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Abstract: Surface-upwelling longwave radiation (LWUP) is an important component of the surface
radiation budget. Under the general framework of the hybrid method, the linear models and
the multivariate adaptive regression spline (MARS) models are developed to estimate the 750 m
instantaneous clear-sky LWUP from the top-of-atmosphere (TOA) radiance of the Visible Infrared
Imaging Radiometer Suite (VIIRS) channels M14, M15, and M16. Comprehensive radiative transfer
simulations are conducted to generate a huge amount of representative samples, from which the
linear model and the MARS model are derived. The two models developed are validated by the
field measurements collected from seven sites in the Surface Radiation Budget Network (SURFRAD).
The bias and root-mean-square error (RMSE) of the linear models are −4.59 W/m2 and 16.15 W/m2,
whereas those of the MARS models are−5.23 W/m2 and 16.38 W/m2, respectively. The linear models
are preferable for the production of the operational LWUP product due to its higher computational
efficiency and acceptable accuracy. The LWUP estimated by the linear models developed from VIIRS
is compared to that retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS).
They agree well with each other with bias and RMSE of −0.15 W/m2 and 25.24 W/m2 respectively.
This is the first time that the hybrid method has been applied to globally estimate clear-sky LWUP
from VIIRS data. The good performance of the developed hybrid method and consistency between
VIIRS LWUP and MODIS LWUP indicate that the hybrid method is promising for producing the
long-term high spatial resolution environmental data record (EDR) of LWUP.

Keywords: longwave upwelling radiation (LWUP); Visible Infrared Imaging Radiometer Suite
(VIIRS); surface radiation budget; hybrid method; remote sensing

1. Introduction

The surface radiation budget (SRB) is an important indicator in the study of climate formation
and change and environmental prediction, which plays a key role in the global matter, energy cycles
and interactions between the surface and the atmosphere system [1–3]. SRB is dominated by longwave
radiation in the night and during most of the year in the polar regions [4,5]. Surface-upwelling
longwave radiation (LWUP, 4.0–100 µm), the sum of thermal radiation emitted by the surface and
reflected atmospheric downward longwave radiation, is the main cause of surface cooling in the clear
night sky and is also an indirect indicator of surface temperature [5]. An accurate estimate of LWUP is
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one of the prerequisites for obtaining accurate weather forecasts, climate simulations, and land-surface
process simulations.

Generally, we can obtain the LWUP using three approaches: field measurement, satellite remote
sensing and model prediction. LWUP can be accurately measured with field instruments. However,
field networks are sparsely distributed globally. Furthermore, field measurement can only represent
a limited area. The spatial resolution of model prediction is relatively coarse [6]. Remote sensing
can provide various kinds of products with global coverage and horizontal spatial continuity, but
the temporal resolution is always limited. High spatial-resolution LWUP is an important diagnostic
parameter for mesoscale land surface and atmosphere models [7] and can also serve as a bridge for
validating coarse resolution data [8]. The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of
the key instruments onboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite system
and was successfully launched in 2011. The spatial resolution of VIIRS thermal-infrared channels is
750 m. Ignoring the relatively low temporal resolution of VIIRS, it is the preferred data source for
estimating high spatial-resolution LWUP.

Over the past few decades, substantial efforts have been devoted to estimating LWUP at the
surface using remotely sensed observations from space-borne platforms. These methods can be
primarily divided into two categories: the temperature-emissivity method [7–10] and the hybrid
method [11–13]. Current operational satellite land-surface temperature and emissivity products
facilitate the estimation of LWUP [14–17], but the large uncertainties in the land-surface temperature
and emissivity products limit its accuracy [18,19]. For example, the study of Wang et al. indicated that
the accuracy of the temperature-emissivity method is much lower than that of the hybrid method [7].
As shown in Figure 1, the weighting function of thermal infrared channels located in narrow bands that
are semi-transparent to atmospheric gases and thus sensitive primarily to emission from the surface
(“atmospheric windows”) peaks at the surface and contains the surface-emission information, so LWUP
can be derived from top-of-atmosphere (TOA) radiance or brightness temperature directly [13,20].
The hybrid method links the thermal-infrared TOA radiances or brightness temperatures with LWUP
through comprehensive radiative transfer modeling and statistical regression. It is physically based
and at the same time has a high computational efficiency. Furthermore, it can bypass the problem of
temperature and emissivity separation and achieve an acceptable accuracy in practice. The hybrid
method has been successfully used to produce high spatial-resolution regional [7,11,21] and global [12]
LWUP recently.
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VIIRS was developed based on the heritage of Moderate Resolution Imaging Spectroradiometer
(MODIS) instruments and has become a key bridge to ensure long-term continuity of the environmental
data records (EDRs). VIIRS provides a large number of EDRs, including aerosol optical thickness [22],
vegetation index [23], land-surface albedo [24], land-surface temperature [25], sea-surface temperature [26],
etc. To our knowledge, an operational LWUP product from VIIRS is not available at regional and global
scales. VIIRS do not provide operational products of surface broadband emissivity (BBE) and surface
downward longwave radiation. Thus, it is difficult to calculate the LWUP with the temperature-emissivity
method. In addition, no operational algorithm that can be used to retrieve LWUP from VIIRS has been
reported in the literature.

