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Abstract: In the last few decades, researchers have developed a plethora of hyperspectral Earth
Observation (EO) remote sensing techniques, analysis and applications. While hyperspectral
exploratory sensors are demonstrating their potential, Sentinel-2 multispectral satellite remote sensing
is now providing free, open, global and systematic high resolution visible and infrared imagery at
a short revisit time. Its recent launch suggests potential synergies between multi- and hyper-spectral
data. This study, therefore, reviews 20 years of research and applications in satellite hyperspectral
remote sensing through the analysis of Earth observation hyperspectral sensors’ publications that
cover the Sentinel-2 spectrum range: Hyperion, TianGong-1, PRISMA, HISUI, EnMAP, Shalom,
HyspIRI and HypXIM. More specifically, this study (i) brings face to face past and future hyperspectral
sensors’ applications with Sentinel-2’s and (ii) analyzes the applications’ requirements in terms of
spatial and temporal resolutions. Eight main application topics were analyzed including vegetation,
agriculture, soil, geology, urban, land use, water resources and disaster. Medium spatial resolution,
long revisit time and low signal-to-noise ratio in the short-wave infrared of some hyperspectral
sensors were highlighted as major limitations for some applications compared to the Sentinel-2
system. However, these constraints mainly concerned past hyperspectral sensors, while they will
probably be overcome by forthcoming instruments. Therefore, this study is putting forward the
compatibility of hyperspectral sensors and Sentinel-2 systems for resolution enhancement techniques
in order to increase the panel of hyperspectral uses.

Keywords: hyperspectral imaging; hyperspectral applications; Hyperion; EnMAP; HISUI; PRISMA;
TianGong-1; Shalom; HyspIRI; HypXIM; Sentinel-2; Earth observation

1. Introduction

Hyper- and multi-spectral technologies have both assisted remote sensing Earth Observation (EO)
to stride forward in the past few decades. They developed gradually from meteorological projects
to a multitude of other terrestrial applications [1]. Hyper- and multi-spectral sensors are based on
the same physical technology. They both record radiance in the Visible to Near-InfraRed (VNIR) and
Short-Wave InfraRed (SWIR) of the spectrum, VNIR spanning 400–1000 nm and SWIR 1000–2400 nm.
Unlike multispectral sensors, such as Landsat-8 (11 bands), recording in a fairly limited number of
discrete spectral bands (4–20 bands), hyperspectral sensors include a very large number of contiguous
and narrow spectral bands of 5–15 nm [2]. Airborne hyperspectral sensors provide promising results
for many applications as they combine a high spectral resolution with a high spatial resolution and
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are not so affected by atmospheric perturbation [3–6]. These platforms have played a key role in the
development of hyperspectral science and applications [7–9]. Thanks to emblematic sensors such
as HyMAP, Compact Airborne Spectrographic Imager (CASI), Airborne Visible/InfraRed Imaging
Spectrometer (AVIRIS) , Digital Airborne Imaging Spectrometer (DAIS), Reflective Optics System
Imaging Spectrometer (ROSIS), Airborne Imaging Spectrometer for Applications (AISA), Hyperspectral
Digital Imagery Collection Experiment (HYDICE), Multispectral Infrared Visible Imaging Spectrometer
(MIVIS), etc., hyperspectral research quickly expanded the number of hyperspectral applications in
vegetation monitoring, water resources management, geology and land cover [9–12]. However, they do
not allow regular and synoptic coverages over large areas as spaceborne sensors. Moreover, spaceborne
sensors produce images with lower angular effects due to their much smaller field of view.

Despite the technological advances, hyperspectral satellites are still poorly represented in
the spaceborne missions compared to multispectral ones, even considering forthcoming launches.
Two hyperspectral missions for EO started around 2000 and were decisive in the progress of
hyperspectral application development and demonstration. Hyperion (EO-1 platform) was first
launched in 2000 and recorded data with a 30-m GSD and 400–2500 nm as the spectral range
(Figure 1). Compact High Resolution Imaging Spectrometer (CHRIS) is fully programmable
(i.e., in spatial resolution, total swath and spectral band settings) and provides five distinct angular
views [13]. However, since this sensor does not cover the SWIR range, CHRIS was excluded from this
hyperspectral application review. Several hyperspectral missions will shortly be launched, such as the
PRISMA (PRecursore IperSpettrale della Missione Applicativa) Italian mission with a 30-m GSD and
a wavelength range of 400–2505 nm [14], the EnMAP (Environmental Mapping and Analysis Program
of 30-m GSD, 420–2500 nm) German mission [9] and the HISUI (Hyperspectral Imager SUIte of 30-m
GSD, 400–2500) Japanese mission [15]. This low number of hyperspectral spaceborne instruments is
mainly due to technical and practical constraints including challenging Signal-to-Noise Ratio (SNR) in
particular bottom-of-atmosphere reflectance, sensor cost, data volume and associated data processing
cost and time [10]. Several studies demonstrated the potential of hyperspectral sensors in a wide range
of applications from geology [11], to vegetation [16,17], water resources [10,18] and land cover [19].
Each of these reviews focused on a very limited number of application subjects, missing a more
comprehensive overview of hyperspectral remote sensing findings.

Figure 1. Lifetime successions of the MultiSpectral Imagers (MSI) sensors of S2 (orange) and the main
past and planned spaceborne hyperspectral EO sensors (grey).

Hyperspectral imaging has proven its better discrimination than multispectral instruments thanks
to its fine and continuous spectral information [20,21]. Concomitantly, the performance of multispectral
technology is increasing gradually with the recent launch of new generation multispectral sensors.
As part of the Copernicus program, the European Space Agency (ESA) developed a new EO mission
with a high number of spectral bands; i.e., the Sentinel-2 (S2) constellation. Its main applications
range from monitoring vegetation, geological component detection, as well as risk and disaster
management [22]. Two identical S2 sensors covering the 443–2190-nm spectral range with 13 bands
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have been launched in 2015 and 2017 in order to provide unique multispectral reflectance time series
over land and coastal zones. At least two other S2 sensors are planned to be launched from 2021 [23].
Their spatial and temporal resolutions reach 10, 20 and 60 m and five days of revisit time in the
constellation mode. The S2 mission took advantage of previous hyperspectral sensors’ experiment and
multispectral missions, such as MODIS (MODerate-resolution Imaging Spectroradiometer), Landsat,
ALI (Advanced Land Imager), MERIS (MEdium Resolution Imaging Spectrometer) or SPOT (Satellites
Pour l’Observation de la Terre), in order to identify the most suitable wavelengths enabling the
observation of various geophysical variables.

In this EO context, this review specifically aims to survey hyperspectral remote sensing
applications in order to best target hyperspectral potential and synergies with multispectral sensors,
like S2. Therefore, this study encompasses the diversity of hyperspectral applications with a much
broader perspective than previous works [10,11,16–19]. The specific objectives of this literature
review of the results obtained based on spaceborne hyperspectral imagery are (i) to identify the main
hyperspectral sensors and their applications compared to S2 and (ii) to identify the major limitations
and advantages of current and future hyperspectral spaceborne sensors for operational EO.

2. Method

In order to assess the relevance of hyperspectral sensors in the S2 context, this section will first
list and describe past and planned hyperspectral sensors for EO in the S2 context. The application
literature of these sensors will then be analyzed to point out the most useful wavelengths that are not
recorded by S2. This analysis will then help to discuss major current limitations and advantages of the
hyperspectral sensors for operational EO applications. It should be noted that all information of this
manuscript is adapted to the situation as of December 2017.

2.1. Review of Hyperspectral Sensors

As this study aims to target applications for hyperspectral sensors in the S2 context, this review
focuses on EO spaceborne sensors with a ≤60-m resolution with a VNIR and SWIR capacity
(i.e., from about 400–2400 nm). In order to select the appropriate sensors for our literature review,
an inventory of the main spaceborne hyperspectral instruments has been indexed compiling their
major specifications (e.g., satellite, swath width, spectrum range, number of spectral bands, spatial and
temporal resolution, SNR, etc.). The information identified in this table is collected from publications,
conference proceedings or websites found thanks to the Google and the Google Scholar platforms,
using the words “hyperspectral”, the name of the sensor or the project and/or the name of a given
specification. Military sensors and instruments with a non-EO objective were excluded from our
research. Characteristics of S2 sensors were also added to the table to better compare respective
specifications of multi- and hyper-spectral sensors.

2.2. Review of the Applications

After the identification of the main hyperspectral sensors, we extracted publications related to each
hyperspectral sensor from the Scopus platform, using structured queries such as “SensorName AND
hyperspectral” in titles, abstracts and keywords from January 1999–December 2016. However, because
the name of the EnMAP sensor (i.e., Hyperspectral Imager) could be confused with other sensors,
the “EnMAP AND hyperspectral” query was conducted instead. We applied the same methodology
with S2 using the “Sentinel-2 AND multispectral” query. It is important to note that no further
methodology was developed to detect other potential homonyms in our research. We also visualized
the evolution of each sensor’s publications over time.

Then, we classified all of the identified articles, reviews and conference proceedings according
to their main topic in order to select EO application research, except for the Hyperion sensor.
Indeed, due to its very long lifetime, this hyperspectral sensor provided an abundant literature.
Therefore, we decided to classify its 600 latest Scopus results only. Studies merely mentioning the
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sensor’s name in their title, abstract or keyword were also excluded. The analyzed publications have
also been classified depending on the quality of their results: (a) results were satisfactory because the
objectives were reached; (b) results were moderate at best seeing that the objectives were reached in
part; (c) results were not satisfactory because the objectives were not reached.

