of any energy in space.
The better the energy distribution, the larger the entropy value. The entropy of image information can
be generally expressed as:

Entropy = −
n

∑
i=0

P(i) log2 P(i), (14)

where P(i) is the probability of a pixel value i appearing in the image and i the grayscale range of the
image. The larger the entropy value is, the larger the peak area of the image histogram. When the
probability of all of the grayscale values tends to be equal, more image information will be carried,
and the more abundant the information that will be contained.

Enhancement Measure Evaluation (EME). The principle of EME is to calculate the maximum
and minimum ratios of the gray level in the sub-region, which is obtained by dividing the evaluated
image into k1 × k2 sub-regions. The logarithm of the ratios is the evaluation result of the image detail.
This evaluation index represents the degree of gray change of the local image. The larger the EME
value, the richer the detail information in the image. The EME value is mathematically expressed as:

EME =
1

k1k2

k2

∑
l=1

k1

∑
k=1

20 log
Iw
max;k,l

Iw
min;k,l

, (15)

where Iw
max;k,l and Iw

min;k,l denote the maximum and minimum values of the local image blocks
wk,l, respectively.

4. Experimental Analysis and Discussion

To verify the reliability and universality of the proposed SR reconstruction method based on
multilevel main structure and detail boosting, the panchromatic and multispectral images of ZiYun-3
(ZY-3), GaoFen-2 (GF-2), and WorldView-2 were selected as experimental data. SR reconstruction
experiments were carried out on a machine with an Intel(R) CPU E3-1505M v6 @3.00 GHz processor
running a 64-bit operating system and the MATLAB R2016a platform (MathWorks, USA, Natick).

4.1. Simulation Image SR Experiment

As the real HR remote sensing image under the same sensor is difficult to obtain, the effectiveness
of the proposed SR reconstruction method was verified by simulation experiments. Simulation images
were obtained from Resources satellite three (ZY-3) and Gaofen-2 (GF-2). The parameters of the
simulation experimental images are shown in Table 1 and the original HR images are shown in
Figure 3.
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Table 1. Parameters of simulation experimental imagery.

No. Figure Satellite View/Spectral
Mode Image Size Number

of Bands
GSD
(m) Acquisition Date

1 3a ZY3 panchromatic 500 × 500 1 2.1 6 June 2016
2 3b ZY3 panchromatic 870 × 870 1 2.1 12 February2015
3 3c ZY3 multi-spectral 500 × 500 3 5 10 January 2017
4 3d GF-2 multi-spectral 500 × 500 3 3.2 11 November 2017
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The remote sensing image obtained from the satellite was treated as the real HR image,
the corresponding LR image was obtained through the simulation model Y = HK ∗ X + N, where Y
represents the simulated LR image, X is the original remote sensing image, N represents the noise,
K the fuzzy convolution kernel, H is the down-sampling matrix, * representative convolution operation.
The type of subsampling is bilinear that was used to decrease the size of the original images. In this
experiment, the scaling factor η = 2, three layers were used in the algorithm to decompose the images.
The result based on the typical and state-of-the-art SR reconstruction methods were compared with
our SR method. Due to a limitation of space, the simulation experimental results with random noise
with the range of [−2, 2] were shown in Figure 4.

From the subjective perspective, the edge structure is blurry, the sawing phenomenon is also very
serious in Figure 4a. The main reason is the high-frequency information is lost. The IBP results in
Figure 4b are better than Bicubic. One important factor is that the real HR image is involved in the
SRR process. The overall effect of the experiment result based on the SRCNN and VDSR method is
better than the traditional methods. Nevertheless, compared with the real HR image, the result is a
little blurry, and the detail information is still not enough. The reconstructed result in Figure 4e is too
saturated, the essential information of the image has been changed, and the result deviates from the
real HR image. In Figure 4f, the proposed method can reconstruct rich detail information and retain a
better edge structure. The high-frequency information is promoted in this method. In order to evaluate
the reconstruction results more objectively, the quality evaluation method was adopted in this paper,
and the objective evaluation index results for different amounts of noise are shown in Tables 2 and 3.

To further test the performance of the MMSDB-SR method, simulative panchromatic
and multi-spectral images were used to experiment for different scale factors. Similar to
2×-up-scaling-factor SR reconstruction, 2×-, 2.5×-, 3×-, 3.5×- and 4×-upscaling-factor SRR
experiments results are shown in Figure 5.
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Table 2. The objective evaluation index results with random noise, with the range of [−2,2].