We have developed a hybrid method for retrieving clear-sky LWUP from MODIS data and
produced two years’ global LWUP product recently [12]. It is possible to produce long-term high
spatial-resolution EDR of LWUP by combining MODIS and VIIRS. The first step is to develop a hybrid
method to estimate the global 750-m instantaneous clear-sky LWUP from VIIRS data. The article is
arranged as follows. The data including satellite data, field measurements, and atmospheric profiles
are described in Section 2. The method and validation results are provided in Sections 3 and 4. A brief
discussion and conclusion are given in Sections 5 and 6.

2. Data

2.1. Visible Infrared Imaging Radiometer Suite (VIIRS) Data

VIIRS has been developed based on the heritage of legacy instruments, including AVHRR and
MODIS, and extends and improves on them [27]. The VIIRS has 22 spectral channels with wavelengths
ranging from 0.41 µm to 12.5 µm, which can be used for environmental monitoring and numerical
weather forecasting. The on-orbit verification and intensive calibration and validation using a ground
target show that VIIRS is working very well [28,29]. More than 20 environmental data records have been
produced operationally from VIIRS data, including clouds, land-surface temperature and sea-surface
temperature, vegetation index, aerosol optical thickness, active fire, snow/ice, surface albedo, etc.

The VIIRS data utilized in this study include the VIIRS sensor data records (SDR) and VIIRS
Cloud Mask intermediate product (VCM). The VIIRS SDR contains the day–night band, imagery band,
moderate resolution band and geolocation data. Three thermal-infrared channels, M14, M15 and M16,
which are located in the “atmospheric windows” and are sensitive to the LWUP, are finally selected.
These three channels have similar channel characteristics to MODIS channels 29, 31 and 32. The relative
spectral responses of VIIRS channels M14, M15 and M16 as well as MODIS channels 29, 31 and 32
are displayed in Figure 1. The VIIRS VCM product is used to identify whether a pixel is clear-sky
or cloudy [30]. The pixels with confident clear flag are identified as clear-sky pixels. In addition, the
longitude, latitude and the sensor view zenith angle data are also provided in the SDR.

2.2. Atmospheric Profiles

In this study, two years of the Atmospheric Infrared Sounder (AIRS) level 2 standard atmospheric
profiles are collected to construct the atmospheric profile database. Launched aboard the Earth Observing
System (EOS) second satellite Aqua, the AIRS instrument has 2378 infrared spectral channels covering
3.74–15.39 µm with a high spectral resolution (λ/∆λ) of 1200 [31]. The AIRS infrared band is very stable,
and the offset is less than 10 mK/yr [32]. The accuracy of temperature measurement of AIRS is better than
250 mK, and the absolute calibration accuracy of most bands can reach 100 mK. It is the most accurate
and stable hyperspectral infrared detector up until now (http://daac.gsfc.nasa.gov/AIRS/). AIRS can be
used to obtain the global atmospheric three-dimensional physical state (atmospheric temperature, water
vapor, clouds, etc.) and the distribution of trace gases (ozone, carbon dioxide and methane, etc.) daily [33].
The temperature profile of AIRS has 28 layers, and the corresponding atmospheric pressure varies from
1100 hPa to 0.1 hPa. Meanwhile, the AIRS water-vapor profile has 14 layers, and the corresponding
atmospheric pressure ranges from 1100 hPa to 50 hPa.

http://daac.gsfc.nasa.gov/AIRS/
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2.3. Surface Radiation Budget Network (SURFRAD)

The Surface Radiation Budget Network (SURFRAD) network was established in 1993 to
supply accurate, longstanding and persistent measurements of the surface radiation budget for
climate change studies [34]. SURFRAD provides quality-controlled field measurements including
downward and upwelling solar irradiance and longwave infrared irradiation, along with other
meteorological observations, such as wind speed, atmospheric pressure and relative humidity,
etc. SURFRAD measurements are widely used for the validation of satellite-derived products and
the details about the SURFRAD site and related instruments can be found in [34]. Daily one or
three-minute SURFRAD data are organized into daily ASCII text and can be freely downloaded from
ftp://aftp.cmdl.noaa.gov/data/radiation/surfrad. In addition, the basic data are routinely sent to
several archives including the World Radiation Data Center (WRDC), National Climatic Data Center
(NCDC), and Baseline Surface Radiation Network (BSRN). The location, elevation and land cover of
the seven SURFRAD sites are listed in Table 1.

Site upwelling and downward thermal infrared irradiance are measured using two precision
infrared radiometers (PIR). The PIRs are sensitive to the spectral range from 3 µm to 50 µm.
Three standard PIRs, which are annually calibrated by world-reputable organizations, are used to
calibrate these two PIRs adopted in SURFRAD network. The spectral range of the measurements can
be extended to 4–100 µm by calibration [35]. The overall accuracy of PIR ground measurement is
approximately±9 W/m2 [34], and is reported to be about±5 W/m2 recently [36]. The VIIRS moderate
resolution band (M-band) has a resolution of 750 m at nadir. The spatial matching issue and scale effect
need be considered when validating satellite-derived LWUP using SURFRAD ground measurements.
The footprint of SURFRAD PIRs is much smaller compared to that of the VIIRS. Fortunately, SURFRAD
sites were selected at the locations where the surrounding land cover of the site was homogeneous.
For example, Wang et al. [7] compared the brightness temperature of the ASTER pixel that contains
the SURFRAD site to other neighboring pixels within 1 km × 1 km and 2 km × 2 km windows.
They found that the discrepancies between the central pixel and surrounding pixels were less than
1 K in general, and the standard deviations of center pixel and surrounding pixels were less than 2 K
under most conditions. Therefore, the SURFRAD measurements were used to validate the derived
VIIRS LWUP directly.