2.3. Inventory of the Useful Wavelengths

We identified the most useful wavelengths for remote sensing applications mainly based on
the studies of Segl et al. [24] and Miglani et al. [25]. Segl et al. [24] discussed the relevance of
the multispectral bands of S2, and Miglani et al. [25] focused on the agricultural wavelengths.
They were classified depending on their main application topic (vegetation, agriculture, soil, geology,
water resources, disasters or land use). Note that vegetation, agriculture and land cover topics were
merged, while disaster applications were mainly split into the vegetation applications (vegetation
recovery after fire, wildfire assessment, etc.).

3. Results

3.1. Review of the Hyperspectral Sensors

A total of eight spaceborne hyperspectral sensors corresponding to the selected criteria have been
identified (Tables 1 and 2). Most of them are future sensors whose launches are planned after 2017
(i.e., PRISMA, EnMAP HyperSpectral Imager, HISUI, Spaceborne Hyperspectral Applicative Land and
Ocean Mission (SHALOM) , Hyperspectral Infrared Imager (HyspIRI) and Hyperspectral X IMagery
(HypXIM) (Figure 1). Two of them already have been decommissioned (i.e., Hyperion and TianGong-1
(TG-1)) (Figure 1). Their number of bands is about 200, except TianG-1 (i.e., 128), with a spectral
resolution of approximately 10 nm. As a comparison, S2 sensors measure 13 spectral bands’ reflectance
of 15–180 nm of spectral resolution depending on the band. It should be noted that several other EO
hyperspectral sensors were identified; however, they did not fulfill our criteria or had a too restricted
literature (see Appendix, Table A1 for a summary). Some of these sensors are planned to be launched
soon and could offer alternative applications to the analyzed sensors.

Table 1. Comparison of the S2 sensors specifications with the Hyperion, TianGong-1 (TG-1), PRISMA
and HISUI sensors’ characteristics [26–30].

Instrument MSI Hyperion TianGong-1 PRISMA HISUI

Platform name Sentinel-2 EO-1 Shenzhou-8 PRISMA HISUI
Sensor type Multispectral Hyperspectral Hyperspectral Hyperspectral Hyperspectral
Swath width (km) 290 7.5 10 30 30
Spectral range (nm) 443–2190 357–2576 400–2500 400–2505 400–2500

VNIR 357–1000 400–1000 400–1010 400–970
SWIR 900–2576 1000–2500 920–2500 900–2500

Spectral bands 13 220 128 249 185
Resolution

Spatial (m) 10–20–60 30 10 (VNIR) 30 30
20 (SWIR)

Temporal (day) 5 16–30 14 to 7 2–60
Spectral (nm) 15–180 10 10 (VNIR) 10 10 (VNIR)

23 (SWIR) 12.5 (SWIR)
SNR (30% albedo)

VNIR 89:1 to 168:1 144:1 to 161:1 200:1 ≥450 at 620 nm
600:1 at 650 nm

SWIR 50:1 to 100:1 40:1 to 110:1 200:1 ≥300:1 at 2100 nm
400:1 at 1550 nm

100:1
200:1 at 2100 nm

Objective Earth observation Earth observation Scientific research Natural resources Energy, vegetation
and land imaging and atmosphere monitoring

Country Europe USA China Italy Japan
Organization ESA NASA Chinese Academy Agenzia Spaziale Japanese Ministry

of Science Italiana of Economy, Trade,
Physics and Industry

Number
of articles 41 608 8 5 1
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Table 2. Comparison of the specifications of the S2 sensors with the EnMAP, SHALOM, HyspIRI and
HypXIM sensors’ characteristics [9,15,26,31–35].

Instrument MSI EnMAP HSI SHALOM HyspIRI HypXIM

Platform name Sentinel-2 EnMAP Improved Multi- HyspIRI HypXIM
Purpose Satellite-II

Sensor type Multispectral Hyperspectral Hyperspectral Hyperspectral Hyperspectral
Swath width (km) 290 30 30 145–600 15
Spectral range (nm) 443–2190 420–2450 400–2500 380–2510 400–2500

VNIR 420–1000 400–1010 380–1400 400–1100
SWIR 900–2450 920–2500 1400–2510 1100–2500

Spectral bands 13 244 275 214 210
Resolution

Spatial (m) 10–20–60 30 10 30 (60) 8
Temporal (day) 5 27 (VZA ≥ 5◦) 4 (VZA ≥ 30◦) 5–16 3–5

4 (VZA ≥ 30◦)
Spectral (nm) 15–180 6.5 (VNIR) 10 10 10

10 (SWIR)
SNR (30% albedo)

VNIR 89:1 to 168:1 400:1 200:1 560:1 at 500 nm ≥200:1 to 250:1
>400:1 at 495 nm 600:1 at 650 nm

SWIR 50:1 to 100:1 180:1 200:1 356 at 1500 nm ≥100:1
>180:1 at 2200 nm 400:1 at 1550 nm 236 at 2200 nm

100:1
200:1 at 2100 nm

Objective Earth observation Earth observation Land and ocean Volcanic, Soil, urban,
observation vegetation, soil, coastal,

exploration biodiversity
Country Europe Germany Italy-Israël USA France
Organization ESA GFZ-DLR ASI-ISA JPL-NASA CNES
Number of articles 41 41 2 35 1

3.2. Preliminary Analysis of the Literature Database

A total of 701 studies published between January 1999 and December 2016 focusing on
hyperspectral applications was found for the eight selected sensors. The analysis of each of these
hyperspectral sensors’ publications revealed that Hyperion and EnMAP clearly stood out from the
crowd with a total of 608 and 41 publications, respectively (Tables 1 and 2). S2 applications are covered
by 41 studies. As shown by Figures 1 and 2, the Hyperion sensor has been recording data for a long
time period, leading to a particularly high and increasing number of publications throughout the years
compared to the other sensors. In the last few years, the literature about the EnMAP and S2 missions
clearly increased each year as their launch dates approached. However, due to the limited access to
some of the papers and our restriction of Hyperion studies (i.e., selection of the 600 latest results),
we analyzed a total of 175 EO-application publications (i.e., 78 for Hyperion, 2 for TG-1, 6 for PRISMA,
27 for EnMAP, 1 for HISUI, 1 for SHALOM, 32 for HyspIRI, 1 for HypXIM and 27 for S2; Table 3.

The literature has been classified into eight main topics: agriculture, geology, natural vegetation
(not crops or grasslands), water resources, land cover, soil, disaster and urban areas (Figure 3). More
than 30% of the total application studies were focused on natural vegetation, while agriculture and
water resources represented around 15% of the hyperspectral research topics. Geological applications
were the second most important subjects, representing around 18% of the documents. The proportions
of publications related to land cover, soil, disaster and urban areas were quite similar (between 3%
and 10%).
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Figure 2. Evolution of the publication number of each selected Earth observation hyperspectral sensor
and of the S2 sensors between 1999 and 2016. For each sensor, the total amount of Scopus results
appears in brackets.

Figure 3. Distribution of the research publications found with the Scopus platform using hyperspectral
and S2 imagery depending on their main applications between 1999 and 2016. The number of
publications treating of applications is specified in brackets for each sensor.

Table 3 shows the distribution of articles classified depending on the quality of their results.
This table exclusively focuses on the analyzed studies and not on the total number of Scopus
publications. Most of the S2 and EnMAP studies showed satisfactory results, reaching their objectives,
while the Hyperion and HyspIRI results were much more distributed between satisfactory and
moderate results. Nonetheless, the reader’s attention should be drawn to a potential bias of this
classification. Indeed, we compared actual and simulated sensors results, seeing that some of them
have not been launched yet.

Table 3. Article distribution classified according to the accomplishment of their respective objectives
(i.e., (a) satisfactory, (b) moderate, (c) not satisfactory).

Results S2 Hyperion TG-1 PRISMA EnMAP HISUI SHALOM HyspIRI HypXIM

(a) 77.8% 57.7% 50.0% 50.0% 63.0% 100.0% 100.0% 40.6% 100.0%
(b) 22.2% 30.8% 50.0% 50.0% 29.6% 0.0% 0.0% 46.9% 0.0%
(c) 0.0% 11.5% 0.0% 0.0% 7.4% 0.0% 0.0% 12.5% 0.0%

Studies 27 78 2 6 27 1 1 32 1

3.3. Hyperspectral and Sentinel-2 Application Analysis

3.3.1. Natural and Agricultural Vegetation Applications

Because hyperspectral studies of agricultural and natural vegetation both regard plant analysis,
their applications and conclusions are very similar. Three main kinds of vegetation applications have
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been identified in the literature: vegetation classification, pest detection and biophysical parameter
estimation. All of them lead to more specific hyperspectral applications that will be described in
this section.

