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Abstract: Unmanned airborne vehicles (UAV) equipped with novel, miniaturized, 2D frame format
hyper- and multispectral cameras make it possible to conduct remote sensing measurements
cost-efficiently, with greater accuracy and detail. In the mapping process, the area of interest is
covered by multiple, overlapping, small-format 2D images, which provide redundant information
about the object. Radiometric correction of spectral image data is important for eliminating any
external disturbance from the captured data. Corrections should include sensor, atmosphere
and view/illumination geometry (bidirectional reflectance distribution function—BRDF) related
disturbances. An additional complication is that UAV remote sensing campaigns are often carried out
under difficult conditions, with varying illumination conditions and cloudiness. We have developed a
global optimization approach for the radiometric correction of UAV image blocks, a radiometric block
adjustment. The objective of this study was to implement and assess a combined adjustment approach,
including comprehensive consideration of weighting of various observations. An empirical study was
carried out using imagery captured using a hyperspectral 2D frame format camera of winter wheat
crops. The dataset included four separate flights captured during a 2.5 h time period under sunny
weather conditions. As outputs, we calculated orthophoto mosaics using the most nadir images and
sampled multiple-view hyperspectral spectra for vegetation sample points utilizing multiple images
in the dataset. The method provided an automated tool for radiometric correction, compensating for
efficiently radiometric disturbances in the images. The global homogeneity factor improved from
12–16% to 4–6% with the corrections, and a reduction in disturbances could be observed in the spectra
of the object points sampled from multiple overlapping images. Residuals in the grey and white
reflectance panels were less than 5% of the reflectance for most of the spectral bands.

Keywords: UAV; UAS; drone; hyperspectral; calibration; photogrammetry; radiometry; BRDF;
radiometric correction

1. Introduction

Unmanned Aerial Vehicles (UAVs, drones) equipped with miniaturized multi- and hyperspectral
imaging sensors offer completely new possibilities for carrying out close-range remote sensing
tasks [1]. Using these technologies, spectral remote sensing measurements can be made cost-efficiently,
with greater accuracy and detail than ever before. Several pushbroom hyperspectral imaging
sensors [2–6] and point spectrometers [7,8] have recently been implemented in UAVs. Hyperspectral
cameras based on the 2D frame format sensors have entered the market in recent years, offering
an interesting alternative for hyperspectral data capture [9–15]. Commercially available sensors and
products include for example the Rikola Hyperspectral Camera [16] and the Cubert UHD 185-Firefly [17].
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Multi-spectral cameras based on 2D format sensors are also being rapidly developed, such as the
Parrot Sequoia [18].

This study focuses on the radiometric calibration and correction of close-range 2D frame format
image datasets captured using drones. The approach in a drone remote sensing campaign is to capture
an image block with overlapping image strips and overlapping images within each strip while flying
over the area of interest, providing multiple overlapping views of each object point. The complete
image over the object is obtained by orthorectifying the images and combining them to a mosaic [19].
Using the 2D format images, 3D point clouds or the object 3D geometric model can also be created [20]
together with spectral data [13]. The images typically do not provide a uniform radiometric response
as a result of many disturbances in the imaging process [12,21–25]. In order to utilize the radiometric
information of hyper- and multispectral data in quantitative analysis, such as in the analysis of object
condition or a comparison of multi-temporal and multi-sensorial data acquisitions, the data has to
be radiometrically calibrated so that information from all individual images are at the same scale
and comparable.

Measuring reflectance in passive imaging is a complex process, one influenced by lighting
conditions, scattering processes in the atmosphere and the surrounding environment, adjacent objects,
and finally, the spectral, directional (typically anisotropic) reflectance characteristics of the object
itself and the topography of the object [23–25] (Figure 1). Under practical conditions, in airborne and
space-borne remote sensing applications, the direct reflected solar radiance (Lsu), reflected diffuse
(sky) radiance (Lsd) and the atmospheric path radiance (Lsp) are generally considered as the major
components of the at-sensor radiance entering the sensor (Ls_at_sensor), and they form the basis of
the conventional rigorous correction methods [23–25]. In the close-range imaging from UAVs and
terrestrial vehicles, the atmospheric path radiance (Lsp) has minor impact because of the short path
length. In the shadowed areas, Lsu is non-existent and other radiance components dominate. Further
components of Ls_at_sensor include the reflected background radiance (Lsbg), the multiple radiance
reflected first by the background objects and then by the atmosphere (Lsbg_mult) and the radiance from
adjacent objects. Comprehensive studies about impacts and significance of these factors under different
conditions in the case of UAV based close-range spectrometry are still missing, and this is important
topic for future studies.
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Figure 1. The at-sensor radiance (Ls_at_sensor) components in sunny conditions include the surface-
reflected direct solar radiance (Lsu), the reflected skylight (Lsd), the reflected background radiance (Lsbg),
the multiple radiance reflected first by the background objects and then by the atmosphere (Lsbg_mult),
the radiance scattered from adjacent objects (Lsadj) and the atmospheric path radiance (Lsp) [23,24].