Image Data
Method

Bicubic IBP SRCNN [20] VDSR HE MMSDB-SR

Exp_1
PSNR:
25.53

PSNR:
26.17 PSNR: 26.36 PSNR:

26.47
PSNR:
13.57 PSNR: 26.59

SSIM: 0.82 SSIM: 0.83 SSIM: 0.85 SSIM: 0.86 SSIM: 0.63 SSIM: 0.88

Exp_2
PSNR:
20.65

PSNR:
20.71 PSNR: 20.76 PSNR:

20.94
PSNR:
11.69 PSNR: 21.02

SSIM: 0.82 SSIM: 0.83 SSIM: 0.85 SSIM: 0.87 SSIM: 0.62 SSIM: 0.89

Exp_3
PSNR:
32.09

PSNR:
32.13 PSNR: 33.05 PSNR:

33.08
PSNR:
13.39 PSNR: 33.11

SSIM: 0.81 SSIM: 0.85 SSIM: 0.94 SSIM: 0.95 SSIM: 0.69 SSIM: 0.89

Exp_4
PSNR:
29.94

PSNR:
30.01 PSNR: 30.15 PSNR:

30.16
PSNR:
13.47 PSNR: 30.17

SSIM: 0.85 SSIM: 0.89 SSIM: 0.90 SSIM: 0.91 SSIM: 0.64 SSIM: 0.92
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Table 3. The objective evaluation index results with random Noise with the range of [−5,5].

Image Data
Method

Bicubic IBP SRCNN [20] VDSR HE MMSDB-SR

Exp_1
PSNR:
24.16

PSNR:
24.81 PSNR: 25.08 PSNR:

25.17
PSNR:
13.49 PSNR: 25.21

SSIM: 0.76 SSIM: 0.78 SSIM: 0.81 SSIM: 0.83 SSIM: 0.55 SSIM: 0.85

Exp_2
PSNR:
20.52

PSNR:
20.58 PSNR: 20.63 PSNR:

20.46
PSNR:
11.67 PSNR: 20.53

SSIM: 0.81 SSIM: 0.82 SSIM: 0.84 SSIM: 0.86 SSIM: 0.59 SSIM: 0.89

Exp_3
PSNR:
28.38

PSNR:
28.49 PSNR: 29.17 PSNR:

29.19
PSNR:
13.37 PSNR: 29.23

SSIM: 0.76 SSIM: 0.79 SSIM: 0.83 SSIM: 0.85 SSIM: 0.66 SSIM: 0.87

Exp_4
PSNR:
27.92

PSNR:
28.36 PSNR: 28.84 PSNR:

28.87
PSNR:
13.46 PSNR: 28.92

SSIM: 0.72 SSIM: 0.74 SSIM: 0.77 SSIM: 0.81 SSIM: 0.59 SSIM: 0.82
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on HE, the fourth layer is the SRR result based on MMSDB-SR.

In the different scale factors SRR experiment, SRR based on Bicubic, IBP and HE were compared
with MMSDB-SR method. This is because SRR based on SRCNN and VDSR directly learn an end-to-end
mapping between the low/high-resolution images. The deep-learning methods were not trained for
each different scale, and these methods were trained and rebuilt on a set scale at the same time.
As can be clearly seen in Figure 5, the overall outline of the SRR result based on Bicubic is not very
clear. The SRR result based on IBP is better than Bicubic, but there was no qualitative improvement.
The reconstruction image distribution of the SRR result based on HE is too saturated. The detail
information of the reconstruction image is not really improved. Through the comparison, it can be
shown that MMSDB-SR method resulted in a clear edge structure. In order to analyze the experimental
results more objectively, the objective evaluation indexes are listed in Table 4.

It can also be seen from the objective evaluation results, that the MMSDB-SR result is better than
other methods. IBP is better is obviously better than the Bicubic method because the real HR images
participate in the reconstruction process. Nevertheless, when the real HR image does not exist, the IBP
method will not work well. Meanwhile, when the scale factor is too big, the quality of the results of
all SRR methods will also decline because of the reference information limited. Therefore, it is still
necessary to further explore and study the goal which retains all kinds of detail information of the
original image.
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Table 4. Objective evaluation indexes of different-scale reconstruction results.