Table 1. Information of sites in the Surface Radiation Budget Network (SURFRAD) network.

Name Location Elevation (m) Land Cover Time Period of Used Data

Bondville_IL 40.0519◦N, 88.3731◦W 230 Cropland 2014–2017
Boulder_CO 40.1249◦N, 105.2368◦W 1689 Grassland 2014–2017

Desert_Rock_NV 36.6237◦N, 116.0195◦W 1007 Desert 2014–2017
Fort_Peck_MT 48.3078◦N, 105.1017◦W 634 Grassland 2014–2017

Goodwin_Creek_MS 34.2547◦N, 89.873◦W 98 Grassland 2014–2017
Penn_State_PA 40.7201◦N, 77.9309◦W 376 Cropland 2014–2017
Sioux_Falls_SD 43.7340◦N, 96.6233◦W 473 Grassland 2014–2017

3. Method

As shown in Figure 1, the channel characteristics of VIIRS channels M14, M15 and M16 are similar
to those of MODIS channels 29, 31, and 32, which have been successfully used to derive LWUP using
hybrid method at regional and global scales [7,12]. In this section, we developed the hybrid method
for VIIRS using TOA radiance of channels M14, M15 and M16 under the general framework of the
hybrid method. First, a huge amount of representative samples are generated by extensive radiative
transfer modeling; then the linear model and MARS model are established to predict LWUP using
TOA radiance of channels M14, M15 and M16.

ftp://aftp.cmdl.noaa.gov/data/radiation/surfrad
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3.1. Radiative Transfer Modeling

The surface upwelling longwave radiation consists of two components: longwave radiation
emitted by the surface and surface-reflected atmospheric downward longwave radiation, which can
be written as:

Fl
up = ε

λ2∫
λ1

πB(Ts)dλ + (1− ε)Fl
down (1)

where the ε is the surface broadband emissivity. Ts is the surface temperature. Fl
down is the downward

longwave radiation. λ1 and λ2 are the spectral integration range (4–100 µm).
A representative simulation database is required to train the hybrid method, such as the linear

model and the MARS model. The moderate resolution atmospheric transmission (MODTRAN)
software [37], which is widely used by researchers all over the world, can be used to simulate the
radiation transmission and interaction between the atmosphere and the land surface under various
atmospheric and surface conditions. Allowing for the difference between land-surface temperature
and atmospheric temperature, the global land surface is divided into three regions: the low-latitude
region (30◦S–30◦N), middle-latitude region (30◦S–60◦S, 30◦N–60◦N), high-latitude region (60◦S–90◦S,
60◦N–90◦N) [12]. At the same time, the atmospheric profiles are also divided into these three categories
according to the latitude. For each sub-region, we extracted the atmospheric profiles from AIRS Level
2 standard atmosphere product and constructed the atmospheric profile database. To avoid excessive
computation and to alleviate the similarity of the profiles, a screening process was applied, and the
criteria proposed in [12] adopted to measure the similarity of atmospheric profiles. In total, 2842,
35,487 and 41,724 atmospheric profiles of high-latitude, mid-latitude and low-latitude region were
obtained. MODTRAN 5.2 was used to simulate the spectral downward longwave radiance, thermal
path radiance and spectral transmittance for each atmospheric profile and sensor view zenith angle.
During the simulation, the sensor view zenith angles were set from 0◦ to 60◦ with an interval of
15◦. We calculated the difference between surface temperature and the bottom layer temperature
of atmospheric profiles for each region using two-year AIRS standard L2 product. The surface
temperature was determined based on this difference. For example, the surface temperature of
mid-latitude is equal to the bottom layer temperature plus a range of [−10, 15] K with a step of
5 K. Eighty-four representative spectral emissivity spectra including vegetation, soil, snow/ice, water
selected from ASTER spectral library [38] and MODIS UCSB spectral library [39] and their combinations
were used to characterize the land-surface conditions. Since there was no spectral emissivity value for
wavelengths larger than 14 µm, the emissivity value was supposed to be the same as that at wavelength
14 µm in the following simulations. When the surface and atmospheric parameters were determined,
the VIIRS TOA channel radiances are calculated using the following simplified equation:

Li =

λ2∫
λ1

((ελB(Ts) + (1− ελ)L↓λ)τλ + L↑λ) fi(λ)dλ

λ2∫
λ1

fi(λ)dλ

(2)

where Li is the TOA radiance for channel M14, M15 and M16 of VIIRS; L↑λ and L↓λ are path thermal
radiance and spectral downward longwave radiance, respectively; fi(λ) is the spectral response
function for channels M14, M15 and M16; λ1 and λ2 are the spectral range of VIIRS TIR channel.
The flowchart of the hybrid method is displayed in Figure 2.
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3.2. Linear Model

A linear model with the following expression was developed using the generated samples in
Section 3.1:

LWUP = a0 + a1M14 + a2M15 + a3M16 (3)

where a0, a1, a2 and a3 are coefficients; and M14, M15 and M16 are TOA radiance for moderate
resolution bands 14, 15 and 16 of the VIIRS. The linear model is fitted for each sub-region and view
zenith angle.

