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Abstract: In object-based image analysis (OBIA), the appropriate parametrization of segmentation
algorithms is crucial for obtaining satisfactory image classification results. One of the ways this
can be done is by unsupervised segmentation parameter optimization (USPO). A popular USPO
method does this through the optimization of a “global score” (GS), which minimizes intrasegment
heterogeneity and maximizes intersegment heterogeneity. However, the calculated GS values are
sensitive to the minimum and maximum ranges of the candidate segmentations. Previous research
proposed the use of fixed minimum/maximum threshold values for the intrasegment/intersegment
heterogeneity measures to deal with the sensitivity of user-defined ranges, but the performance of this
approach has not been investigated in detail. In the context of a remote sensing very-high-resolution
urban application, we show the limitations of the fixed threshold approach, both in a theoretical and
applied manner, and instead propose a novel solution to identify the range of candidate segmentations
using local regression trend analysis. We found that the proposed approach showed significant
improvements over the use of fixed minimum/maximum values, is less subjective than user-defined
threshold values and, thus, can be of merit for a fully automated procedure and big data applications.
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1. Introduction

For high spatial resolution Remote Sensing (RS) images, it is often beneficial to perform image
processing (e.g., image segmentation or image filtering) prior to image classification. In particular, the
quality of the classification results may be affected by the spatial units considered for modeling—e.g.,
pixels or image segments/image objects [1]. Object-based image analysis (OBIA) has been increasing
in popularity in the past years, with many studies reporting advantages over a pixel-based approach
for RS data of various scales and resolutions, and a clear-cut benefit for very high-resolution (VHR)
imagery [2–5]. In the OBIA framework, a segmentation layer is created by an object-generating
algorithm in which neighboring image pixels are merged according to spectral, contextual and spatial
criteria [6]. As the segmentation step is of significant importance with respect to classification accuracy,
appropriate parametrization of the segmentation algorithm is required [7,8]. This parametrization is
typically done using supervised, semi supervised or unsupervised techniques [9–15].

In supervised segmentation parameter optimization (SSPO), several segmentation layers are
created based on different segmentation parameter combinations, and the selection of the most
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accurate segmentation is done through visual interpretation of segmentation results and/or through
a quantitative comparison with reference data [16,17]. SSPO methods have been criticized for being
cost-ineffective since they operate on a trial-and-error manner (for visual interpretation) or require
reference segments to be digitized (for quantitative analysis), and also for being susceptible to the
subjectivity of the user. To treat this issue, unsupervised segmentation parameter optimization
(USPO) methods have been developed and are particularly important in the context of increasing
data loads and automation purposes [14,18–25]. To identify optimal segmentation parameters, USPO
procedures usually employ a combination of geospatial metrics that describe spectral heterogeneity
between and within image segments [9,26–28]. Espindola et al. [19] suggested the use of Global
Moran’s I Index (MI) to measure inter-segment spectral homogeneity and area-weighted segment
variance (WV) to measure intra-segment heterogeneity. Since then, several other variants have been
proposed [25,29,30]. In an ideal situation, both MI and WV should be minimized. The normalized
combination of these metrics, i.e., the “Global Score” (GS) representing the quality of each segmentation,
is calculated for a set of candidate segmentation layers [19]. The minimization (or maximization,
depending on the normalization direction) of GS would suggest the most appropriate segmentation
and thus, parametrization. The use of GS has been implemented both for single and multi-band
applications [7,29].

However, due to the normalization procedure, the values of GS and consequently, its optimum
value, are sensitive to the range of candidate segmentations, as pointed out by Böck et al. [31]. When the
normalization of MI and WV is computed using the value of the finest and coarsest segmentations
as minima and maxima (i.e., 0 and 1), a shift in these scales may also cause a shift in the optimum
GS value. Therefore, for adequate results to be produced, the selection of an appropriate range
of candidate segmentations might require substantial testing time to be found and moreover, still
fall under the curse of subjectivity. In response, Böck et al. [31] proposed to do the normalization
using fixed minimum and maximum threshold values of MI and WV. In such manner, the optimal
value identified by the GS would be the same regardless of the candidate segmentations considered.
Their selected ranges corresponded to the extreme values of the MI/WV metrics, and although
Böck et al. [31] demonstrated that this approach resulted in the GS score remaining stable (i.e., always
identifying the same segmentation as “optimal”), it is still unknown if the suggested solution provides
segmentation results of adequate quality as they did not evaluate their results with segmentation
or classification metrics . In this paper, we demonstrate the limitations of the fixed threshold (FT)
approach, both in a theoretical and applied manner, and propose an alternative scheme that focuses on
selecting appropriate ranges for the segmentation parameters prior to the normalization rather than
employing absolute values a priori. Section 2 describes the data, study area, the theoretical framework
behind the two approaches as well as the validation scheme. Finally, Section 3 demonstrates the visual
results from applying each method and in Section 4 interpretation of the results and further research
prospects are discussed.