Index Method ×2 ×2.5 ×3 ×3.5 ×4

Exp_1

PNSR

Bicubic 25.53 25.27 22.97 21.19 21.04
IBP 26.17 25.28 23.93 23.37 23.08
HE 13.57 13.12 12.36 12.15 12.12

MMSDB-SR 26.59 25.35 24.36 24.05 23.93

SSIM

Bicubic 0.82 0.82 0.74 0.61 0.57
IBP 0.83 0.73 0.71 0.64 0.54
HE 0.63 0.62 0.54 0.46 0.40

MMSDB-SR 0.88 0.88 0.84 0.83 0.81

Exp_4

PNSR

Bicubic 29.94 24.60 23.84 22.42 22.22
IBP 30.01 25.23 24.31 23.54 23.48
HE 13.47 13.37 13.26 13.06 13.04

MMSDB-SR 30.17 26.39 25.05 24.98 24.90

SSIM

Bicubic 0.85 0.71 0.61 0.47 0.45
IBP 0.89 0.76 0.61 0.54 0.48
HE 0.64 0.52 0.44 0.35 0.32

MMSDB-SR 0.92 0.85 0.78 0.76 0.75

4.2. Real Remote-Sensing Image SR Experiment

Unlike the experimental data selected in most of the published literature, in this paper real
remote-sensing images were used as SR reconstruction experimental data. Instead of using simulated
degraded images, urban areas, villages and towns, roads, water areas, mountains, and other
topographies were selected for the SR reconstruction experiments. The parameters of the experimental
images are shown in Table 5 and the experimental images themselves are shown in Figure 6.

Table 5. Parameters of experimental imagery.

No. Figure Satellite View/Spectral Mode Image Size GSD (m) Acquisition Date

1 4a ZY3 panchromatic 2000 × 2000 2.1 10 July 2013
2 4b GF-2 panchromatic 1024 × 1024 1 1 September 2016
3 4c WorldView-2 panchromatic 500 × 500 0.46 16 October 2017
4 4d ZY3 multi-spectral 1024 × 1024 5 9 March 2013
5 4e GF-2 multi-spectral 1024 × 1024 4 19 May 2016
6 4f WorldView-2 multi-spectral 500 × 500 1.8 1 June 2016

The actual remote-sensing images were super-resolved with a 2× up-scaling factor.
The reconstructed results were compared with those obtained from the bicubic, IBP, SRCNN, VDSR,
and histogram-equalization (HE) methods. In the case of multispectral images, the three multi spectral
channels, including red, green and blue, were used to apply the SRR process. Subjective and objective
evaluation methods were utilized to evaluate and analyze all the SR reconstruction results. The first
three groups of images were panchromatic images and the last three groups were multispectral images;
the experimental results are shown in Figure 7.

Taking all of the reconstructed results together, reconstruction of the image using the bicubic
method did not perform well. The edge structure was fuzzy, the amount of information was not
increased by the SRR process, and the texture details were not rich enough. SRR results based on the
IBP method were better than those based on the bicubic method. However, the improvement of the
results was not visually obvious. The improvement of reconstructed image quality is evidently limited
by not having real HR images as references. Compared to the state-of-the-art SR methods in the field
of deep learning, such as the SRCNN and VDSR methods, the quality of the reconstructed image by
those methods was better than that obtained using the bicubic and IBP methods. The definition of the
reconstructed image edge structure was improved, but the information on the complex geomorphology
did not substantially change. To further illustrate that the contribution of this paper is not simple
contrast enhancement, HE was used in the SR experiments to facilitate comparative analysis. It is
well known that HE can improve the contrast of images visually. The detail information was not
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improved, and the edge structure not clear enough. Through the comparison and analysis of the
reconstruction results, it can be shown that the SRR method proposed in this paper resulted in a clear
edge structure. Meanwhile, the HR image contained rich topographic feature information and more
prominent texture details. To make a quantitative analysis of the reconstruction results obtained by using
different reconstruction methods, the reconstruction images were evaluated objectively through entropy
and the EME index. The objective evaluation indexes of different SRR results are listed in Table 6.
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Table 6. Objective evaluation indexes of different reconstruction methods in real experiments.