• Vegetation Classification

The use of hyperspectral imagery has been demonstrated to be a cost-effective way for vegetation
classification. Hyperspectral imaging allows the distinction of classes for various classification levels
such as the forest type (fallow, primary forest, secondary forest, etc.) [36] or tree species [37]. For most
of the forest classifications, the results were promising. Studies using simulated HyspIRI images were
also able to map dominant species across varied ecosystems with fairly high overall accuracies [38,39]
or to distinguish rangeland management practices [40]. The latter study compared the ability of
HyspIRI for rangeland management identification with Landsat-8’s and S2’s. It highlighted that
despite the better HyspIRI performances, S2 provided close results from the hyperspectral sensor and
was identified as the best HyspIRI substitute in light of its characteristics (i.e., high spatial and temporal
resolution, freely available data, etc.). Alongside this, Vaglio Laurin et al. [41] showed promising
forest type classification results using simulated S2 images and highlighted the interest in LiDAR
and optical data combination. However, they obtained better results with higher spatial and spectral
resolution airborne hyperspectral images and therefore promoted coupling data from next generation
hyperspectral sensors (e.g., EnMAP, HISUI, HyspIRI, PRISMA, etc.) with forest structure information.
On the other hand, LiDAR and simulated HyspIRI data fusion provided moderate results for sparse
shrub cover mapping, mainly because of the 60-m resolution of the hyperspectral sensor [42].

Hyperion classification could be used in heterogeneous contexts like savannas or mangroves.
Discrimination of savanna vegetation physiognomies was achieved through the computation of
Photosynthetic Vegetation (PV) fractional cover [37,43]. Such discrimination was possible thanks to
differences of reflectance between the Near-InfraRed (NIR), corresponding to green cover fractions
of the physiognomies, and the SWIR reflectance, corresponding to physiognomies with more
Non-Photosynthetic Vegetation (NPV). On the other hand, the difficulty in distinguishing species
belonging to the same family led to contrasted results for mangrove species classifications [44,45].
Corbane et al. [46] also estimated PV cover with various multispectral sensors and showed that S2
provided the best results in Mediterranean habitats, but due to its spatial resolution, highly fragmented
patterns were not distinguished well. Analysis of Hyperion hyperspectral data has also been carried out
to distinguish environmental gradients like gradual transition in vegetation [47]. They recommended
a Support Vector Classification (SVC) model integrating synthetic mixtures with the parametrization
to obtain more accurate results with the EnMAP sensor. Leitão et al. [48] performed a similar study
and pointed out mapping precision enhancement with EnMAP data compared to Hyperion results.
This difference in precision was associated with the better spatial coverage, revisit time, spectral and
temporal resolution of EnMAP. Simulated EnMAP data also allowed good prediction of shrub cover
showing gradients created by special agricultural management schemes in Portugal [49].

When classifying tropical tree species, care must be taken to select imagery at an appropriate time
period. This period mainly depends on the phenological stages and on the species richness [50–52].
The necessity of taking the season into account was also noticed for agricultural studies [53].
For instance, Mariotto et al. [54] showed that the performance of hyperspectral data in discriminating
crop types varied across the growing season depending on the growth stage of the crops. They obtained
good results when discriminating up to five crops (cotton, maize, wheat, rice, alfalfa) taking
into account this seasonal variability. They also showed that Hyperion and simulated HyspIRI
outperformed multispectral sensors for crop classification and modeling of crop productivity.

Among the most frequent hyperspectral narrow bands used, 74% were located in the SWIR
spectral range [54]. The significance of the SWIR in vegetation discrimination was also noticed in the
study of Galvao et al. [55]. They used Vegetation Indices (VIs) sensitive to changes in chlorophyll,
leaf water and lignin-cellulose content to differentiate five sugarcane varieties. The experiment was
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then reproduced to distinguish three soybean varieties using Hyperion images acquired from opposite
off-nadir viewing directions, but similar solar geometry [56]. This study showed that higher average
reflectance of the back scattering image produced better results than with forward scattering.

Reduction of data dimensionality has been demonstrated to also provide good classification
results while reducing the processing time [36]. Moreover, the selection of the best Hyperspectral
Narrow-Bands (HNBs) allows one to get rid of the Hughes phenomenon in the context of supervised
classification using hyperspectral data. For example, Amato et al. [57] obtained close performances
with a limited number of spectral bands, mainly spread on the VNIR PRISMA spectrum in order to
classify agricultural land use. However, some studies have also demonstrated that SVC can overcome
this phenomenon [58,59].

Vegetation classification represents thus a promising application for hyperspectral imaging in
order to map simple landscapes (i.e., homogeneous zones, distinct species or legend levels). The higher
spectral resolution of hyperspectral sensors compared to multispectral data clearly enhances vegetation
application accuracy. For example, Hyperion outperformed Landsat when classifying crops, while they
both have a 30-m GSD [60]. Thenkabail et al. [61] also concluded that Hyperion performed more
accurate rainforest classification than ALI, IKONOS or ETM+. However, complex agroecosystems
are much more challenging to classify for hyperspectral sensors because of their medium spatial
resolution. The arrival of new hyperspectral sensors of high technology, such as the 30-m GSD
EnMAP and HyspIRI sensors, should probably improve the accuracy of hyperspectral vegetation
discrimination compared to Hyperion partly thanks to their higher SNR values and their better
radiometric resolutions.

• Pest Detection and Mapping

Detecting agricultural and natural vegetation pests, such as invasive species or diseases, are other
promising applications of hyperspectral remote sensing. Like species classification, invasive species
detection requires images taken at an appropriate time. In order to distinguish invasive species from
their environment, images taken at a contrasted senescence-time [62] should also show a distinct
reflectance [63]. Indeed, similar spectral characteristics among the invasive species and their
environment could represent a constraint for mapping [64]. Nonetheless, invasive species detection
also requires pure pixels [64,65]. Therefore, the medium spatial resolution of Hyperion has been
highlighted as a major drawback to detect invasive species organized on small patches or in linear
arrangements [64,65].

Hyperspectral technology is also useful in order to detect crop diseases. Apan et al. [66] obtained
a good classification accuracy with Hyperion when detecting orange rust disease in sugarcane crops.
They underlined that the best indices allowing one to determine the affected sugarcane were those
combining the VNIR bands with the 1660-nm band sensitive to moisture. White et al. [67] computed
moisture indices derived from Hyperion data in order to detect insect damage. Indices with the largest
correlation to the proportion of insect damage were those utilizing the SWIR and NIR regions of the
spectrum concurrently. However, results were moderate at best (r2 = 0.51). Dutta et al. [68], obtained
modest results with Hyperion when detecting disease in mustard crop. Samiappan et al. [69] were
able to distinguish crop species at different stress levels with simulated HyspIRI data, but their study
focused on the recognition of spectral signatures only. Simulated S2 red-edge bands provided good
results when identifying coffee leaf rust infection levels in Zimbabwe [70]. Pest identification is thus
a particular case of vegetation classification, but at a finer level of detection.

Spatial resolution is therefore the major constraint to overcome with hyperspectral sensors in order
to apply pest or stress monitoring, and therefore precision agriculture. Indeed, the Hyperion sensor
only outperformed the Landsat quantitative salinity stress estimation in the study of Hamzeh et al. [71],
while Landsat outperformed Hyperion in categorical and quantitative estimations. However, at similar
GSD, hyperspectral data could enhance invasive species detection compared to the multispectral
sensor, e.g., Hyperion did better in detecting tamarisk invasive species compared to Landsat-5 thanks
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to its better spatial and radiometric resolutions [64]. Improving hyperspectral spatial resolution
seems therefore essential to avoid mixed pixels. In order to do so, hyperspectral data in combination
with better resolution data or with the use of multi-temporal series could increase the potential of
hyperspectral data for pest detection applications.

• Biophysical Parameters’ Estimation

Besides vegetation identification and classification, many hyperspectral applications aimed at
monitoring natural and agricultural vegetation through various biophysical parameters. However,
seeing its potentialities, S2 has been predicted as an appropriate tool for vegetation parameter
estimation [72].

Leaf Area Index (LAI) is one of the most estimated parameters with Hyperion. This sensor
outperformed the ALI and ETM+ multispectral sensors for estimating LAI of coniferous forests [73].
EnMAP images resulted in accurate LAI estimations at the regional scale using a PROSAIL model
with very close results to those obtained with the HySpex airborne sensor [74,75]. Siegmann et al. [75]
pansharpened simulated EnMAP images with high resolution panchromatic imagery and with
simulated S2 data. They showed that by reaching a finer spatial resolution, it significantly improved the
prediction of wheat LAI. However, pansharpened images showed some artifacts in the resulting image.
Moreover, pansharpened EnMAP with airborne aisaEAGLE data and spatially-enhanced EnMAP
by fusion with S2 images led to a better LAI estimation. Nonetheless, this processing technique
could be more complicated with real data. As a matter of fact, in this case, EnMAP, S2 and airborne
images had the same acquisition conditions (i.e., date of acquisition, atmospheric conditions, etc.)
because of the data simulation process. Richter et al. [76] also predicted LAI with S2 and EnMAP using
radiative transfer models and inversion procedures. They demonstrated that S2 and EnMAP separately
performed the best agricultural LAI estimations as compared to RapidEye and Landsat-5 sensors.
The SWIR seems to be the best part of the spectrum to retrieve LAI with Hyperion due to spectral
absorption features (pigments, water and other biochemicals) [77]. Other studies also pointed out the
NIR when estimating LAI through VIs, but with questionable results [78]. Alongside this, red-edge
bands (705 and 750 nm) showed promising results to test VIs for the estimation of LAI and also the
chlorophyll content [79]. Wu et al. [79] demonstrated that it was possible to analyze the variation of
these two parameters for different vegetation covers. However, three main drawbacks were underlined
for an operational application. First, mixed pixels may lead to variation in the accuracy of certain
indices depending on the species and the stress and nutritional levels. Furthermore, hyperspectral
data are very sensitive to disturbances such as those from aerosols, branches and stems. Finally,
relationships between spectral indices and biophysical variables are often species-specific, as explained
in the Sims and Gamon [80] study.