2. Materials and Methods

2.1. Case Study and Software

Pleiades imagery (VNIR, 0.5 m) of Dakar, Senegal, collected in 7 July 2015, was used for this
research as well as a normalized Digital Surface Model (nDSM) derived from the same tri-stereo
acquisition. Two regions of interest (ROI) from within the image were selected for the application
of the segmentation scheme. As shown in Figure 1, the ROI’s depicted different built up categories
and Land-Use/Land-Cover (LULC) arrangements (low-density large size built-up and high-density
medium sized built-up, respectively). For segmentation, a region growing algorithm was used,
implemented in GRASS GIS [32] and its “i.segment” [33] add-on, which is described in depth in [34].
A minimum segment size of 14 pixels was set beforehand to correspond to minimum meaningful
mapping units, (small patches of vegetation and buildings).
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Figure 1. (a) Pleiades image of Dakar (RGB composite), (b) location map of Dakar within the African 
continent, (c) ROI 1 (1.05 km2), representing a low-density large size built-up zone and (d) ROI 2  
(0.82 km2), representing a high-density medium sized built-up zone. 

2.2. Fixed Range Normalization 

As mentioned in the previous section, GS is a function of two metrics, WV and MI. WV measures 
intra-segment variability and can be considered as an undersegmentation evaluation metric. It is 
reasonably assumed that as spectral variance within objects decreases, so does undersegmentation. 
WV is described in Equation (1): ܹܸ = ∑ ܽ௜ ∗ ∑௜௡௜ݒ ܽ௜௡௜  (1) 

where n is the number of segments, ݒ௜ is the variance and ܽ௜ the area for each segment, respectively. 
In a similar fashion, MI is used as an oversegmentation evaluation metric. As MI decreases, 
neighboring objects are more spectrally discrete from their neighbors and as such, oversegmentation 
is assumed to also decrease. MI is the most widely used indicator of spatial autocorrelation in modern 
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between the points i and j [36]. In the above description x refers to the value of the variable we are 
testing for spatial autocorrelation—in this case a spectral band. The matrix of spatial proximity was 
constructed by using the common borders approach. In detail, wij = 1 when j shares a boundary with 
i and wij = 0 elsewhere [37]. The normalization of these two measures (0–1 range) follows the 
implementation of Espindola et al. [19]: 

Figure 1. (a) Pleiades image of Dakar (RGB composite), (b) location map of Dakar within the African
continent, (c) ROI 1 (1.05 km2), representing a low-density large size built-up zone and (d) ROI 2
(0.82 km2), representing a high-density medium sized built-up zone.

2.2. Fixed Range Normalization

As mentioned in the previous section, GS is a function of two metrics, WV and MI. WV measures
intra-segment variability and can be considered as an undersegmentation evaluation metric. It is
reasonably assumed that as spectral variance within objects decreases, so does undersegmentation.
WV is described in Equation (1):

WV =
∑n

i ai ∗ vi

∑n
i ai

(1)

where n is the number of segments, vi is the variance and ai the area for each segment, respectively. In a
similar fashion, MI is used as an oversegmentation evaluation metric. As MI decreases, neighboring
objects are more spectrally discrete from their neighbors and as such, oversegmentation is assumed to
also decrease. MI is the most widely used indicator of spatial autocorrelation in modern geography
and is typically represented as in Equation (2) [35]:

MI =
n ∑n

i ∑n
j wijzizj

M ∑n
i z2

i
(2)

where n is the number of data points, zi = xi − x, x is the mean value of x, M =
n
∑

i=1

n
∑

j=1
wij and wij is the

element of the matrix of spatial proximity M, which depicts the degree of spatial association between
the points i and j [36]. In the above description x refers to the value of the variable we are testing for
spatial autocorrelation—in this case a spectral band. The matrix of spatial proximity was constructed
by using the common borders approach. In detail, wij = 1 when j shares a boundary with i and wij = 0
elsewhere [37]. The normalization of these two measures (0–1 range) follows the implementation of
Espindola et al. [19]:
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Xn =
Xmax − X