Index Bicubic IBP [14] SRCNN [20] VDSR [21] HE MMSDB-SR

Exp_1 Entropy 6.18 6.26 6.28 6.29 6.11 6.66
EME 5.93 6.05 6.17 6.54 6.80 9.69

Exp_2 Entropy 7.55 7.60 7.67 7.68 7.26 7.94
EME 10.23 10.51 11.70 11.71 9.18 12.45

Exp_3 Entropy 6.98 7.01 7.03 7.02 6.74 7.21
EME 5.90 11.75 11.85 12.26 9.03 13.02

Exp_4 Entropy 7.52 7.53 7.54 7.54 6.99 7.60
EME 14.08 15.32 15.70 15.81 14.06 15.99

Exp_5 Entropy 7.64 7.65 7.66 7.67 6.98 7.76
EME 11.39 12.18 13.73 14.73 9.68 15.07

Exp_6 Entropy 7.39 7.42 7.47 7.52 5.99 7.99
EME 20.02 20.10 21.65 21.85 20.75 23.62

In the SRR experiments, entropy and the EME index were used to evaluate the reconstructed HR
images, because the real HR remote-sensing images acquired by the same sensor cannot be obtained.
For the objective evaluation indicators used in this paper, the entropy represents the degree of uniform
distribution of any energy in space, the higher the objective evaluation index, the more information
of the reconstructed image. Statistical results show that the proposed multilevel main structure and
detail-boosting method reflect significant advantages in objective evaluation indicators. The entropy
indexes of the reconstructed image increased by 0.32, 0.28, 0.25, 0.24, and 0.85 dB for the Bicubic, IBP,
SRCNN, VDSR, and HE methods, respectively. Compared with other SR methods, the EME index of
the proposed SR method was also significantly improved, and the reconstructed HR image is superior
to that obtained using the classical and state-of-the-art SR methods. To further test the complexity of
the proposed algorithm compared with other SRR methods, the running time of different SRR methods
were calculated during the experiment. The number of iterations was set to 10 in IBP method. For deep
learning methods, 500 and 290 images were used for the training process in the SRCNN and VDSR
method, and training takes roughly 12 and 4 h on GTX 1060, respectively. Different number of images
were used in deep learning methods, because the fewer the layers, the more difficult the convergence.
The execution time is shown in Table 7.

Table 7. The running time (s) of different SRR methods with 2× up-scaling factor.

Bicubic IBP [14] SRCNN [20] VDSR [21] HE MMSDB-SR

Exp_1 0.08 2.90 306.92 97.75 2.02 101.40
Exp_2 0.26 2.14 175.06 43.14 1.37 65.03
Exp_3 0.23 1.41 41.12 22.22 1.17 25.87
Exp_4 0.14 3.17 170.77 104.88 2.33 131.13
Exp_5 0.14 3.17 171.75 103.06 2.36 130.16
Exp_6 0.08 1.74 40.87 10.49 1.85 33.25

It can be seen from Table 7, Bicubic, IBP and HE methods with relatively short running time as
their computation complexity are relatively low, the decrease of image size is accompanied by the loss
of information. Compared with the state-of-the-art SR methods, the execution time of MMSDB-SR is
shorter than SRCNN, and longer than VDSR. The reconstruction process of the MMSDB-SR method
focuses on detail information, and the reconstruction results are superior to VDSR in visual and
subjective evaluation. The sacrifice of time is worthwhile.
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To further test the performance of the proposed SR method, panchromatic and multi-spectral
images were again used as experimental objects. Similar to 2×-up-scaling-factor SR reconstruction,
2×-, 2.5×-, 3×-, 3.5×- and 4×-upscaling-factor SRR experiments were carried out separately.
The experimental results are shown in Figure 8.
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on MMSDB-SR.

Compared with the experimental results, it can be seen that the proposed SRR performed better
than that based on the interpolation method, and the high-frequency edge information was blurred
owing to the effect of the interpolation algorithm. The method proposed in this paper not only has
the same flexibility as the interpolation method, but can also restore the high-frequency information
in the reconstructed image. When the multiples of reconstruction increase, the edge blurring of the
traditional algorithms become increasingly more serious, and the detail distortion is more obvious.
The SR algorithm proposed in this paper restores the high-frequency information in the reconstruction
process. The reconstruction image has more feature information, clear edge contours, and richer
texture information. It not only meets the needs of human vision, but also reflects better reconstruction
performance. According to the results of the state-of-the-art SR methods based on deep learning,
a training model cannot used for all scales at the same time. To handle multiple scales, existing methods
require multiple networks. Therefore, in multiscale-factor SRR experiments the state-of-the-art SR
methods were not included. To evaluate the multiscale-factor SR experimental results objectively,
the objective evaluation indexes required are listed in Table 8.