However, determining the chlorophyll content at a species-specific scale with Hyperion data
seems arduous mainly because of its medium spatial resolution [81], while S2 [82] and EnMAP [83]
provide quite good results when estimating this parameter. Wu et al. [84] tested four VIs to estimate
the canopy chlorophyll content of maize ranging from 100–1000 mg/m−2 using Hyperion and Landsat
Thematic Mapper images. They showed that the Green Chlorophyll (GC) index based on the green and
the NIR bands was the best parameter for the interpretation of chlorophyll content in dense canopies.

The EnMAP sensor has also proven to assess Photochemical Reflectance Index (PRI) and
Normalized Difference Vegetation Index (NDVI) accurately. Spectral and radiometric calibration
uncertainties were beneath 1% considering the ±0.5-nm spectral stability of the sensor and were
around 10% considering radiometric calibration [85]. Similarly, S2 also obtained encouraging results
for estimating NDVI [82]. Huete et al. [86] derived coupled soil-plant biophysical parameters from
Hyperion’s data to assess land conversion and degradation of a dryland in Argentina. They concluded
that “greenness” measures, such as spectral VIs, were not well adapted to the assessment of land
degradation and desertification in the context of the study. This was due to simultaneous changes in
soil and vegetation optical properties leading to confusion when assessing the proportion of PV, NPV
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and of the soil background. They also pointed out that “greenness” was very sensitive to seasonal
variations, as well as to species composition shifts.

Like the chlorophyll content, biomass is another challenging biophysical index for Hyperion
in heterogeneous environments such as low vegetation cover areas [87,88]. The same observation
was made for S2 data [89]. This difficulty was partially attributed to change in substrate reflectance
beneath the canopy including soil and litter altering vegetation reflectance particularly for areas
with low biomass. On the contrary, Sibanda et al. [40,90,91] were able to estimate biomass of
grassland under different management practices with simulated S2 and HyspIRI data. Results with
HyspIRI were slightly above those of S2 because of the higher spectral resolution and the narrower
bandwidth of the hyperspectral sensor, but they both revealed comparable performances. Nonetheless,
Hyperion data provided better results than multispectral sensors for discriminating between NPV
and soil (i.e., ETM+ sensor) [88] or for estimating indices capturing the SWIR spectral region (i.e., OLI
sensor) [87]. Agricultural studies also pointed out that Hyperion is useful to detect crop residues
thanks to the SWIR region that is sensitive to lignin and cellulose [92,93].

Several studies with contrasted results were also dedicated to the mapping of foliar nitrogen
content in forest. Despite good results in predicting nitrogen content of canopy based on Hyperion
images, Townsend et al. [94] underlined the difficulty in designing a generalized analytical
methodology. This was mainly due to substantial spectral variations caused by the canopy structure
and species composition between study areas. On the contrary, the same method applied by
McNeil et al. [95] was revealed to be inefficient to predict nitrogen content. HyspIRI seems to estimate
nitrogen concentrations in cultivated grasslands correctly [38].

Water parameters, such as short- and long-term water stresses on deciduous forest communities,
could also be retrieved [96]. Both simulated EnMAP and S2 data allowed a good estimation of
drought indicators such as Moisture Stress Index (MSI), Chlorophyll Index (CI) and Simple Ratio
(SR). This study highlighted EnMAP’s capacity to estimate the Photochemical Reflectance Index (PRI)
despite its medium spatial resolution compared to S2, which could not assess it. However, synergic use
of EnMAP and S2 data allowed considering directional effects (i.e., illumination angle). The EnMAP
sensor is less sensitive to these effects when not operating in tilted mode in comparison with S2.
The capacity of S2 to estimate evapotranspiration has been demonstrated by Ciraolo et al. [97], and it
is suggested that precision farming could be an interesting application for the multispectral sensor.

Hyperion data can also be exploited to characterize forest structure such as the age and the height
of the trees [98]. Ninck et al. [99] estimated forest spruce timber volumes with EnMAP and S2 images.
Landsat-5 and SPOT 4 already allowed this estimation, but their fluctuating data acquisition frequency
and data quality could cause a problem in terms of processing. However, results were not significantly
different between EnMAP and S2 data, despite the higher spectral resolution of EnMAP. S2 sensor
indeed retrieves red-edge spectral bands, which are highly relevant in terms of vegetation applications.
The S2 sensor was also considered as more suitable for spectral unmixing forest crown components
compared to EnMAP and airborne multispectral data [100]. S2 spectral bands were in fact selected to
minimize noise and to focus on spectral bands that are the most useful for discriminating vegetation
(i.e., red-edge bands).

Using simulated hyperspectral and thermal infrared HyspIRI data, Meerdink et al. [101] were
able to accurately predict cellulose leaf level, lignin, leaf mass per area, nitrogen and water content
parameters in Californian ecosystems. Similarly, Roberts et al. [102] predicted dominant plant
species thanks to PV covers, and Marshall and Thenkabail [103] exposed encouraging results for
crop biomass estimations.

To conclude, many studies demonstrated the hyperspectral sensors’ superiority for estimating
vegetation indices (i.e., LAI, biomass, etc.) compared to multispectral data acquired at similar
GSDs [40,73,77,87,88,90,91,99]. Moreover, enhanced hyperspectral data with higher spatial resolutions
could further improve their estimation, such as the LAI prediction enhancement demonstrated by
Siegmann et al. [75].
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3.3.2. Geology Applications

The main geological application of hyperspectral sensors is surface composition mapping.
The accuracy of geological maps is variable depending on the study and on the SNR quality of
the sensor. Due to Hyperion’s low SNRs in the SWIR, Kruse et al. [104] concluded that only basic
mineralogical information can be extracted from Hyperion data for a complex geologic system.
They showed that the AVIRIS airborne hyperspectral sensor outperformed Hyperion for geological
mapping due to SNR differences (approximately 50:1 in the SWIR for Hyperion versus more than 500:1
for AVIRIS). Similarly, ALI+ and ASTER multispectral sensors, used for geological exploration, mapped
minerals almost as well as Hyperion as a result of their good SNRs (respectively 140:1–180:1 and
231:1–466:1 for the SWIR bands) [105]. However, none of those sensors were relevant for mapping the
diverse range of surface materials exposed in the studied area. Moreover, a comparison of ASTER and
Hyperion in a hyperarid desert region showed that both sensors discriminated similar surface types,
but that ASTER allowed a more detailed classification of the surface composition [106]. Hyperion’s
data were found of greater utility than data from the broad bands Landsat TM to create surface cover
abundance maps [107,108]. Some Hyperion studies were able to distinguish green vegetation from talc,
dolomite, chlorite and white micas [109], while others differentiated calcite from dolomite [7], detected
differences in solid solution of micas [7] or spotted ammonium-bearing minerals with the 1558-nm
band characterized by a relatively high SNR [110]. On the other hand, Leverington [107,108] obtained
poor to moderate results when using Hyperion to separate several important sedimentary lithological
end-members in Texas and Canada. They pointed out the low SNR as a critical factor. Distinguishing
calcite from dolomite with TG-1 data was difficult while zoisite, mica, quartz, alunite, cummingtontie ,
sodalite, dolomite, anorthite and actinolite were successfully discriminated [111].

Geological classification not only depends on the SNR sensor characteristics, but also on the image
conditions of acquisition (i.e., sun illumination, concentration levels of minerals, extend of minerals,
season, exposition of the geology) [7,112,113]. Hyperion capacity for mine waste monitoring was
evaluated by Mielke et al. [114]. They pointed out the critical revisit time of Hyperion and suggested
to combine hyperspectral data for mine waste identification with multispectral data such as S2 for
repetitive area-wide mapping. The wide spectral range of hyperspectral sensors appeared to be a good
advantage for geological applications. However, their medium spatial resolution and the low SNR
values in the SWIR made it sometimes difficult.

Mielke et al. [115] compared results of Hyperion, the multispectral Operational Land Imager (OLI)
sensor, ALI, ASTER, ETM+, EnMAP and S2 for mine waste monitoring. EnMAP provided the best
overall accuracies for mapping gold mining material, pyroxene proxies for platinum and other iron
absorption feature of mineral linked to mine waste. S2 was then the second best data for mapping of
gold mines. However, S2 could not distinguish surface mineralogy correctly, unlike EnMAP. In another
study, Mielke et al. [116] showed that simulated EnMAP data provided better results than Hyperion in
order to characterize mineral deposits and to highlight exploration anomalies (i.e., unexpected soil
properties, which are indicators of valuable soil elements). They implemented an algorithm and expert
system (EnGeoMAP, the EnMAP Geological Mapper ) to detect metal sulfide mineral deposit sites.
Instead of EnGeoMAP, Bösche [113] implemented another methodology called Rare Earth Elements
MAPping (REEMAP) to detect rare Earth elements and oxides (e.g., erbium, neodymium, dysprosium,
holmium, samarium, europium and thulium) with EnMAP. However, like other research, this paper
highlighted some limitations such as the inadequate EnMAP spatial resolution to map rare mineral
dykes. The combined analysis of remote sensing data with field works is therefore necessary. However,
despite medium spatial resolution, discrimination of mafic and ultramafic rock units was feasible at
a broad scale with simulated EnMAP images [117].