Xmax − Xmin
(3)

where Xn is the normalized WV (or MI), Xmax is the maximum WV (or MI) value of all candidate
segmentations, Xmin is the minimum WV (or MI) value of all candidate segmentations and X is the
WV (or MI) value of the current segmentation. The GS is the sum of these normalized values:

GS = WVn + MIn (4)

As the optimal value of GS is critically affected by the range of the considered segmentations,
Böck et al. [31] proposed to use a fixed minimum and maximum segmentation range based on the
most extreme empirical and theoretical values of WV and MI, respectively. For WV, the finest scale
that can be achieved is when each image pixel represents a segment and thus, having a variance value
of zero. On the contrary, the end range is defined by the situation were the whole image consists of a
segment that can be derived by computing image variance. For MI, the two extreme values of −1 and
1 are chosen in a way that corresponds to situations where maximum negative and positive spatial
autocorrelation is achieved.

The main flaw of this approach rests in the fact that it mixes theoretical distributions with empirical
data. To further elaborate on this, let us imagine the situation were WV is in the absolute maximum, i.e.,
image variance. In this case, the computation of MI is not possible as it requires a neighboring network
and thus, the equivalent value for MI is unknown. Similarly, when the value of MI is −1, the true
value of WV is unknown. Moreover, it may not be plausible that an RS image can have a MI of −1
and more so to arbitrarily assume that it would correspond to a WV value of image variance. On the
contrary, with maximum negative autocorrelation, WV values might be particularly low. As such, not
only do these values not correspond to each other, but also it is unknown if these values can actually
be produced from empirical data.

For the traditional implementation of normalization [20] this is not a problem as both WV and MI
values are known for each segmentation. To illustrate this, we applied the approach in the two regions
of interest (ROI). We computed 90 segmentations with an incrementing scale parameter starting from
an extremely fine scale to an extremely coarse one. It should be noted that the scale parameter here is
different from the one of eCognition [38]. In the “i.segment” module of GRASS, the decisive merging
“threshold” parameter ranges from 0 to 1, with 0 leading to the creation of no segments at all, while 1
represents the merging of all pixels. In the case of the two ROIs in this image, values between 0.001
and 0.09 include all relevant segmentations as suggested by the extreme shift of MI and WV in Figure 2.
Finally, a step of 0.001 was used. Table 1 shows the absolute values of WV and MI for each case study,
respectively. It should be noted that we employed a multiband approach where each of the metrics
was computed per single band and then averaged the results [20,34].
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Table 1. Absolute maximum and minimum values for the two ROI for the FT method.

Fixed Thresholds Region 1 Region 2

WVmax 128,314 112,811
WVmin 0 0
MImax 1 1
MImax −1 −1

By applying the normalization procedure using these values as the min/max, spurious results
were produced. Figure 3 illustrates the Normalized Weighted Variance (WVn) and Normalized Moran’s
I (MIn) plotted against each segmentation scale in a similar fashion as before. It is evident that the
range of values (i.e., MIn maximum–MIn minimum) of the two metrics is intrinsically different among
them and in both regions. The range of WVn for the two regions is 0.20 and 0.29, respectively. On the
contrary the same values for MIn are 0.31 and 0.34. In a normalization process, unequal ranges in
the values is an indicator of bias towards one or the other metrics. This suggests that by using the
FT method the GS is biased towards MI (which has a larger range) and as such, segmentations with
potentially undersegmented objects might be suggested as optimal. The optimal GS values for ROI
1 was found with a scale parameter of 0.035 while for ROI 2 a scale value of 0.031 was suggested as
suitable (Figure 4).
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2.3. Selection of Relevant Ranges Based on Local Regression (LOESS) Trend Analysis