It can be seen directly from Table 4 that the reconstructed image carried more information after
being processed using the proposed SR method. In other words, the SR method in this paper can
provide the high-frequency information in multiple SRR processes. By comparison, the information
based on the bicubic method remained basically unchanged. When multiple scales were too high,
there was little detailed information and the edge ambiguity was even more serious.
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Table 8. Objective evaluation indexes of different-scale reconstruction results.

Index Method ×2 ×2.5 ×3 ×3.5 ×4

Exp_1

Entropy

Bicubic 6.98 5.48 5.48 5.48 5.48
IBP 7.01 7.02 7.02 7.02 7.02
HE 6.74 5.42 5.42 5.42 5.42

MMSDB-SR 7.21 7.20 7.20 7.20 7.20

EME

Bicubic 5.90 4.54 4.34 3.89 3.54
IBP 11.75 6.24 6.06 5.35 4.83
HE 9.03 4.49 4.42 3.36 3.31

MMSDB-SR 13.02 10.57 9.51 8.98 8.18

Exp_4

Entropy

Bicubic 7.64 6.64 6.64 6.64 6.64
IBP 7.65 6.66 6.65 6.65 6.65
HE 6.98 5.99 5.99 5.99 5.99

MMSDB-SR 7.76 7.57 7.55 7.55 7.55

EME

Bicubic 11.39 11.08 6.36 6.07 5.09
IBP 12.18 11.75 10.94 9.22 8.37
HE 9.68 8.71 7.97 7.81 7.77

MMSDB-SR 15.07 14.89 12.61 11.42 10.41

4.3. Discussion

The SR method proposed in this paper can provide abundant texture-detail information in
2×-up-scaling-factor and multiple SRR experiments. Based on the results of comprehensive subjective
evaluation and objective evaluation analysis, the reconstruction effect is better than that of the classical
and state-of-the art SR methods. The amount of information in an SRR image reconstructed based on
HE cannot be increased. In addition, the image contrast is promoted in SRR under the circumstance of
normal light and radiation, which may eventually result in poor visual effects in the reconstructed
image. Compared with the HE method, it can be proved that the proposed SR reconstruction method is
not simple contrast enhancement. The idea of multilevel decomposition is different from the approach
of wavelets. The main difference is the size of the image decreases during the decomposition process
in the wavelets. When the size of the image decreases, the information of the image is also lost.
The multi-scale decomposition in this paper can better retain the image information and be better
used for SR reconstruction. The information in a single remote-sensing image is fully extracted to
complete SRR, and the problem of high-precision registration of multiple remote-sensing images is
avoided in the proposed method. According to the results of previous experiments, the proposed SR
method can restore an HR image without requiring any training on it. Moreover, the proposed SR
reconstruction method is flexible. Generally, however, once a deep-learning network is well trained,
it can only reconstruct the designated up-scaling-factor SR experiment.

The contributions of the SRR method proposed in this paper are mainly the following:

(1) To fully extract the information in a single remote-sensing image, a multilevel decomposition
model is proposed to extract multilevel main structure and texture detail.

(2) A novel detail-boosting function is put forward to improve the multilevel detail information.
(3) A flexible SRR method is realized using a single LR image without any auxiliary information.

5. Applications

We can obtain HR remote-sensing images through use of an SRR method rather than via the
observation images acquired by a satellite. Clearly, targets and rich topographies can be provided in HR
images. Therefore, HR images have a wide range of economic and military applications. Thus, fast and
effective feature extraction from HR remote-sensing images is a hot topic in the photogrammetry and
remote-sensing fields. To illustrate the performance of SRR of remote-sensing images with different
resolutions for feature extraction, feature-extraction experiments were carried out. It is proven that
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the edge of an HR image is clearer, and the texture features are recognized more easily. The SIFT
operator [32] and LSD algorithm [33] were used to extract the point and line features, respectively.
The imagery was acquired from the ZY-3 satellite. The point- and line-feature-extraction results for the
original image and different SRR images are shown in Figures 9 and 10, respectively.
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Two conclusions can be drawn intuitively from examination of Figures 9 and 10. First, feature
point and line extraction in HR images is greater than those in LR images. Meanwhile, our SR
method can extract more point and line features. Second, the reconstructed image can extract the
line features that are not found in the original image. In particular, for feature-line-extraction results,
the consistency of some line features is better in the proposed SRR. Combined with this result, it can
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be further concluded that the proposed method can reconstruct more feature information than the
interpolation-based and state-of-the-art SR methods. It can also be proven from these results that the
proposed SRR can not only improve the spatial resolution of the image, but it can also advance the
recognition degree of the remote-sensing-image information.