The coarse resolution of HyspIRI (60-m GSD) was also pointed out as a limitation to detect
occurrences and details of surface characteristics [118,119]. However, these studies demonstrated that
HyspIRI could accurately map geologic materials associated with hydrothermal systems (e.g., goethite,
hematite, jarosite, alunite, kaolinite, dickite, muscovite-illite, montmorillonite, calcite, buddingtonite
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and hydrothermal silica). Moreover, simulated HyspIRI data were also able to successfully map
epidote, muscovite and kaolinite combining SWIR and Thermal InfraRed (TIR) bands [34].

Geological applications are therefore suitable applications for hyperspectral sensors enabling an
identical or better discrimination of the potential geological components than multispectral sensors of
similar GSD [107,108,120]. However, the SNR value is identified as the hyperspectral critical factor for
geological applications, and a higher spatial resolution is required only, but for finer detection (such as
mineral dykes detection). This is why Yokoya et al. [121] fused EnMAP and S2 data to enhance the
hyperspectral GSD of the sensor and demonstrated the efficiency of their synergistic use.

3.3.3. Soil Applications

Papers dedicated to soils were limited, representing only 6% of all the hyperspectral publications
and 2.5% of the S2’s (Figure 3). Most of them focused on the soil chemical properties’ detection,
and only moderate results have been reported. For estimating soil salinity content with Hyperion in
the Yellow River delta in China, Weng et al. [122] constructed an index based on field spectrometer
measurements. The soil salinity index was calculated based on two specific SWIR bands leading to
a quantitative salinity map with moderate accuracy. Gomez et al. and Weng et al. [5,122] both mapped
the Soil Organic Content (SOC) with Hyperion images and compared the results with field spectrometer
measures. Gomez et al. [5] attributed the lower accuracy to two factors: the noise in the Hyperion
spectra and the medium spatial resolution concealing the spectral features of soil organic matter.
Other studies mapping soil carbon content also obtained contrasted results and attributed the low
accuracy prediction to the spatial resolution of Hyperion [3] or EnMAP [6]. Steinberg et al. [6] predicted
organic carbon content, but also mapped other soil properties such as clay and iron oxides’ content
with simulated EnMAP images. Maps derived from EnMAP data showed a lower accuracy than the
better spatial resolution HyMAP hyperspectral images. However, this medium spatial resolution
seems to be appropriate for regional-scale soil predictions [6,122]. On the other hand, comparison
of soil texture (i.e., clay, sand, silt) and SOC estimations with Hyperion, HyspIRI, EnMAP, PRISMA,
Landsat-8, ALI and S2 data showed that forthcoming hyperspectral sensors (i.e., HyspIRI, EnMAP
and PRISMA) provided quite similar results [123]. Moreover, these forthcoming sensors presented
better overall accuracies than the other sensors (i.e., Hyperion, Landsat-8 and S2) due to their higher
number of spectral bands and their narrower bandwidths. Castaldi et al. [124] predicted soil clay
content (e.g., kaolinite, montmorillonite, illite) by taking into account soil moisture information based
on PRISMA data, but obtained moderate results. Like Steinberg et al. [6], Lu et al. [3] predicted SOC,
but also other soil properties, such as total phosphorus content, pH and cation exchange capacity and
obtained moderate accuracy. Furthermore, clay content could be accurately predicted with data from
5–30-m spatial resolution, such as SHALOM, PRISMA, EnMAP, HyspIRI and HypXIM images [125].

Hyperspectral sensors have also been used for erosion mapping. However, the spatial resolution
of EnMAP was pointed out as a limiting factor in order to map land use cover related to soil erosion
(e.g., PV, NPV and bare soils) [126]. Nonetheless, this sensor seemed adequate for regional-scale
studies of erosion. The EnMAP capacity of short- and long-term change monitoring also represented
an advantage to model erosion caused by seasonal variations, by short- and mid-term decisions, or by
climate impacts in the long term.

Spatial resolution seems thus to be once again the Achilles heel of hyperspectral sensors to
retrieve soil parameters at a fine scale. However, hyperspectral sensors are still providing more useful
information than multispectral data acquired at the same GSD, such as for the soil texture or SOC
estimation [123].

3.3.4. Land Cover Applications

Land cover applications showed contrasting results depending on their respective objectives.
The monitoring of changes in vegetation is particularly useful for land degradation assessment [86].
Petropolous et al. [127] emphasized the relevance of Hyperion imagery for mapping and monitoring
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land degradation and desertification. They showed the performance of Hyperion data for land use
classification in Mediterranean environments. However, despite a good overall accuracy, some classes
were more difficult to identify, such as sparsely-vegetated areas, heterogeneous agricultural areas,
burnt areas or transition between land uses. Ben-Arfa et al. [128] used Hyperion imagery for mapping
oases dynamics caused by competition for land and water between different user groups in the Gabes
area in Tunisia. They emphasized the efficiency of the cellulose index, vegetation mask and water
presence index for the discrimination of land use. They also showed that spectral unmixing was
sensitive to slight ground changes. Xu and Gong [129] compared the capacity of Hyperion with the
multispectral ALI sensor to discriminate different land use and land cover in California. They showed
that overall, Hyperion did not produce significantly better results than ALI. However, for various
dry grass vegetation classes and impervious land use categories (new residential lots), Hyperion data
produced better results than ALI data.

Simulated S2 data provided satisfactory results for land cover mapping using SVC classifier in
order to discriminate seven classes with 10 spectral bands [130]. The S2 revisit time, as well as its fine
spatial, spectral and radiometric resolutions, was pointed out in the studies of Törmä et al. [131,132]
as well-suited for land cover classification. These characteristics could help for example to better
distinguish meadows from other agricultural land uses. The multispectral sensor allowed them to
improve the CORINE Land Cover classification. Simulated HyspIRI images also improved land
cover mapping with its short revisit time and have resulted in a better land cover map than S2,
or Landsat-8 data [133,134]. Indeed, this hyperspectral sensor can target key spectral features related
to specific physical and chemical characteristics. Hunger et al. [135] combined Sentinel-1 SAR with S2
multispectral bands to classify land cover and showed that this method does not always improve the
classification accuracy.

Therefore, while the medium spatial resolution of hyperspectral sensors is here again pointed out,
their high number of bands with fine bandwidths are real assets compared to S2 or to multispectral
sensors with similar GSD for land cover applications. However, it will still be difficult to classify
landscape heterogeneity and complexity at 30-m GSD. Fusing hyperspectral and multispectral data,
Hyperion and IKONOS, increases the classification accuracy of scattered and irregular areas [136].

3.3.5. Urban Applications

Regarding urban applications, classification of impervious surface types was one of the major
concerns in the hyperspectral literature. Some studies reported successful mapping of urban
areas, showing better results with Hyperion images than the ALI multispectral sensor to discern
low-albedo surface materials (i.e., asphalt). This was mainly due to its higher number of spectral
bands in the mid-infrared region [21]. Others demonstrated better results with Hyperion than with
Landsat data in classifying non-impervious material, construction concrete (mainly larger buildings,
industrial/commercial areas), asphaltic concrete (mainly parking lots) and paving asphalt (mainly
roads) [137]. Furthermore, Hyperion showed better results than the ETM+ and ALI sensors to retrieve
complex urban land cover, like in Venice [138]. However, Hyperion was not able to discriminate land
cover complexity. Only three main urban covers were indeed identified, including vegetation, paving
and roofing, while better results were observed when using MIVIS airborne hyperspectral data of
higher spatial resolution.

Okujeni et al. [139] quantified land cover on an urban gradient with simulated EnMAP
data. However, its medium spatial resolution was a source of important spatial detail loss and of
a significant mixed pixels increase compared with hyperspectral airborne sensors. Therefore, material
discrimination was difficult, especially for classes with high spectral similarities. For example, roof
detection seemed to be more sensitive to spatial resolution than pavement or trees. This highlights
the importance of high spectral resolution data acquired at high spatial resolution in heterogeneous
urban areas. Nonetheless, compared to Landsat ETM (30-m GSD), EnMAP (30-m GSD) allowed
a better impervious surface mapping [139]. However, compared to the airborne HyMAP (9-m GSD),
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the EnMAP medium spatial resolution induced a loss of detail and more mixed pixels, reducing the
mapping accuracy of heterogeneous and complex areas. On the other hand, Heldens et al. [140] noted
that EnMAP could improve the within-class discrimination for impervious surfaces.

A review focusing on hyperspectral urban applications identified four frequently-addressed urban
topics (i.e., development and planning, growth assessment, risk and vulnerability assessment and
climate) [140]. It emphasized that a large number of studies made a successful use of medium spatial
resolution data (≥30 m) in the field of urban planning and development and urban growth assessment.
However, for urban climate analysis and structure parameters, they underlined the discrepancy
between the average size of urban objects and the EnMAP spatial resolution. They concluded that
research is needed to resolve the spectral composition of a pixel in order to fully exploit spectral
information content. Moreover, the use of image fusion techniques or the use of complementary
information such as thermal properties of the targets could lead to further improvements. To this
end, Roberts et al. [141] improved the urban environment discrimination taking advantage of the
synergy between Visible to Short Wavelength InfraRed (VSWIR) and TIR HyspIRI data. However,
the HyspIRI data are at 60-m GSD, and they noted the poor results for non-extensive material mapping
(e.g., industrial rooftops, parks, urban forests, open fields, etc.). The better spatial resolution of the
hyperspectral TG-1 sensor (10 m in the VNIR and 20 m in the SWIR) is reported to have a higher
classification accuracy in the heterogeneous environment of Beijing than with Hyperion [142].