Given the methodological concerns that come with the approach described above, an alternative
solution is to focus on selecting relevant ranges for the normalization before computing the GS in
an objective and meaningful manner. Our proposed solution revolves around detecting variability
shifts in the rate of change of WV and MI values. Erratic behavior in these trends can suggest the
maximum limit for a reasonable segmentation range to be considered for normalization. The rate of
change of variability and autocorrelation metrics such as WV and MI are useful indicators that can
detect changes (e.g., shift to oversegmented scales). Drǎguţ et al. [18] used the rate of change in Local
Variance to suggest optimal segmentation parameters with the ESP tool. Instead, we are looking for
segmentation ranges to apply the traditional GS USPO procedure. Figure 5 shows the difference for
each of the two metrics from each segmentation layer and the next and for each ROI, respectively.
Notably, erratic behavior and instability is found for both metrics starting at a segmentation scale of
0.020, which becomes apparent visually after a scale value of 0.030 and onwards, in both datasets.
Including segmentations beyond this value can add bias to the normalization process as the rates of
change for both metrics display an intrinsically unstable behavior. This is due to the large, sudden and
irregular changes in the objects size and composition in too heavily undersegmented layers.
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Since computing an extremely large amount of segmentations, investigating the trends and
visually assessing the point of instability might be a subjective process and time inefficient, we propose
an automated solution based on Local Regression (LOESS) curve fitting. LOESS partitions data
into subsets and fits a low degree polynomial in each one of them. As a local regression technique,
LOESS-based models are suitable methods to detect significant breaks in trends of various data [39].
The salient steps of our solution are described as follows:

1. Selection of a segmentation to act as minima (fine scale) and a step value as user-based inputs.
A very low scale parameter, which produces very oversegmented results, is appropriate for this
task. The results of LOESS are sensitive to the step between each segmentation as the algorithm
is more efficient when a lot of data points are given and as such, a very small step parameter is
required in order for the trends to manifest. In our case, we used a segmentation produced from
a scale parameter of 0.001 as minimum range with the same value as a step. Tests with a step
parameter higher than 0.003 failed to provide reasonable results.

2. Consider an initial amount of segmentations and compute MI and WV values for each one.
For the LOESS curve to produce meaningful results, at least a few segmentations (n~10) should
be produced, as it is a local fitting method that operates in subsets of the input data.
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3. Computing the difference of MI (MID) and WV (WVD) between a segmentation and the next
coarser one:

MID = MIi −MIi+1 (5)

WVD = WVi+1 −WVi (6)

where MIi is the MI value of the current segmentation and MIi+1 the value of the next coarser one,
and WVi is the WV value of the current segmentation and WVi+1 the value of the next coarser one.

4. Standardizing the differences of each metric (standard deviation of 1 and mean of 0) as shown in
Equation (7):

XDS = (XD − XD)/SD (7)

where XD is the current value for MID (or WVD), XD is the mean value of the MID (or WVD) for
considered segmentations and SD their standard deviation.

5. Fit a LOESS curve to the standardized differences with a second-degree polynomial. The results
of the fit are sensitive to the span parameter, which controls the degree of smoothing. The default
value (0.75) of the loess package in R statistical software was used.

6. Examine the residuals between the LOESS predictions and the raw values. Since the data are
standardized, the residuals correspond to standard deviations. Residuals that are sufficiently
high for both MIDS and WVDS are indicators of a break in the trends. As a rule of thumb, we can
assume that a significant shift in the trends manifests when the residuals are higher than 0.4
(larger than 0.4 times a standard deviation) for both MI and WV at the same time while the
sum of their absolute residuals is larger than 1. This rule assures both individual and combined
evaluation of the trends.

7. Selecting the segmentation that satisfies the previous rule as the maximum range. If the criteria are
not satisfied, compute an additional coarser segmentation by incrementing the scale parameter,
and repeat from step 3.

The proposed solution is conservative in nature, as it requires the minimum amount of
segmentations to be computed to select an adequate range rather than an arbitrary fixed one. In ROI 1
the criteria were satisfied at a segmentation with a scale parameter of 0.028 (Figure 6). As a reminder,
this value represents the maximum value used for the normalization. Applying this value, the
optimization of the GS was found at a scale of 0.016 (Figure 7). For the second region, the maximum
limit for normalization was 0.023 and the GS was optimized at a segmentation produced with a scale
parameter of 0.015.
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Figure 6. LOESS curve results for the two ROIs. The breakpoint signifies the point where the absolute
residuals are larger than 0.4 standard deviations for both Variance and Moran’s I and their sum greater
than 1. In ROI 1 (a) the breakpoint was found with a scale parameter of 0.028 while in ROI 2 (b) a
parameter of 0.023 was identified as suitable.
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Figure 7. GS for each computed segmentation and ROI using the LOESS approach.