6. Conclusions

In this paper, a novel single remote-sensing-image SRR method was put forward. The information
in a single-remote-sensing image is fully extracted using a multilevel decomposition model.
The proposed SR method can realize multiple SRRs and the edge main structure of the reconstruction
image is clear and sharp. To restore the lost high-frequency information in multiple SRRs, an optimized
and flexible detail-boosting function was proposed for our SRR that effectively improves the problem
of reconstructed image-edge overflow. As a result, the reconstructed image is rich in texture landform
information. Our SRR method solves the problem of how to regenerate HR images with newer and
more useful high-frequency detail. Actual results show an average gain in entropy of up to 0.34 dB
for 2× up-scaling. Actual image results show an average gain in EME of up to 2.42 for 2× up-scaling.
Experimental results show that the definition of the reconstructed HR image and the expression of the
texture detail are better using the proposed SRR than those obtained using the bicubic, IBP, and other
state-of-the art SRR methods. They further demonstrate that our SR method is not a simple contrast
enhancement method. The proposed SR method can actually improve the details in the reconstructed
HR image. Moreover, the complexity of the SRR model is simplified in the proposed method. Finally,
the reconstructed HR image can be used for feature extraction and image fusion applications. From
such applications, it can be seen that SRR is very meaningful research technology. In the future, we plan
to further accelerate the proposed SRR method and improve the SR algorithm, at which time we plan
to extend the proposed method to video remote-sensing-image SRR.

Author Contributions: H.Z. proposed the super-resolution reconstruction based on multilevel main structure
and detail boosting method and wrote the paper; X.G., X.T. and J.X. gave some useful guidance of the proposed
method; F.M. gave guidance of the experimental and some detail problem; D.J. collected the experimental image
data and polished the language of the paper.

Funding: This research was funded by Information processing for distributed Multi-star multi-source and
multi-resolution remote sensing, grant number [2016YFB0501005] And the APC was funded by National key
research and development project of China.

Acknowledgments: This paper was supported by National key research and development project of China
(2016YFB0501005), High Remote Sensing, Surveying and Mapping Application Demonstration System (project
No. AH1601-8), the National Natural Science Foundation of China (project Nos. 41301525, 41571440, 61601213,
41601505, 41871379 and 41871382), the Special Scientific Research Fund of Public Welfare Surveying and Mapping
Profession of China (project Nos. 201412007 and 201512012), National key research and development program
(project No. 2017YFB0504201), the Project funded by China Postdoctoral Science Foundation (project Nos.
2017M611252), the Project of Liaoning Education Department (No. 16-1096, No. LR2016045), Public welfare
research fund in Liaoning Province (No. 20170003), and National Key R & D Program for Strategic International
Scientific and Technological Innovation Cooperation of China (No: 2016YFE0205300). Many people contributed
to this paper. Thanks to Guohui Jia’s support and help in the supplementary experiment, Wenjie Lin polished
the revised paper and put forward some suggestions, etc. We are very grateful for the reviewers’ comments for
the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bätz, M.; Koloda, J.; Eichenseer, A.; Kaup, A. Multi-image super-resolution using a locally adaptive
denoising-based refinement. In Proceedings of the 2016 IEEE 18th International Workshop on Multimedia
Signal Processing, Montreal, QC, Canada, 21–23 September 2016; pp. 1–6.

2. Nayak, R.; Harshavardhan, S.; Patra, D. Morphology based iterative back-projection for super-resolution
reconstruction of image. In Emerging Technology Trends in Electronics, Communication and Networking (ET2ECN),
Proceedings of the 2014 2nd International Conference on, Surat, India, 26–27 December 2014; IEEE: Piscataway, NJ,
USA, 2015; pp. 1–6.