Same as for land cover applications, the hyperspectral spatial resolution is identified as the main
constraint for understanding the urban landscape complexity while their high spectral resolution
allows distinguishing various surfaces. While many studies indeed identified hyperspectral sensors as
the best data source for urban classification [21,137–139], they also highlighted the necessity of higher
spatial resolution.

3.3.6. Water Resource Applications

Most of the analyzed studies dealing with water resources focused on quality assessment [18,143]
and component classification [144–146]. Hyperion coastal water quality assessment emphasized the
need for a continuous coverage of an approximately 10–12-nm bandwidth to capture some variables
such as the cyano-phycoerythrin, useful for toxic algae detection [18]. Moreover, Giardino et al. [143]
obtained moderate results when assessing the water quality with Hyperion of the Garda Lake in Italy.
The assessment of colored dissolved organic matter was not achievable due to its low concentration
in the lake. Their results were satisfactory for chlorophyll-a, while they were moderate at best
for the tripton that sedimented in the lake. The ability of Hyperion, CHRIS/Proba and HyspIRI
to detect phycocyanin concentrations through chlorophyll-a content was evaluated in the study
of Ogashawara et al. [146]. This study revealed the higher sensitivity of CHRIS to chlorophyll-a
concentrations. On the other hand, better results were obtained in classifying seagrass types with
Hyperion images than with the ALI and Thematic Mapper sensors [144]. Probably hampered by the
high flood period, another study reported only moderate results in modeling water constituents of the
Amazon River with Hyperion [147]. This sensor also retrieved better seagrass biometric parameters
(i.e., submerged aquatic vegetation cover, LAI and biomass). Studies accurately predicted bathymetry
from 1–25 m deep with Hyperion images [148].

Devred et al. [149] reviewed the water resource applications of the HyspIRI sensor, such as
water quality, species succession in estuaries, nutrients loads and changes in fisheries. Its spatial
and spectral resolutions represent good advantages for water studies. Some studies showed that
this sensor is also able to evaluate chlorophyll-a, phycocyanin and to follow giant kelp dynamics
or Sargassum macroalgae, while algal bloom dynamics and ecosystem responses analysis are more
difficult [150–152]. HyspIRI has been shown to be able to map cyanobacterial blooms if the image was
taken on the optimal day [149,153]. However, the 19-day revisit time of the forthcoming hyperspectral
sensor would probably limit this application. According to Palacios et al. [154], quality calibration,
sensor sensitivity and atmospheric correction improvements of HyspIRI are required to detect
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chlorophyll-a. Turpie et al. [155] introduced this sensor as one of the few missions to observe fine-scale
structure in coastal wetlands. This sensor can therefore help to study coastal environment, properties,
biochemical cycling and water quality. Moreover, supported by its TIR sensor, HyspIRI would also be
able to follow hydrologic and hydrometeorological processes.

Xi et al. [145] concluded that phytoplankton discrimination accuracy with EnMAP was highly
variable and influenced by the chlorophyll content in the water. Chlorophyll content estimation
depended mainly on pure water absorption for chlorophyll concentrations under 1 mg/m−3.
Phytoplankton monitoring using EnMAP data could thus turn out to be inappropriate. Furthermore,
few phytoplankton taxonomic groups were distinguished because of their highly similar reflectances.

After natural vegetation, most of the S2 studies we have analyzed focused on water resources
(Figure 3). Some were able to detect cyanobacterial blooms [156,157]; other studies mapped water
bodies [158] or estimated chlorophyll-a contents [159]. The latter showed that S2 has the ideal
combination of spectral and spatial resolutions for small inland water bodies compared to WorldView-2,
Landsat-8, MODIS and Sentinel-3 [159]. Moreover, its frequent revisiting time enabled S2 to describe
effectively the dynamics of Planktothrix rubescens contaminated water [160]. A few days (up to a week’s
time) between the field work of taking water samples and S2 acquisition of the lake chlorophyll-a
content does not affect the accuracy of the chlorophyll map [157]. However, a 30-m GSD was not
precise enough to represent the cyanobacterial bloom spatial variability. The study of Hedley et al. [161]
indicated that S2 was able to discriminate reef benthic composition thanks to its fine bandwidths, its
high spatial resolution and its additional 443-nm band. Nonetheless, it could not differentiate coral
mortality or algal cover, unlike HISUI [162]. Moreover, S2 is a land monitoring mission that covers
tropical waters within 20 km from coasts, limiting therefore potential coral reef applications.

Hyperspectral spatial and spectral resolutions thus seem to be appropriate for water resources
applications. However, their temporal resolution is now their major constraint for water quality
monitoring. Seeing that S2 provides a five-day revisit time and due to its medium spectral resolution,
the advantage could be to combine both types of sensors.

3.3.7. Disaster Applications

The hyperspectral literature mainly focused on disaster prevention and post-monitoring, while
their critical revisit time prevents systematic monitoring, such as volcanic eruption follow-up [163].
Ustin et al. [164], Yoon and Kim [165] and Roberts et al. [166] tried to predict fire danger in California
and Korea with Hyperion data. They obtained contradictory results in distinguishing green vegetation
from dry plant litter and bare soil. Failures in preventing wildfire were therefore attributed to low
Hyperion SNR in the SWIR, reducing its capacity to estimate canopy water content [164]. On the
contrary, Roberts et al. [166] and Yoon and Kim [165] underlined the ability of Hyperion to resolve
ligno-cellulose bands and thus detect fire danger areas despite its low SNR. Hunt et al. [167] also tried
to estimate fuel moisture content with HyspIRI data, but showed that the sensor’s revisit time will
not be sufficient to monitor fire. Identification of debris flow areas represents another hyperspectral
application. By integrating information on slope, Crowley et al. [168] obtained satisfactory results in
detecting hydrothermally-altered rocks contributing to the avalanches and identified the most risky
areas. Brown et al. [169] successfully predicted the larval mosquito (Anopheles punctipennis) presence
that was positively correlated with the maximum Disease Water Stress Index (DWSI) and negatively
correlated with the maximum Carter Miller Stress Index (CMSI), the minimum Normalized Difference
Vegetation Index (NDVI) and the maximum Normalized Difference Water Index (NDWI).

Post-disaster applications with Hyperion data showed high overall accuracies when monitoring
post-fire vegetation degradation [170] and recovery [171]. S2 red-edge bands also allowed
discriminating burn severities in Mediterranean forest ecosystems accurately [172]. A study about
the influence of spatial resolution on fire detection showed that the 60-m HyspIRI resolution
generally overestimates fire surfaces and underestimates temperatures compared to higher resolution
hyperspectral data [173]. Arellano et al. [174] studied the effect of hydrocarbon pollution in the
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Amazon forest using Hyperion. They concluded that tropical forests exposed to hydrocarbon pollution
showed reduced levels of chlorophyll content, higher levels of foliar water content and leaf structural
changes that can be stressed by VIs extracted from Hyperion narrow bands. PRISMA is another
potential tool for post-disaster management in detecting and identifying natural and anthropic disaster
on vegetation [175].

The revisit time of hyperspectral sensors and low SNRs in the SWIR of Hyperion thus mainly
limit disaster monitoring and fire prevention applications.

4. Discussion

4.1. Inventory of the Useful Wavelengths

The most useful wavelengths for remote sensing applications were mainly identified based
on the publications of Thenkabail et al. [16] and of Segl et al. [24]. Segl et al. [24] discussed the
relevance of the S2 bands, while many others reviewed the use of hyperspectral data for agricultural
and vegetation applications. Wavelengths were classified depending on their main applications
(Figures 4 and 5). No information about useful bands was available for land use applications.
Except for water resources, all applications required bands spread on the full 400–2500 nm spectrum.
The ranges of the wavelengths used for geology, soil, water resources and agriculture/vegetation/land
cover applications were respectively 430–2340 nm, 440–2203 nm, 413–758 nm and 420–2385 nm.
The agricultural, vegetation and land cover applications are the ones using the greatest number of
wavelengths. Despite its wide spectrum and its high band number, many useful wavebands are not
covered by S2, and most of them are dedicated to vegetation applications only.

Regarding geological applications, most bands were located in the SWIR. Some authors indicated
the importance of the 2000–2400-nm bands for geological applications to detect components such
as clays, calcite, dolomite, quartzite or kaolinite [7,112,113,115]. Bands from 430 nm–900 nm were
pointed out as diagnostic for ferric iron [112,115]. Many wavelengths were also identified as useful for
vegetation studies. The VNIR wavelengths were mainly used for computing VIs related to biomass
or greenness. The wavelengths around 2100–2400 nm were useful for the assessment of lignin,
cellulose and water content, while those around 1600 nm were identified as useful for some disease
detection [66,68]. Regarding soil applications, bands located in the VNIR were mainly used for organic
matter identification, as well as bands located around 1100 nm. Bands around 2000–2200 nm were used
for soil salinity assessment. For water applications, most VNIR bands were used to identify vegetation,
phytoplankton or algal cells. The 440-nm band was identified as useful to identify dissolved organic
matter [143].