2.4. Validation Scheme

To investigate the efficiency of the FT approach and the potential improvement of the proposed
LOESS technique we employed a two-step validation scheme. First, we computed segmentation
goodness metrics (discrepancy measures) to directly measure the quality of each segmentation method.
These metrics are based on overlaying operations between produced segments and reference objects
and are extensively described in several studies [4,16,40–42]. We manually digitized 20 objects of
interest in each ROI for the buildings and tree categories to serve as reference polygons. The objects
were derived from the pool of training data used for LULC classification (Figure 8, Table 2). Afterwards,
we computed the Area Fit Index (AFI) [43], which is an area-based metric and the MergeSum (MS) [16],
which is a combined measure that jointly evaluates over/under segmentation. For AFI, values > 0
indicate oversegmentation, values < 0 indicate undersegmentation with the ideal value (perfect fit)
being 0. For MS, values closer to 0 indicate a better segmentation performance.

Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 17 

 

 
Figure 7. GS for each computed segmentation and ROI using the LOESS approach. 

2.4. Validation Scheme 

To investigate the efficiency of the FT approach and the potential improvement of the proposed 
LOESS technique we employed a two-step validation scheme. First, we computed segmentation 
goodness metrics (discrepancy measures) to directly measure the quality of each segmentation 
method. These metrics are based on overlaying operations between produced segments and reference 
objects and are extensively described in several studies [4,16,40–42]. We manually digitized 20 objects 
of interest in each ROI for the buildings and tree categories to serve as reference polygons. The objects 
were derived from the pool of training data used for LULC classification (Figure 8, Table 2). 
Afterwards, we computed the Area Fit Index (AFI) [43], which is an area-based metric and the 
MergeSum (MS) [16], which is a combined measure that jointly evaluates over/under segmentation. 
For AFI, values > 0 indicate oversegmentation, values < 0 indicate undersegmentation with the ideal 
value (perfect fit) being 0. For MS, values closer to 0 indicate a better segmentation performance. 

 
Figure 8. Examples of digitized buildings and trees for the computation of segmentation goodness 
metrics in (a) ROI 1 and (b) ROI 2. 

The second measure we used to evaluate the two methods is through the results of a LULC 
classification of the two ROIs. To do so, we collected 440 points across both ROIs through random 
sampling and we labeled them according to the specifications of the two-level classification scheme 
described in Table 2. The objects underlaying the training points received the corresponding class 

Figure 8. Examples of digitized buildings and trees for the computation of segmentation goodness
metrics in (a) ROI 1 and (b) ROI 2.



Remote Sens. 2018, 10, 222 9 of 17

The second measure we used to evaluate the two methods is through the results of a LULC
classification of the two ROIs. To do so, we collected 440 points across both ROIs through random
sampling and we labeled them according to the specifications of the two-level classification scheme
described in Table 2. The objects underlaying the training points received the corresponding class
value. Undersegmented objects were discarded, so the training sample size for each method was not
exactly the same, as it would depend on the degree of undersegmentation of the image. A Random
Forest (RF) classifier was used to perform the classification. Regarding the parameters of the RF
models, 500 trees were selected, while the number of features to be examined at each tree node
was determined from cross-validation to be 5. We used the complement of the out of the bag error
(OOB; ~30% hold out training sample for each tree) as a proxy for the overall accuracy (OA; i.e.,
OA = 1 − OOB). The OOB has been suggested as a robust metric that can be utilized as an alternative
of using an independent test set [44]. For the scope of the study, which is comparative and not aimed
on maximizing performance, the OOB was found appropriate as it has been used successfully in recent
research [45]. We considered 60 features as input to the classifier and namely descriptive statistics
(min, max, median, mean, standard deviation, range, sum, 90th percent, first and third quartiles) for
each spectral band, the nDSM and the NDVI, as well as geometrical covariates such as compactness,
perimeter and area.

Table 2. Classification scheme and training data for each class.