3.3. The Multivariate Adaptive Regression Spline (MARS) Model

To probe the non-linear relationship between TOA spectral radiance and LWUP, we also use the
multivariate adaptive regression spline (MARS) to model the non-linear relationship between TOA
spectral radiance and LWUP with the same samples as those used by the linear model. MARS was
proposed by Jerome H. Friedman in 1991 [40]. MARS is a highly generalized and highly specialized
regression method for high-dimensional data. The regression method takes the tensor product of
spline functions as the basis functions, while the determination of the basis functions and their number
are automatically completed by the data without manual selection. In the multi-dimensional case, how
to divide the space has become a critical problem, but the MARS model can solve this problem well.
The MARS model is defined as follows:

f̂ (x) = a0 +
M
∑

m=1
amBm(x)

= a0 +
M
∑

m=1
am

km
∏

k=1
[Skm(xv(k,m) − tkm)]+

(4)

where Bm(x) is the mth basis function; a0 is coefficient; am is the coefficient of the mth basis function;
M is the number of the basis function; Km is the number of knots in the mth basis function; Skm is 1 or
−1, and indicates the spline function on the right or left side;v(k, m) labels the independent variables;
and tkm is a knot location. The basis function of MARS is a single spline function, or is the result of the
interaction of multiple spline functions. The spline functions on the right and left sides are defined as
follows:

[+(xv(k,m) − t)]q
+
=

{
(x− tkm)

q, x ≥ tkm
0, others

[−(xv(k,m) − t)]q
+
=

{
(tkm − x)q, x ≤ tkm

0, others

(5)
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where t is the position of the node; x− tkm and tkm − x are used to describe spline functions on the
right and left regions when t is given; q is the power (>0) to which the splines are raised; and “+” takes
0 for negative values.

MARS is built in two phases: the forward-basis function selection and backward-pruning process.
In the first stage, MARS begins with just the intercept term and iterations are conducted to add pairs
of basis functions, which can minimize the training error to the utmost extent. In order to avoid
overfitting, a backward-pruning process is needed. In the backward-pruning phase, the basis function,
which contributes the least to the reduction of training error, is deleted at a time. The model with the
lowest GCV (generalized cross-validation) is finally selected. The GCV, as an estimator for effective
mean residual error, can achieve a balance between goodness of fit and model complexity. The GCV is
calculated as follows:

GCV =

1
N

N
∑

i=1
(yi − f̂ (xi))

2

(1− enp
N )

2 (6)

where N is the number of samples in the training data; f̂ (xi) is the estimation of yi; and enp is the
effective number of parameters:

enp = k + c ∗ (k− 1)/2 (7)

where c is the penalty parameter; and k is the number of non-constant basis functions.
The training of MARS is based on the ARESLab package of the MATLAB platform, in which

the MARS is implemented according to Friedman’s original papers [40] and all parameters in the
ARESLab package are automatically determined. The source code of the ARESLab toolbox can be
downloaded from the following website: www.cs.rtu.lv/jekabsons/regression.html.

4. Results

4.1. Training Results of the Linear Model and MARS Model

The linear model can account for more than 97.7%, 98.5% and 99.1% of the variation of the LWUP
in the simulation database for the low-latitude, middle-latitude and high-latitude regions, respectively.
The bias is zero, and the RMSE ranges from 5.27 to 13.02 W/m2. The RMSE in the low-latitude region
is larger than that in the middle-latitude and high-latitude region. In addition, the RMSE for the larger
view zenith angle is greater than that with the smaller view zenith angle. Details about fitting the
results of the linear models can be found in Table 2.

The training results of the MARS model are also displayed in Table 2. The MARS model can
account for more than 98.2%, 98.7% and 99.2% of the variation in the simulation database for the
low-latitude, middle-latitude and high-latitude regions, respectively. The biases of all MARS models
are zero, and the RMSEs range from 8.53 to 10.13 W/m2, 6.64 to 8.24 W/m2, and 4.8 to 6.47 W/m2 for
the low-latitude, middle-latitude and high-latitude regions, respectively. The RMSEs of the MARS
models are slightly less than those of the linear models.

www.cs.rtu.lv/jekabsons/regression.html
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Table 2. Fitting results for the linear models and the Multivariate Adaptive Regression Spline
(MARS) models.