Remote Sens. 2018, 10, 2065 22 of 23

3. Zhu, H.; Tang, X.; Xie, J. Spatio-Temporal Super-Resolution Reconstruction of Remote-Sensing Images Based
on Adaptive Multi-Scale Detail Enhancement. Sensors 2018, 18, 498. [CrossRef] [PubMed]

4. Gou, S.; Liu, S.; Yang, S.; Jiao, L. Remote Sensing Image Super-Resolution Reconstruction Based on Nonlocal
Pairwise Dictionaries and Double Regularization. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 7,
4784–4792. [CrossRef]

5. Li, L.; Wang, W.; Luo, H.; Ying, S. Super-Resolution Reconstruction of High-Resolution Satellite ZY-3 TLC
Images. Sensors 2017, 17, 1062. [CrossRef]

6. Kwan, C.; Choi, J.H.; Chan, S.; Zhou, J.; Budavari, B. Resolution enhancement for hyperspectral images:
A super-resolution and fusion approach. In Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing, New Orleans, LA, USA, 5–9 March 2017; pp. 6180–6184.

7. Lim, B.; Son, S.; Kim, H.; Nah, S.; Lee, K.M. Enhanced Deep Residual Networks for Single Image
Super-Resolution. In Proceedings of the Computer Vision and Pattern Recognition Workshops, Honolulu,
HI, USA, 21–26 July 2017; pp. 1132–1140.

8. Yang, D.; Li, Z.; Xia, Y.; Chen, Z. Remote sensing image super-resolution: Challenges and approaches.
In Proceedings of the IEEE International Conference on Digital Signal Processing, Singapore, 21–24 July 2015;
pp. 196–200.

9. Dong, W.; Zhang, L.; Lukac, R.; Shi, G. Sparse Representation Based Image Interpolation with Nonlocal
Autoregressive Modeling. IEEE Trans. Image Process. 2013, 22, 1382–1394. [CrossRef] [PubMed]

10. Zhang, L.; Wu, X. An edge-guided image interpolation algorithm via directional filtering and data fusion.
IEEE Trans. Image Process. 2006, 15, 2226–2238. [CrossRef]

11. Zhang, H.; Yang, Z.; Zhang, L.; Shen, H. Super-Resolution Reconstruction for Multi-Angle Remote Sensing
Images Considering Resolution Differences. Remote Sens. 2014, 6, 637–657. [CrossRef]

12. Chambolle, A. An Algorithm for Total Variation Minimization and Applications. J. Math. Imaging Vis. 2004,
20, 89–97.

13. Fan, C.; Wu, C.; Li, G.; Ma, J. Projections onto Convex Sets Super-Resolution Reconstruction Based on Point
Spread Function Estimation of Low-Resolution Remote Sensing Images. Sensors 2017, 17, 362. [CrossRef]

14. Irani, M.; Peleg, S. Improving resolution by image registration. CVGIP-Gr. Models Image Process. 1991, 53,
231–239. [CrossRef]

15. Liu, C.; Sun, D. On Bayesian Adaptive Video Super Resolution. IEEE Trans. Pattern Anal. Mach. Intell. 2014,
36, 346–360. [CrossRef]

16. Freeman, B.; Liu, C. Markov Random Fields for Super-resolution and Texture Synthesis. Adv. Markov Random
Fields Vis. Image Process. 2011, 82, 5–7.

17. Shen, H.; Zhang, L. A MAP-Based Algorithm for Destriping and Inpainting of Remotely Sensed Images.
IEEE Trans. Geosci. Remote Sens. 2009, 47, 1492–1502. [CrossRef]

18. Mei, S.; Yuan, X.; Ji, J.; Zhang, Y.; Wan, S.; Du, Q. Hyperspectral Image Spatial Super-Resolution via 3D Full
Convolutional Neural Network. Remote Sens. 2017, 9, 1139. [CrossRef]

19. Ledig, C.; Theis, L.; Huszar, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.;
Wang, Z.; et al. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network.
arXiv 2016, arXiv:1609.04802.

20. Dong, C.; Chen, C.L.; He, K.; Tang, X. Image Super-Resolution Using Deep Convolutional Networks.
IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 295–307. [CrossRef] [PubMed]

21. Kim, J.; Lee, J.K.; Lee, K.M. Accurate Image Super-Resolution Using Very Deep Convolutional Networks.
In Proceedings of the Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016;
pp. 1646–1654.