Figure 5 depicts the 28 HNBs identified as non-redundant by Thenkabail et al. [16] and the
26 HNBs identified as optimal by Miglani et al. [25] for retrieving crops and vegetation biophysical
parameters. Based on one Hyperion scene, Miglani et al. [25] concluded that among the 242 HNBs of
Hyperion, 26 were optimal for monitoring wheat, sugarcane, potato, mustard, berseem and sorghum
with high accuracy. Sixteen HNBs were located in the VNIR (mainly for detecting chlorophyll, biomass
and stressed vegetation), and 10 were located in the SWIR (mainly for LAI, biomass and moisture
detection). Based on two Hyperion scenes and other surface hyperspectral data, Thenkabail et al. [176]
tried to determine the optimal HNBs for the eight leading worldwide crops (wheat, corn, rice, barley,
soybeans, pulses, cotton and alfalfa). They integrated data collected during six distinct growth stages
and from multiple study areas in various worldwide agroecosystems of Africa, Middle East, Central
Asia and India from over 100 research papers [177] in order to get robust regional results. The eight
crops were described and classified using 20 HNBs with a very high accuracy, providing better results
than the multispectral ETM+ or ALI sensors. Bands were equally distributed between the VNIR
and the SWIR. They also concluded that 33 optimal HNBs and an equal number of hyperspectral
VIs were sufficient to model and study specific biophysical and biochemical properties of the main
crops of the world. Those biophysical indices were related to biomass, LAI, plant density yield,



Remote Sens. 2018, 10, 157 17 of 32

carotenoids, anthocyanin, chlorophyll, plant stress indices, plant water and moisture indices, light use
efficiency or the lignin-cellulose-residue index. Among the best 33 HNBs, 17 were located in the SWIR.
These studies therefore illustrate the possibility of using hyperspectral sensors to select an optimal
subset of bands according to each application in order to create new multispectral sensors (such as
ENVISAT/MERIS and now Sentinel-3/OLCI).

Figure 4. Useful wavelengths retrieved from our hyperspectral applications review and from the
discussion of Segl et al. [24] about the relevance of the S2 bands compared to S2 center wavelengths
(black dots). The bandwidth of the S2 bands are indicated by the bars.

Figure 5. Optimal (non-redundant) bands to retrieve the vegetation and agricultural crops biophysical
parameters according to Thenkabail et al. [16] and Miglani et al. [25] compared to S2 center wavelengths
(black dots). The bandwidth of the S2 bands are indicated by the bars.

In light of these two figures, many specific bands of hyperspectral applications could
not be covered by the S2 sensors, mainly those concerning agriculture and natural vegetation.
Indeed, S2 shows an important gap between Band 9 (945 nm; dedicated to water vapor assessment)
and Band 10 (1375 nm; dedicated to cirrus assessment). This gap covers wavelengths that are useful for
the estimation of water, moisture, biomass, biophysical and biochemical quantities (e.g., plant height,
crop type, total chlorophyll, etc.), water sensitivity and LAI [16,25]. The other gap between Bands
11 (1614 nm) and 12 (2202 nm) covers some applications such as cellulose, lignin, starch or biomass
detection. Even if S2 estimated biomass quite well [40,89,91], we could expect a better estimation if the
multispectral sensor covered these spectral ranges.

4.2. Limitations of the Hyperspectral Sensors Specifications

Table 4 summarizes the requirements of the groups of applications in terms of spatial and temporal
resolutions. Hyperion and future sensors such as PRISMA, EnMap, HyspIRI or HISUI have a great
potential for applications with a medium spatial resolution and a medium revisit time (Tables 1 and 2).
SHALOM has a medium to high spatial resolution and a high revisit time, while HypXIM has high
spatial and temporal resolutions.

4.2.1. Spatial Resolution

The spatial resolution of future spaceborne hyperspectral missions at 30-m GSD has been
considered as a major drawback for some applications, while S2 provides images from 10–20-m spatial
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resolution. This spatial resolution difference between multi- and hyper-spectral images primarily
comes from the technical trade-off between spectral and spatial resolutions. A 30-m spatial resolution
mainly affected the reviewed literature about vegetation, soil, geology, land use, urban and disaster
monitoring topics (Table 4). Several studies for vegetation classification have reported hyperspectral
GSD as a major limiting factor [64,65,75,117,126,127,140,178,179]. The medium spatial resolution of
these sensors results in images with mixed-pixels, which highly affects classification and detection
performances [180]. Eckert and Kneubülher [53] and Okujeni et al. [139] underlined this phenomenon
in a small-spaced pattern of many fields in Switzerland and of a complex urban gradient of Germany,
causing a decrease of classification accuracy. The mixed surfaces produced by the 30-m spatial
resolution of Hyperion were also pointed out to explain the poor results obtained by Gomez et al. [5],
Lu et al. [3] and Steinberg et al. [6] when mapping soil organic matter. According to Carter et al. [64],
the within-pixel spectral mixing reduces the benefits of its high spectral resolution and leads to
a decrease of the classification accuracy. They showed that only ground plots containing 80–100% of
invasive species coverage were of sufficient size to yield 30-m GSD reference pixels. Walsh et al. [181]
overcame the mixing problem induced by this low GSD by merging Hyperion images with QuickBird
multispectral data. This process took advantage of the spatial and spectral resolutions of each data
source to differentiate challenging cover classes and enabled good results. Another way of reducing
this spatial resolution problem involves a multi-temporal unmixing, such as taking into account
spectral features extracted from different seasons [182].

Other studies highlighted that 30 m is larger than some objects of interest such as invasive
plants [64,65], rare earth elements [113] or complex land cover [138,140]. However, some authors
successfully used image fusion techniques in order to overcome the medium spatial resolution of
Hyperion as Walsh et al. [181] mapping invasive species of guava and Siegmann et al. [75] using
pansharpened EnMAP images with simulated S2 data to predict LAI. The combined EnMAP and S2
data retrieved better results than using either hyper- or multispectral data separately. Even with a better
point spread function (i.e., a lower sensor blur), the 30-m resolution of most hyperspectral sensors
(Hyperion, PRISMA, HISUI, EnMAP, HyspIRI) is a limiting factor especially for highly heterogeneous
environments (fragmented ecosystem, mosaic of land cover or land use) or for targets with small
densities (some vegetation species, arid environment, residues, dry vegetation, etc.). Small targets such
as urban areas are also difficult to identify [140], while finer resolution sensors (i.e., TG-1 of 10-m GSD)
provided encouraging results for mapping complex urban land cover [142]. For these reasons, the even
coarser HyspIRI GSD of 60 m was pointed out by many studies [42,101,118,119,123,125,152,183,184]
and was therefore recently reduced to reach 30 m [34,155]. However, this reduction may not be
adequate enough to study small and patchy areas such as coastal wetlands [155].

Spatial resolutions of most actual and future hyperspectral sensors result therefore in a significant
limitation of the number of applications. On the other hand, some applications require medium
spatial resolution. For example, despite its 10-m resolution, fine-scale vegetation patterns were
hardly distinguished by S2, while their general organization across habitats was better mapped [185].
Moreover, the modeling of the above-ground carbon stock of mangroves showed low accuracies
when using fine spatial resolution images, while the results using Hyperion data were good [186].
The suitable spatial resolution of an hyperspectral image thus depends on the specific application,
and therefore on the target. Crop disease detection requires much higher spatial resolution (around 5 m)
than crop type mapping (10–30 m) (Table 4). Moreover, it also depends on the specific characteristics of
the study area. For example, spatial resolution has to be selected based on the targeted agroecosystem
(e.g., U.S. fields are much larger and homogeneous than Madagascar’s), city, etc. No generic spatial
resolution suggestion could therefore be proposed, and a baseline field-knowledge seems required to
properly select the most suitable sensor.

Two forthcoming hyperspectral sensors, PRISMA and HypXIM, will capture Earth images at the
same time with higher resolution panchromatic sensors [14,35]. The resolution of the panchromatic
band for PRISMA and HypXIM will be 5 m and 2 m, respectively. They can be used to pansharpen
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the respective sensor data. Furthermore, S2 provides freely available and global high spatial
resolution images with a frequent revisit time. This would probably pave the way toward new
hyperspectral-spatially-improved application studies. Indeed, many spatial-enhancement methods
have been proposed for hyperspectral data [121,187–189]. For example, Yokoya et al. [121] succeeded
in improving the GSD of simulated EnMAP images with simulated S2 data. This study fused both data
using a matrix factorization method to end up with a 10-m resolution EnMAP image that showed great
potential for mineral mapping. Other studies developed a more generic spatial-enhancement method
to combine hyperspectral and multispectral data, such as Ghasrodashti et al. [189], who used a new
spectral unmixing and a Bayesian sparse representation, to obtain a significant spatial enhancement.
The fusion method of Yang et al. [190] also showed encouraging results with a pixel group based
the non-local sparse representation method, like the sparse non-negative matrix factorization
technique [191]. For further details, see the review of Loncan et al. [187], which compared the main
hyperspectral-multispectral pansharpening methods and identified their pros and cons (i.e., fusion
performances, computational costs, etc.).