Low-Latitude Region

Linear Model MARS

Angle a0 a1 a2 a3 R2 Bias RMSE R2 Bias RMSE
0◦ 124.404 2.687 119.530 −93.350 0.989 0.00 8.82 0.990 0.00 8.53

15◦ 126.927 2.833 121.603 −95.997 0.988 0.00 8.97 0.993 0.00 8.54
30◦ 135.126 3.434 128.092 −104.459 0.988 0.00 9.13 0.989 0.00 8.71
45◦ 151.431 5.290 139.829 −120.664 0.985 0.00 10.46 0.986 0.00 9.03
60◦ 182.429 12.293 157.379 −149.538 0.977 0.00 13.02 0.982 0.00 10.13

Middle-Latitude Region

Linear Model MARS

Angle a0 a1 a2 a3 R2 Bias RMSE R2 Bias RMSE
0◦ 99.959 1.747 104.644 −73.428 0.993 0.00 6.94 0.993 0.00 6.64

15◦ 101.853 1.769 106.772 −75.933 0.992 0.00 7.04 0.993 0.00 6.84
30◦ 108.090 1.922 113.550 −84.018 0.992 0.00 7.39 0.992 0.00 7.18
45◦ 120.822 2.647 126.401 −99.870 0.990 0.00 8.11 0.991 0.00 7.88
60◦ 146.517 6.157 148.690 −129.866 0.985 0.00 9.79 0.987 0.00 8.24

High-Latitude Region

Linear Model MARS

Angle a0 a1 a2 a3 R2 Bias RMSE R2 Bias RMSE
0◦ 77.525 0.915 87.049 −50.963 0.995 0.00 5.27 0.996 0.00 4.8

15◦ 79.219 1.588 88.103 −52.734 0.995 0.00 5.16 0.996 0.00 4.85
30◦ 82.928 1.339 94.582 −59.759 0.995 0.00 5.41 0.996 0.00 5.11
45◦ 90.741 1.020 107.407 −73.892 0.994 0.00 5.91 0.994 0.00 5.80
60◦ 107.699 1.298 132.253 −102.344 0.991 0.00 6.95 0.992 0.00 6.47

4.2. Validation with Field Measurements

4.2.1. The Linear Model

The field measurements collected from the SURFRAD network were used to validate the linear
models developed. When the view zenith angle was not equal to 0◦, 15◦, 30◦, 45◦, 60◦, LWUP was
linearly interpolated from LWUPs predicted by the linear model with an adjacent view zenith angle.
View zenith angle exceeding 60◦ was not considered. The cloud-mask information was extracted from
the VIIRS Cloud Mask intermediate product. Clear sky was identified when 3 × 3 neighboring pixels
of the site are clear to ensure that the field measurements at the site were not affected by clouds and
cloud shadows. In total, 2901 validation samples were finally obtained.

Figure 3 shows the comparison between the estimated LWUP and the ground measurements.
We can find that the average bias and RMSE are −4.59 and 16.15 W/m2, respectively, at seven
SURFRAD sites. For further analysis, the validation samples were divided into two groups: daytime
and night time according to the local solar time. The bias ranged from−16.94 to 7.84 W/m2, and RMSE
ranges from 13.84 to 30.43 W/m2 in the daytime. The average bias and RMSE were −1.40 W/m2 and
21.57 W/m2. If Desert_Rock_NVt is not considered, the average bias and RMSE were −1.12 W/m2

and 21.71 W/m2. During the night time, the bias ranged from −20.48 W/m2 to 2.97 W/m2, and
RMSE ranged from 8.76 W/m2 to 21.22 W/m2. The average bias and RMSE were −8.3 W/m2 and
13.46 W/m2. If Desert_Rock_NVt is not considered, the average bias and RMSE were −5.33 W/m2

and 10.73 W/m2. The LWUP estimated at night was less divergent than that in the daytime.
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4.2.2. MARS Models

The LWUP estimated by MARS models was validated with the same ground measurements.
As shown in Figure 4, we can find that the average bias and RMSE were −5.23 and 16.38 W/m2.
The bias ranged from −16.15 to 8.15 W/m2, and RMSE ranged from 12.12 to 29.96 W/m2 in the
daytime. The average bias and RMSE were −1.27 W/m2 and 19.79 W/m2. If Desert_Rock_NVt is not
considered, the average bias and RMSE were −1.13 W/m2 and 21.64 W/m2. During the nighttime, the
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bias ranged from −20.46 W/m2 to 2.25 W/m2, and RMSE ranged from 8.66 W/m2 to 15.26 W/m2.
The average bias and RMSE were −8.93 W/m2 and 13.8 W/m2. If Desert_Rock_NVt is not considered,
the average bias and RMSE were −5.93 W/m2 and 11.03 W/m2. The distribution of the points in
Figure 4 is similar to that in Figure 3.

Regarding the satellite-derived surface radiative fluxes, an accuracy of approximately ±20 W/m2

for instantaneous footprint values is required by the hydrological, meteorological, and agricultural
research communities [41]. According to the validation results in this study, both the linear and MARS
models can meet this requirement. Overall, the linear models are slightly better than the MARS models,
although MARS can model the non-linearity between LWUP and TOA spectral radiance well during
the training stage. Two reasons may account for this phenomenon. First, the zenith angles of the
validation samples are all less than 40◦, and the differences between the linear models and the MARS
models are slight when the zenith angle is less than 45◦, as shown in Table 2. Second, various kinds of
satellite measurement errors are likely to be magnified by the non-linear model such as MARS. Due to
the higher computational efficiency of the linear models, it is more adaptable to produce operational
LWUP product.