22. Tai, Y.; Liu, S.; Brown, M.S.; Lin, S. Super resolution using edge prior and single image detail synthesis.
In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
San Francisco, CA, USA„ 13–18 June 2010; pp. 2400–2407. [CrossRef]

23. Jiang, H.; Yang, J. In-place similarity and its applications in image and video detail enhancement. Electron.
Lett. 2016, 52, 1022–1024. [CrossRef]

24. Vishnukumar, S.; Wilscy, M. Super-resolution for remote sensing images using content adaptive detail
enhanced self examples. In Proceedings of the International Conference on Circuit, Power and Computing
Technologies, Nagercoil, India, 18–19 March 2016; pp. 1–5.

http://dx.doi.org/10.3390/s18020498
http://www.ncbi.nlm.nih.gov/pubmed/29414893
http://dx.doi.org/10.1109/JSTARS.2014.2328596
http://dx.doi.org/10.3390/s17051062
http://dx.doi.org/10.1109/TIP.2012.2231086
http://www.ncbi.nlm.nih.gov/pubmed/23314773
http://dx.doi.org/10.1109/TIP.2006.877407
http://dx.doi.org/10.3390/rs6010637
http://dx.doi.org/10.3390/s17020362
http://dx.doi.org/10.1016/1049-9652(91)90045-L
http://dx.doi.org/10.1109/TPAMI.2013.127
http://dx.doi.org/10.1109/TGRS.2008.2005780
http://dx.doi.org/10.3390/rs9111139
http://dx.doi.org/10.1109/TPAMI.2015.2439281
http://www.ncbi.nlm.nih.gov/pubmed/26761735
http://dx.doi.org/10.1109/CVPR.2010.5539933
http://dx.doi.org/10.1049/el.2015.3876


Remote Sens. 2018, 10, 2065 23 of 23

25. Sun, J.; Xu, Z.; Shum, H.Y. Gradient profile prior and its applications in image super-resolution and
enhancement. IEEE Trans. Image Process. 2010, 20, 1529–1542.

26. Yu, L.; Xu, H.; Xu, Y.; Yang, X. Robust single image super-resolution based on gradient enhancement.
In Proceedings of the Signal & Information Processing Association Summit and Conference, Hollywood, CA,
USA, 3–6 December 2012; pp. 1–6.

27. Xu, L.; Yan, Q.; Xia, Y.; Jia, J. Structure extraction from texture via relative total variation. ACM Trans. Gr.
2012, 31, 139. [CrossRef]

28. Sheikh, H.R.; Sabir, M.F.; Bovik, A.C. A Statistical Evaluation of Recent Full Reference Image Quality
Assessment Algorithms. IEEE Trans. Image Process. 2006, 15, 3440–3451. [CrossRef]

29. Zhou, W.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image Qualifty Assessment: From Error Visibility to
Structural Similarity. IEEE Trans. Image Process. 2004, 13, 600–612.

30. Tsai, D.Y.; Lee, Y.; Matsuyama, E. Information entropy measure for evaluation of image quality. J. Digit.
Imaging 2008, 21, 338–347. [CrossRef] [PubMed]

31. Agaian, S.; Panetta, K.; Grigoryan, A. Transform-based image enhancement algorithms with performance
measure. IEEE Trans. Image Process. 2001, 10, 367–382. [CrossRef] [PubMed]

32. Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110.
[CrossRef]

33. Gioi, R.G.V.; Jakubowicz, J.; Morel, J.M.; Randall, G. LSD: A line segment detector. Image Process. Line 2012, 2,
35–55. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/2366145.2366158
http://dx.doi.org/10.1109/TIP.2006.881959
http://dx.doi.org/10.1007/s10278-007-9044-5
http://www.ncbi.nlm.nih.gov/pubmed/17577596
http://dx.doi.org/10.1109/83.908502
http://www.ncbi.nlm.nih.gov/pubmed/18249627
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.5201/ipol.2012.gjmr-lsd
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	Method 
	RTV Algorithm 
	Multilevel Main Structure and Detail-Information Extraction 
	Detail Boosting and Fusion 
	Objective Evaluation 

	Experimental Analysis and Discussion 
	Simulation Image SR Experiment 
	Real Remote-Sensing Image SR Experiment 
	Discussion 

	Applications 
	Conclusions 
	References