Level 1 Level 2 Training Samples

Artificial Surface (AS)
Buildings (BU) 91

Light concrete (CS) 42
Asphalt (AS) 57

Bare Soil (BS) Bare Soil (BS) 48

Vegetation (VG) Trees (TR) 70
Low Vegetation (LV) 60

Shadow (SH) Shadow (SH) 71

The analysis was performed with an Intel® Xeon® CPU E5-2690 (2.90 GHz, 2 processors, 16 cores,
32 processing threads) and 96 GB of RAM. The average time for the “i.segment” module of GRASS
to produce a segmentation for a single scale parameter is 34 and 28 s for each ROI, respectively.
For performing the USPO procedure as proposed by the authors, roughly 15 (ROI 1) and 11 (ROI 2)
minutes are required. This includes the computation of the actual segmentation layer proposed by
the USPO as well as descriptive files regarding the MI, WV and GS values for each considered scale
parameter. The processing time requirements reported above refer to non-parallelized, single thread
versions. If parallelized using the specifications of our hardware, the whole process for both ROIs at
the same time would require approximately 4 min.

3. Results

3.1. Segmentation Goodness Metrics

The results of the computed metrics for buildings are depicted in Table 3. To investigate the
distribution of the results in depth, several descriptive statistics are provided. The AFI for the FT
approach was mostly negative, indicating that undersegmentation was prevalent, while the large value
of the standard deviation (SD) demonstrates the instability in the size of the segments relative to the
size of the objects of interest. On the contrary, the LOESS-based technique was consistently positive
and with values closer to 0. In a similar fashion, the MS metric values were lower for the proposed
method with a smaller SD.
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Table 3. Descriptive statistics for the Area Fit Index (AFI) and MergeSum (MS) metrics for the buildings
category based on 20 reference objects.

Descriptive Statistics

Built-Up

Area Fit Index (AFI) MergeSum (MS)

FT LOESS FT LOESS

Mean −1.64 0.59 1.14 0.96
SD 3.60 0.20 1.24 0.09

1st Quartile −2.73 0.48 1.24 0.97
3rd Quartile 0.54 0.72 1.00 0.99

Similar results for the trees as objects of interest are shown in Table 4. The reason for the extreme
negative values of the AFI and MS for the FT approach is the frequent merging of tree objects with
very large segments that represent asphalted streets or bare soil in both ROI.

Table 4. Descriptive statistics for the Area Fit Index (AFI) and MergeSum (MS) metrics for the trees
category based on 20 reference objects.

Descriptive Statistics

Trees

Area Fit Index (AFI) MergeSum (MS)

FT LOESS FT LOESS

Mean −50.81 0.53 24.69 0.91
SD 113.74 0.23 79.97 0.14

1st Quartile −26.42 0.37 0.82 0.89
3rd Quartile 0.19 0.69 2.05 0.99

Examples of the two segmentation methods are demonstrated in Figure 9 where scenes of different
built-up densities and size are visualized. Figure 9a,b represents a built-up area of medium size,
high density belonging to the first ROI. It is evident that the FT normalization produced extremely
undersegmented objects, mixing multiple LULC classes such as vegetation with artificial surfaces.
To ease interpretability, for FT, we highlight particularly large objects, which combine different types
of vegetation, bare soil, built-up areas, shadows and asphalt. On the contrary, the segmentation
derived from LOESS did not appear undersegmented, and clear separation between different LULC
categories was observed (highlighted objects). In a similar fashion, in the examples from the second
ROI (Figure 9c,d), segmentations coming from the fixed approach were severely undersegmented
while the proposed solution produced distinct objects with a particular benefit for buildings, as they
were not combined with ground level concrete surfaces. In general, it can be pointed out that due
to the very large scale parameter that FT identified as optimum, unless there was a clear spectral
separation between neighboring objects, segments consisting of several LULC classes were created.
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Figure 9. Example of segmentation results for the two ROI. (a,c) FT approach, (b,d) LOESS
approach. Highlighted objects in color other than yellow display undersegmented areas where several
LULC classes are mixed for the FT approach, while colored objects in the LOESS case showcase
some of the clear improvements as the objects now represent discrete LULC classes (e.g., asphalt,
vegetation, building).