A few studies have been devoted to estimating high spatial-resolution LWUP from MODIS and
VIIRS. For example, Wang et al. [7] developed the linear models for estimating North American
LWUP using MODIS data. The average bias and RMSE over SURFRAD site were −10.97 W/m2 and
18.35 W/m2. Jiao et al. [11] developed the neural network models for estimating LWUP from MODIS
and VIIRS data over the Tibet Plateau. The average bias and RMSE of the validation results for MODIS
were 11.24 W/m2 and 26.78 W/m2. The accuracy of LWUP from VIIRS was not validated. Cheng and
Liang developed the linear models for estimating LWUP from MODIS data at global scale. The bias
and RMSE of the validation over SURFRAD site were −4.49 W/m2 and 13.47 W/m2. Compared to
these studies, the accuracies of the newly developed hybrid method are comparable or superior to
those of the related published references.

Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 16 

 

average bias and RMSE were −1.27 W/m2 and 19.79 W/m2. If Desert_Rock_NVt is not considered, the 
average bias and RMSE were −1.13 W/m2 and 21.64 W/m2. During the nighttime, the bias ranged from 
−20.46 W/m2 to 2.25 W/m2, and RMSE ranged from 8.66 W/m2 to 15.26 W/m2. The average bias and 
RMSE were −8.93 W/m2 and 13.8 W/m2. If Desert_Rock_NVt is not considered, the average bias and 
RMSE were −5.93 W/m2 and 11.03 W/m2. The distribution of the points in Figure 4 is similar to that in 
Figure 3. 

Regarding the satellite-derived surface radiative fluxes, an accuracy of approximately ±20 W/m2 
for instantaneous footprint values is required by the hydrological, meteorological, and agricultural 
research communities [41]. According to the validation results in this study, both the linear and 
MARS models can meet this requirement. Overall, the linear models are slightly better than the 
MARS models, although MARS can model the non-linearity between LWUP and TOA spectral 
radiance well during the training stage. Two reasons may account for this phenomenon. First, the 
zenith angles of the validation samples are all less than 40°, and the differences between the linear 
models and the MARS models are slight when the zenith angle is less than 45°, as shown in Table 2. 
Second, various kinds of satellite measurement errors are likely to be magnified by the non-linear 
model such as MARS. Due to the higher computational efficiency of the linear models, it is more 
adaptable to produce operational LWUP product. 

A few studies have been devoted to estimating high spatial-resolution LWUP from MODIS and 
VIIRS. For example, Wang et al. [7] developed the linear models for estimating North American 
LWUP using MODIS data. The average bias and RMSE over SURFRAD site were −10.97 W/m2 and 
18.35 W/m2. Jiao et al. [11] developed the neural network models for estimating LWUP from MODIS 
and VIIRS data over the Tibet Plateau. The average bias and RMSE of the validation results for 
MODIS were 11.24 W/m2 and 26.78 W/m2. The accuracy of LWUP from VIIRS was not validated. 
Cheng and Liang developed the linear models for estimating LWUP from MODIS data at global scale. 
The bias and RMSE of the validation over SURFRAD site were −4.49 W/m2 and 13.47 W/m2. Compared 
to these studies, the accuracies of the newly developed hybrid method are comparable or superior to 
those of the related published references. 

Figure 4. Cont.



Remote Sens. 2018, 10, 253 11 of 17

Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 16 

 

Figure 4. Validation results of the MARS model at SURFRAD sites. (a) Bondville_IL. (b) Boulder_CO. 
(c) Desert_Rock_NV. (d) Fort_Peck_MT. (e) Goodwin_Creek_MS. (f) Penn_State_PA. (g) 
Sioux_Falls_SD. 

4.3. Comparison between Moderate Resolution Imaging Spectroradiometer (MODIS) and VIIRS Surface-
Upwelling Longwave Radiation (LWUP) 

Remote-sensing instruments such as MODIS and VIIRS are critical for providing continual and 
reliable measurements of the atmosphere, ocean and land-surface variables at the global scale. 
Furthermore, VIIRS is developed based on the heritage of MODIS instruments and has become a key 
bridge to ensure long-term continuity of the climate data records. LWUP estimated from VIIRS is 
compared with that retrieved from MODIS using the linear models of Cheng et al. [12] to check the 
consistency between the two instruments. The overpass time of the MODIS granule image is at 20:40 
(UTC), 17 August 2014 and the VIIRS granule image is acquired from 20:46 to 20:51 (UTC) on the 
same day. The time difference between the two images is less than 10 min. Therefore, it is supposed 
that there are no significant differences in atmospheric conditions and land-surface properties within 
the 10-min period. In addition, the corresponding MOD35 and VIIRS Cloud Mask intermediate 
products are used to eliminate the influence of clouds. The linear hybrid method proposed by Cheng 
et al. [12] is used to calculate the LWUP from MODIS data, which has been validated by three 
measurement networks with a bias and RMSE of −0.31 W/m2 and 19.92 W/m2 in total. 