4.2.2. Revisit Time

Revisit time is rarely taken into account in the considered literature. However, it is a crucial
parameter to determine potential applications for a sensor. With a revisiting capacity higher than
15 days, except in tilted mode (Tables 1 and 2) and HypXIM, previous and planned hyperspectral
sensors are not designed for applications requiring a high revisit frequency, unless reducing their
revisit time by using them in a constellation mode. Moreover, the gap between revisiting capabilities
and actual usable data availability also has to be taken into account due to atmospheric and aerosol
perturbations. Phenomena with no major variation within 15 days or more could thus represent
relevant applications. This excludes crop, vegetation and disaster monitoring or disaster prevention
(Table 4). However, post-disaster monitoring such as vegetation recovery after fire or pollution events
is possible [170]. In bare areas, this revisit time allows geological applications, as well as applications
related to the assessment of soil properties. Vegetation classification, determination of land cover
or land use are also possible if images are available every 15 days. Water resources applications are
relevant regarding bathymetry, assessment of water quality or classification of coastal ecosystems,
but not regarding monitoring of phenomena such as algal bloom or water pollution. Another solution
to reduce revisit time is to modify the View Zenith Angle (VZA), like EnMAP and SHALOM. However,
this negatively affects the spatial resolution and consequently, the resulting information is probably
less consistent due to the variable pixel footprint.

Another way to mitigate the revisit time of forthcoming hyperspectral sensors is to utilize them
in a constellation mode. Hyperspectral sensors would then be more relevant for the assessment of
wildfire danger or for crop monitoring [78,164]. However, those sensors can be used to prevent other
disasters where revisit time is not a limiting factor, such as the identification of areas with a high risk
of landslides [168]. Post-disaster assessment also does not require a frequent revisit such as vegetation
recovery after fire or pollution events, which can also be characterized based on the hyperspectral
sensors [171,174]. Applications in the field of water resources such as bathymetry studies or assessment
of water quality seem to be globally relevant, but frequent surveys for water pollution or algal bloom
are not possible with only one spacecraft [18,143,148]. Another solution to alleviate the constraint of
revisit time could be to combine the high temporal survey capacity of S2 or panchromatic sensors with
the high spectral information of the hyperspectral sensors through pansharpening.
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Table 4. Requirements of the main applications in terms of spatial, temporal and spectral resolutions
mainly based on the HypXIM preliminary study of Briottet et al. [192] and our hyperspectral application
literature. Each type of resolution is described as a high (+++), medium (++) and low (+) resolutions.
High, medium and low spatial resolution respectively refer to <10 m, from 10–30 m and >30 m;
and refers to ≤10 days, from 10–30 days and >30 days for temporal resolution.

Main
Applications Topics Applications Resolutions

Spatial Temporal

Vegetation and Agriculture Monitoring/Status +++ +++
Monitoring/Disease +++ +++
Classification ++/+++ +++

Geology and Soils Mapping/Properties ++/+++ +
Exploration +++ +

Land use Classification/Changes ++ +
Urban Classification/Changes +++ +
Water resources Quality assessment + +

Bathymetry + +
Classification of coastal ecosystems + +
Component bloom ++ +++

Disaster Prevention ++ +/+++
Monitoring ++/+++ +++
Post-crisis ++ +/++

4.2.3. Signal-To-Noise Ratios in the SWIR for Hyperion

Because of their narrow bands, hyperspectral sensors measure lower SNRs than multispectral
instruments [123]. Moreover, the low solar irradiance in the SWIR significantly reduces the SNR
values in this part of the hyperspectral spectrum. A few months after the launch of Hyperion,
Pearlman et al. [193] reported SNRs values from 140:1–190:1 in the VNIR, 96:1 in the SWIR around
1225 nm and 38:1 in the SWIR around 2125 nm. Based on Hyperion imagery and three specific targets
when mapping hydrothermally-altered rocks, Gersman et al. [110] estimated an SNR of 90:1 for the
VIS range, 60:1 for the 1000–1600-nm bands and 35:1 for the 2000–2400-nm bands. Kruse et al. [7]
reported SNR values of about 25:1 for the 2000–2400-nm bands for less-than-optimum acquisition
conditions (i.e., winter season, dark targets). These Hyperion low SNR values in the SWIR spectral
range mainly affect geological and vegetation applications. According to Kruse et al. [194], SNRs
of at least 100:1 in the SWIR are required for geological applications. Under this value, low SNRs
are critical for applications such as calcite-dolomite discrimination [7], mineral mapping [105,194],
soil component discrimination [123] or sediment detection [108]. After recreating EnMAP channels
with the worst SNR values (100:1), Nocita et.al. [195] confirmed the problem of low SNR values when
estimating SOC in South Africa. They identified this low SNR as the main reason for the insufficient
accuracy. Some vegetation applications assessing vegetation water content or components also gave
poor results because of these low SNRs in the SWIR [43,164].

By comparison, the SNRs values of the S2 sensor are expected to range from 120:1–170:1 in
the VIS, and bands dedicated to vegetation water content (2190 nm), and vegetation components
(1610 nm) are expected to have a maximum 100:1 SNR value [26]. On the other hand, forthcoming
hyperspectral sensors are expected to have much higher SNR values in the VNIR and the SWIR spectral
ranges (i.e., PRISMA, EnMAP, HISUI, SHALOM, HyspIRI and HypXIM). Therefore, we could expect
them to retrieve parameters that Hyperion could not, such as the soil clay content, the vegetation
water content, etc. However, the measured SNR values will probably be reduced by atmospheric
disturbances. Forthcoming SNR values thus still have to be confirmed on real future acquisitions.



Remote Sens. 2018, 10, 157 21 of 32

5. Conclusions

Twenty years of application studies have been reviewed about past and future hyperspectral
sensors (i.e., Hyperion, TianGong-1, PRISMA, HISUI, EnMAP, SHALOM, HyspIRI and HypXIM
sensors) in the Sentinel-2 context. This review suggests that synergies between Sentinel-2 and
hyperspectral data could broaden the spectrum of their potential applications, taking advantage
of their respective spatial, temporal and spectral resolutions. Indeed, Sentinel-2 bands (bandwidth
included) cover 59% of the identified useful hyperspectral bands for geology, soil, water resources
and vegetation applications. The high band number of hyperspectral sensors could thus deal with
Sentinel-2 applications in depth and therefore add some valuable information. On the other hand,
the 30-m spatial resolution of most hyperspectral sensors (i.e., Hyperion, PRISMA, HISUI, EnMAP and
HyspIRI) is a major drawback for the identification of highly heterogeneous environment, targets of
poor densities or small objects. Temporal resolutions of most hyperspectral instruments (i.e., Hyperion,
PRISMA, HISUI, EnMAP and HyspIRI) are limiting the monitoring of phenomena with a higher
variation than 15 days, such as crop, vegetation and disaster. However, SHALOM and HypXIM
are planned to provide respectively 10- and 8-m GSD data with higher application potentials than
the 30-m GSD hyperspectral sensors. PRISMA and HypXIM will be launched with high resolution
panchromatic sensors that could improve the hyperspectral data by pansharpening. Additionally,
HISUI, EnMAP, SHALOM, HyspIRI and HypXIM could acquire data with a higher frequency than
15 days thanks to their specifications or the modification of their VZA. It should be noted that some
future commercial hyperspectral sensors could possibly overcome some of these constraints, as well.
However, their specifications and their applications may not be available in scientific journals or in
publicly available medias, and were thus excluded from this review.

Considering the present-day technology and the available literature, the cornerstone for
maximizing the potential use of future hyperspectral data is additional research on spatial and temporal
enhancement approaches through synergies with other sensors such as Sentinel-2. Such investigations
could help to overcome the expensive acquisition of airborne hyperspectral images, which are spatially
and temporally limited. These research works could therefore concern super-resolution reconstruction
or image fusion techniques for spatial enhancement; or fusion techniques to improve temporal
resolution. Many studies already explored these data combination approaches and demonstrated
that multi- and hyper-spectral data fusion can better classify complex and heterogeneous land covers,
urban or agroecological landscapes and achieve pest and stress monitoring or mineral detection. Seeing
the promising capabilities of Sentinel-2, this multispectral mission should likely play a key role in the
enhancement of hyperspectral data and subsequently increase the potential applications, thanks to
their complementary spatial, temporal and spectral resolutions.
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Appendix A. Sensors Excluded from This Application Review

Table A1. Specifications of other EO hyperspectral sensors excluded from this application review due
to not matching the defined criteria [196–205].

Instrument CHRIS HSI HSI HSA DESIS GISAT HYSI FLORIS

Mission PROBA-1 HJ-1 HICO Resurs-P MUSES GISAT CartoSat-3 FLEX
Platform PROBA-1 HJ-1 ISS Resurs-P1 ISS CartoSat-3 TAS Proteus 150
Swath width (km) 14 50 42 30 30 <500 5 150
Spectral range (nm) 415–1050 450–950 400–900 400–1000 400–1000 350–2500 400–2400 500–780
Spectral bands 19–63 115 128 130 235 210 200
Resolution

Spatial (m) 17-36 100 90 30 30 500 12 300
Temporal (day) 8 4–31 3 3–6 3–5 10–30 19

Spectral (nm) 1.3–12 2–8 5.7 4.5–6.5 2.55 <10 0.3
Objective EO Disaster, Coastal ocean EO Land use, EO Snow cover Vegetation

environment applications forestry and and observation
monitoring aquaculture vegetation

and prediction
Country UK China USA Russia Germany-USA India India UK
Organization ESA CAST NASA-ONR Roscosmos DLR-Teledyne ISRO ISRO ESA
Launching date 2001 2008 2009 2013 mid 2017 2017 >2018 2022
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