3.2. Classification Results

As an indirect evaluation of the two methods, the OA calculations for the two-level LULC
classifications produced using each method are presented in Table 5. In line with the previous
results (Section 3.1), the LOESS technique produced significantly higher OAs for both classification
levels. At Level 1 LOESS exhibited roughly a 6% increase in OA in comparison to the FT method.
Notably, at Level 2 the improvement was even higher (~10%), probably because accurate context
information (e.g., segment area and shape) was particularly important for distinguishing buildings and
trees. Finally, the F-score as a measure of per class accuracy is presented for each segmentation
method and classification level (Table 6). The degree of improvement of the LOESS method
degree varied as a function of class and classification scheme but in all cases, there were large and
significant improvements.

Table 5. Overall accuracies (OA) for two levels using different segmentations as input.

Classification Scheme Level 1 Level 2

Optimization Method FT LOESS FT LOESS
Overall Accuracy (%) 88.08 94.34 77.24 88.68

Kappa Index 0.83 0.92 0.72 0.87
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Table 6. F-score for each class for each classification level and segmentation method.

Class
Level 1

Class
Level 2

FT LOESS FT LOESS

Artificial Surface 0.91 0.95 Asphalt 0.69 0.84
Vegetation 0.92 0.97 Buildings 0.85 0.90
Bare Soil 0.71 0.86 Light concrete 0.43 0.70
Shadow 0.90 0.96 Bare Soil 0.75 0.82

Trees 0.83 0.90
Low Vegetation 0.75 0.88

Shadow 0.91 0.96

Examples of the LULC classification produced from each method are shown in Figures 10 and 11.
It is evident that the extreme undersegmentation of the FT method has a strong negative effect in
the classification. Figure 10 highlights misclassifications of unclassified land due to shadows with
asphalted surfaces and vegetation with built-up areas. LOESS mitigates these problems as the LULC
maps are more accurate regardless of the classification scheme used. Regardless of the classification
scheme employed, the classifications are evidently better and more consistent. On the contrary, the
instability of the FT approach can be seen as objects were classified differently according to each
level (e.g., highlighted segments in bright yellow in Figure 10b,c. The results were similar in ROI 2
(Figure 11). The highlighted objects with FT emphasize situations of asphalt/shadows confusion, bare
soil/built-up as well as confusion between different types of vegetation.
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Figure 10. Classification results for the two approaches at two levels from ROI 1. (a) Segmentation
and highlighted objects from the FT method, (b) classification results for Classification Level 2 and
(c) Classification Level 1 for FT, (d) Segmentation and highlighted objects from the LOESS method,
(e) classification results for Classification Level 2 and (f) Classification level 1 for LOESS.
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Figure 11. Classification results for the two approaches at two levels from ROI 1. (a) Segmentation
and highlighted objects from the FT method, (b) classification results for Classification Level 2 and
(c) Classification Level 1 for FT, (d) Segmentation and highlighted objects from the LOESS method,
(e) classification results for Classification Level 2 and (f) Classification level 1 for LOESS.

4. Discussion

As this experiment of the study demonstrated, there are important limitations arising using
fixed threshold values for the normalization process in VHR urban scenes. The most important
disadvantage is that by doing so, both metrics are unequally weighted, with MI typically having
greater weighting, due to the fact that the absolute value ranges of each metric are quite different as MI
has a smaller range of possible values than WV. This has explicit effects on the normalization procedure,
especially when unrealistic ranges are imposed. Indeed, the results on an empirical application
were quite clear—segmentations identified as “optimal” from this procedure were actually highly
undersegmented. Moreover, this also renders the implementation of other intrasegment/intersegment
heterogeneity combination approaches, e.g., those based on the F-measure [20], inapplicable, as the
already unequal normalized metric values would be inflated further. The results could arguably be
improved if better fixed values were selected, rather than simply selecting the extreme values for each
metric. Nonetheless, this would make the problem sensitive to the search range, the same issue it is
supposed to solve.

Previous studies showed that results from subjectively selecting ranges were adequate [29,34,46].
Indeed, selecting ranges based on user experience, together with a clear aim linked to the purpose of
the expected outcome of the analysis (e.g., minimum mapping units, classification scheme), can lead
to high quality of the results. Nonetheless, this process is still subjective and requires sufficient
experimentation to define the appropriate ranges, something that goes against the rationale of using
USPO methods in the first place, especially with the aim of automation in mind. Moreover, it can
be time inefficient, particularly for large datasets. Therefore, we propose a solution that focuses on
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selecting a relevant range of values for normalizations by detecting trend instability in the rates of
change of MI and WV. The proposed solution through LOESS curve fitting appears to provide adequate
results for VHR data of different types of urban LULC.