The VIIRS image was aggregated to 1 km with bi-linear resampling method to match the spatial 
resolution of MODIS. The LWUP derived from both MODIS and VIIRS data were compared without 
considering the pixels that covered by invalid data or were contaminated by cloud. The spatial 
distributions of LWUP for MODIS and VIIRS are displayed in Figure 5, from which we can find that 
the LWUP distribution pattern of VIIRS is similar to that of the MODIS. In addition, the density plot 
of the LWUP is shown in Figure 6. Most of the LWUP values are concentrated between 400 and 800 
W/m2 with R2 of 0.88. The bias and RMSE are −0.15 W/m2 and 25.24 W/m2, respectively. Thus, the 
LWUP of VIIRS is consistent with that of MODIS. This result is consistent with the study of Jiao et 
al.[11]. They compared the LWUP retrieved from MODIS and VIIRS at Tibet Plateau. The R2, bias and 
RMES were 0.52 W/m2, 2.87 W/m2 and 26.02 W/m2, respectively.   

Figure 4. Validation results of the MARS model at SURFRAD sites. (a) Bondville_IL. (b) Boulder_CO.
(c) Desert_Rock_NV. (d) Fort_Peck_MT. (e) Goodwin_Creek_MS. (f) Penn_State_PA. (g) Sioux_Falls_SD.

4.3. Comparison between Moderate Resolution Imaging Spectroradiometer (MODIS) and VIIRS
Surface-Upwelling Longwave Radiation (LWUP)

Remote-sensing instruments such as MODIS and VIIRS are critical for providing continual
and reliable measurements of the atmosphere, ocean and land-surface variables at the global scale.
Furthermore, VIIRS is developed based on the heritage of MODIS instruments and has become a key
bridge to ensure long-term continuity of the climate data records. LWUP estimated from VIIRS is
compared with that retrieved from MODIS using the linear models of Cheng et al. [12] to check the
consistency between the two instruments. The overpass time of the MODIS granule image is at 20:40
(UTC), 17 August 2014 and the VIIRS granule image is acquired from 20:46 to 20:51 (UTC) on the same
day. The time difference between the two images is less than 10 min. Therefore, it is supposed that
there are no significant differences in atmospheric conditions and land-surface properties within the
10-min period. In addition, the corresponding MOD35 and VIIRS Cloud Mask intermediate products
are used to eliminate the influence of clouds. The linear hybrid method proposed by Cheng et al. [12]
is used to calculate the LWUP from MODIS data, which has been validated by three measurement
networks with a bias and RMSE of −0.31 W/m2 and 19.92 W/m2 in total.

The VIIRS image was aggregated to 1 km with bi-linear resampling method to match the spatial
resolution of MODIS. The LWUP derived from both MODIS and VIIRS data were compared without
considering the pixels that covered by invalid data or were contaminated by cloud. The spatial
distributions of LWUP for MODIS and VIIRS are displayed in Figure 5, from which we can find that the
LWUP distribution pattern of VIIRS is similar to that of the MODIS. In addition, the density plot of the
LWUP is shown in Figure 6. Most of the LWUP values are concentrated between 400 and 800 W/m2

with R2 of 0.88. The bias and RMSE are −0.15 W/m2 and 25.24 W/m2, respectively. Thus, the LWUP
of VIIRS is consistent with that of MODIS. This result is consistent with the study of Jiao et al. [11].
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They compared the LWUP retrieved from MODIS and VIIRS at Tibet Plateau. The R2, bias and RMES
were 0.52 W/m2, 2.87 W/m2 and 26.02 W/m2, respectively.Remote Sens. 2018, 10, x FOR PEER REVIEW  12 of 16 

 

 
Figure 5. Distribution of LWUPs derived from VIIRS and MODIS images. 

 
Figure 6. The scatterplot of retrieved LWUP from VIIRS and that retrieved from MODIS. 

5. Discussion 

5.1. Cloud Effect  

In Section 4, the established hybrid methods were validated by the field measurements. 
Generally, most of the estimated LWUPs were closer to the one-to-one line. The points were less 
divergent in the night time than in the daytime. This may be because that the land surface is more 
homogeneous in the night time than in the daytime [42]. Compared to other sites, obvious 
underestimation is found in the desert site. Wang and Liang [7] thought air traffic out of Los Angeles 

Figure 5. Distribution of LWUPs derived from VIIRS and MODIS images.

Remote Sens. 2018, 10, x FOR PEER REVIEW  12 of 16 

 

 
Figure 5. Distribution of LWUPs derived from VIIRS and MODIS images. 

 
Figure 6. The scatterplot of retrieved LWUP from VIIRS and that retrieved from MODIS. 

5. Discussion 

5.1. Cloud Effect  

In Section 4, the established hybrid methods were validated by the field measurements. 
Generally, most of the estimated LWUPs were closer to the one-to-one line. The points were less 
divergent in the night time than in the daytime. This may be because that the land surface is more 
homogeneous in the night time than in the daytime [42]. Compared to other sites, obvious 
underestimation is found in the desert site. Wang and Liang [7] thought air traffic out of Los Angeles 

Figure 6. The scatterplot of retrieved LWUP from VIIRS and that retrieved from MODIS.



Remote Sens. 2018, 10, 253 13 of 17

5. Discussion

5.1. Cloud Effect

In Section 4, the established hybrid methods were validated by the field measurements. Generally,
most of the estimated LWUPs were closer to the one-to-one line. The points were less divergent in the
night time than in the daytime. This may be because that the land surface is more homogeneous in the
night time than in the daytime [42]. Compared to other sites, obvious underestimation is found in the
desert site. Wang and Liang [7] thought air traffic out of Los Angeles produces many cirrus clouds
over this site, and cloud contamination may be a significant source of error at this site. Thus, one of the
reasons may be that the VIIRS Cloud Mask intermediate product cannot identify all kinds of cloud
types, especially the cirrus cloud.