In order for the proposed method to identify optimal segmentations at different scales several
options could be investigated. A multiscale analysis by adjusting the weight parameter of the
F-measure formula can be undertaken in a similar fashion as demonstrated by Johnson et al. [20].
An alternative way would be to run the LOESS with the proposed specifications, detect the scale
parameter of the break point and re-run the procedure using it as the starting segmentation scale until
it identifies a second breakpoint. Finally, adjusting the minimum size of the produced segments by the
region-growing algorithm of the “i.segment” tool of GRASS according to the minimum mapping units
of different LULC classification schemes could potentially address the issue of detecting image units at
different semantic levels.

An important advantage of the proposed method is its potential for automation with particular
merit for large, heterogeneous areas. As Grippa et al. [47] and Georganos et al. [48] pointed out,
in heterogeneous urban scenes a single set of segmentation parameters is inadequate and less
efficient than spatially partitioning the study area into several subsets and optimizing each separately.
Similar studies for semi-rural and agricultural environments have demonstrated the efficacy of local
optimization through the use of F-measure and ESP methods [25,27]. In these cases, undertaking
supervised methods would be largely untenable and inefficient while traditional USPO methods
would rely on setting defined segmentation ranges a priory. On the other hand, the proposed method
can provide a fully automated procedure for selecting relevant ranges for each subset (providing
parameters such as the starting segmentation scale have been defined according to the application
specifications). This works in a synergistic fashion with GRASS GIS, which is suited for large-scale
computing, is highly automated and parallelized in most of its functions and more importantly,
performs all the segmentation operations in a raster format without involving vector data unless
requested, which dramatically boosts its computational efficiency. Nonetheless, further research
is needed with different types of algorithm parametrization, imagery, classification schemes and
objectives to validate the efficacy of LOESS as an adequate method for addressing normalization issues
in the computation of the GS and similar measures. Finally, comparisons with other highly automated
USPO methods such as the ESP tool of eCognition [18] should be investigated.

5. Conclusions

Unsupervised segmentation parameter optimization (USPO) is typically done by identifying
the segmentation (out of a set of candidate segmentations) with the highest combined intersegment
heterogeneity and intrasegment homogeneity (i.e., the “optimal” segmentation). Global Moran’s
I (MI) (an intersegment heterogeneity metric) and area-weighted variance (WV) (an intrasegment
heterogeneity measure) values are often combined for this purpose, and an “optimal” segmentation
is identified based on the combined result; i.e., the “Global Score” (GS) values of the candidate
segmentations. Recent research demonstrated in detail that the values of GS are dependent on the
range of candidate segmentations because the MI and WV values are normalized prior to being
combined. As a remedy a normalization of the MI and WV values based on fixed minimum/maximum
values was proposed (FT).

In this study, we investigated the efficiency of the (FT) both theoretically and empirically and
alternatively proposed performing the normalization through Local Regression Trend Analysis
(LOESS) methods. From our analysis, it was demonstrated that the FT is susceptible to unequal
weighting of the metrics that are used for normalization (i.e., Moran’s I and Weighted Variance).
We empirically validated the results through segmentation goodness metrics such as the Area Fit Index
(AFI) and MergeSum, which indicated heavy undersegmentation while LOESS showed no such signs.
We additionally demonstrated these issues in a two-level Land-Use/Land-Cover classification scheme
where GS optimized through LOESS largely overperformed in terms of Overall Accuracy (~6% for level
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1 and ~10% at level 2). Finally, we emphasize the objectivity and benefits of semi- or fully automated
USPO methods that do not rely heavily on user interference to define the segmentation ranges, further
supporting the rationale of using USPO methods, especially for large heterogeneous areas.
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Appendix A

In this appendix, we present the equations used for the computation of the segmentation goodness
metrics, Area Fit Index (AFI) (Equation (A1)) and MergeSum (Equation (A2)).

AFI =
area(xi)− area(yimax)

area(xi)
(A1)

MergeSum =
(area(xi)− area(xi ∩ (yi))

area(xi)
+

(area(yi)− area(xi ∩ (yi))

area(xi)
(A2)

where xi is the reference object, yimax is the segment intersecting xi that has the largest area, yi is the
segment intersecting xi and area (xi ∩ yi) is the area of their intersection.
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