In order to test this assumption, we downloaded three years (2014–2017) field measurements
from Atmospheric Radiation Measurement (ARM) program Southern Great Plains (SGP) site C1
(https://www.arm.gov). The downloaded data include the LWUP, cloud-base height and other
auxiliary data. The cloud-base height information is derived from the Micropulse Lidar (MPL). MPL is
a ground-based remote-sensing instrument that can be used to measure the altitude of clouds by
transmitting pulses of light and using the receiver to detect the light scattered back by clouds and
precipitation. From the time delay between each outgoing pulse and the backscattered signal, the
distance to the scatterer is inferred [43]. The VIIRS pixels are, first, identified by the VIIRS Cloud
Mask intermediate product, and then the extracted clear-sky pixels are further screened by the field
measurements. The pixels with more than one detected cloud base are considered as cloudy, while
those with no significant backscatter detected are regarded as true clear-sky pixels. The developed
liner models are used to retrieve LWUP. The validation results of LWUP at site C1 are displayed in
Figure 7. The bias and RMSE of cloudy pixels are −6.65 W/m2 and 16.04 W/m2, while bias and RMSE
of clear-sky pixels are −2.94 W/m2 and 15.62 W/m2. The VIIRS Cloud Mask intermediate product
actually cannot identify all kinds of cloud types, and undetected cloud will cause the underestimation
of LWUP.
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Figure 7. Validation results of the linear model at the Atmospheric Radiation Measurement (ARM)
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5.2. Broadband Emissivity (BBE) Effect

The obvious underestimation of LWUP at Desert_Rock_NV may also be related to BBE of the
surface. Taking the developed linear model for the mid-latitude region at nadir view as an example,
we investigated the effects of surface BBE on the accuracy of LWUP estimation. The bias and RMSE of
the fitting liner model at nadir are zero and 6.94 W/m2. We calculated the average bias and RMSE for
each emissivity spectrum as well as the corresponding BBE. The relationship between BBE versus bias

https://www.arm.gov
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is shown in Figure 8; 78% samples have a negative bias when their BBE is less than 0.966 and 88% BBE
has a positive bias when BBE is equal to or larger than 0.966. It is very likely to produce negative bias
at Desert_Rock_NV from the point of the developed linear models, because its BBE is less than 0.966.
We have also investigated the relationship between the fitting residual and land-surface temperature
(LST) with the same data, and no significant overestimated or underestimated trend is found. Thus,
cloud and surface BBE are two primary factors that affect the accuracy of the LWUP estimate.Remote Sens. 2018, 10, x FOR PEER REVIEW  14 of 16 
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6. Conclusions

LWUP is an important component of the land-surface radiation budget. We developed two hybrid
methods, namely, the linear model and MARS model, to estimate the 750-m instantaneous clear-sky
LWUP from the VIIRS TOA channel radiances of M14, M15, and M16 at the global scale.

To consider the difference between the land-surface temperature and air temperature, the global
land surface was divided into 3 regions based on latitude. Extensive radiative transfer modeling was
conducted to produce a huge amount of representative samples for each sub region. The linear models
and the MARS models were established at 0◦, 15◦, 30◦, 45◦ and 60◦ viewing zenith angles for each sub
region. According to the statistical results, the linear models can account for more than 97.7% of the
variation in the simulation database, the bias is zero, and the RMSEs range from 5.27 to 13.02 W/m2;
the MARS models can account for more than 98.2% of the variation in the simulation database, the bias
is zero, and the RMSEs range from 4.8 to 10.13 W/m2. Then, the two models were validated using three
years (2014–2017) of ground measurements collected from seven SURFRAD sites. The average bias and
RMSE of the linear models were −4.59 W/m2 and 16.15 W/m2, whereas the average bias and RMSE of
the MARS models were −5.23 W/m2 and 16.38 W/m2. The difference between the linear models and
the MARS models was not significant. The linear models have higher computational efficiency and are
easy to implement, so it is a good choice for producing the operational LWUP product. The LWUP
retrieved from VIIRS by the developed linear models was compared to that retrieved from MODIS by
the previous linear models developed. Their spatial distribution pattern agreed well with each other;
the bias and RMSE were −0.15 W/m2 and 25.24 W/m2.

This is the first time that the hybrid method has been applied to global estimates of clear-sky
LWUP from VIIRS data. Limited validation results indicate that the accuracy of the hybrid method
can meet the accuracy requirement of the hydrological, meteorological, and agricultural research
communities. The good performance of the developed hybrid method and consistency between VIIRS
LWUP and MODIS LWUP indicate that the hybrid method shows promise for producing a long-term
high spatial-resolution environmental data record (EDR) of LWUP. The field measurements used for
validation are collected from the SURFRAD network, which is located in the middle-latitude region.
More validation data from low-latitude and high-latitude regions with other land-cover types need to
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be collected for further validation in the future. Also, more extensive comparison should be conducted
before the generation of LWUP EDR using MODIS and VIIRS data.
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