Corrections for the atmospheric and illumination conditions are required in order to transform
image grey values (DN) to reflectance. In the classical physically based correction approach,
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a radiometrically-calibrated sensor is the prerequisite [23–25]. The fundamental calibration parameters
include the photon response nonuniformity correction (PRNU) to compensate for the vignetting effects
and the nonuniformity of the detector [4,13–15,23,24]; the sensor calibration parameters may also
include the absolute calibration model from DNs to physical units of radiance. For absolutely calibrated
sensors, the physically based atmospheric correction can be utilized; corrections for the path radiance,
impacts of the adjacent objects and irradiance levels can be estimated utilizing the atmospheric radiative
transfer codes, such as Modtran or 6S and the insitu observations of weather conditions [25–27].
Important challenges in the use of this approach in typical UAV operating scenarios include the missing
calibration and potential instability of the UAV sensors and the fact that UAVs are often operated at
low altitudes, where cloudy weather conditions are typical. Therefore, the empirical line method [28] is
highly relevant for UAV applications, because it replaces the need for modeling the atmospheric effects
and the illumination level via a simple linear transformation; furthermore, absolute radiance calibration
of the sensor is not required. As most natural objects display anisotropic reflectance characteristics [29],
further corrections are needed to compensate for these effects by utilizing a bidirectional reflectance
distribution function (BRDF) based correction. In steep environments, the topographic effects must
also be corrected [14,23–25]. In the final step, shadow correction is performed if necessary [30].

In recent studies, the radiometric correction of UAV imagery and spectrometry has mostly
emphasized the atmospheric correction using reflectance panels [6,12–15,31–37], atmospheric radiative
transfer modeling [2,4] or normalization of UAV based radiance observations using field based radiance
observations of a reference panel or irradiance [7,8,31]. Aasen et al. [13] and Yang et al. [15] calibrated
the Cubert UHD 185-Firefly hyperspectral imagery; they emphasized the sensor calibration and
performed reflectance calibration using single or multiple reflectance panels. To cope with varying
illumination conditions, methods based on continuous illumination monitoring are highly relevant;
in previous studies either ground based [7,31] or onboard-based solutions [8,31] have been used.
These studies have reported about challenges related to the irradiance sensor calibration and tilting
during the flights. Disturbances due to the object reflectance anisotropy have been corrected from
2D frame format images using statistical approaches, such as dodging [37,38], or using the model
based BRDF correction [12,32–36]. Jakob et al. [14] presented a processing toolbox for 2D frame
format images suitable for a mine exploration environment; the radiometric corrections included the
sensor corrections as well as the topographic correction that accounted for the influences of terrain
topography; the reflectance transformation was carried out using the empirical line method.

The previous studies have offered only partial solutions for the radiometric correction process,
by mostly considering the sensor calibration and the atmospheric correction. We have developed
a radiometric block adjustment-based approach to carry out radiometric correction and to provide
homogeneous reflectance data from 2D frame format hyperspectral drone image datasets [12,32].
The approach is to model the radiometric imaging process and its disturbances and then solve the
parameters of this model using least squares optimization utilizing the redundant observations;
all fundamental factors can be included in the single, combined adjustment task. The outputs of the
process are the radiometric model parameters, which are used to produce radiometrically corrected
image products, such as reflectance mosaics, reflectance point clouds or multi-view and -angular
reflectance observations of objects of interest. Similar approaches have previously been used with
aircraft images [39–42]. We have used the radiometric block adjustment method already in various
applications, including for agricultural and forest use [12,32–36]. In those studies, the weather included
different combinations of sunny, cloudy or variable conditions. The objective of this investigation
is to implement and investigate an extended, combined radiometric block adjustment method,
and specifically, to study in detail the weighting (or stochastic model) aspects when correcting UAV
image blocks captured in an agricultural environment. The method and an empirical study conducted
using a dataset captured over a winter wheat canopy are described in Section 2. The results of the study
are presented in Section 3 and discussed in Section 4. The results show that the method performed
consistently and clearly improved the homogeneity of the image blocks.
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2. Materials and Methods

2.1. Radiometric Block Adjustment of UAV Image Blocks

The radiometric block adjustment method used in this study was previously developed by
Honkavaara et al. [12,32]. In this study we extended the model to allow different solar elevations
(Equations (4), (6) and (10)) and we integrated the reflectance panel observations (Equation (8)) to the
combined model. In order to be able to combine various observations optimally in the calculation
process, it was necessary to develop the comprehensive stochastic model, i.e., weighting of different
observations (Equations (12)–(16)). In the following, we present the extended combined model and the
weighting scheme, and the practical implementation of the method.

2.1.1. Radiometric Model

The following formulation assumes that the sensor radiometric disturbances have been corrected
based on sensor calibration information. The current approach utilizes empirical line method for
the reflectance transformation. This approach was selected because there are many uncertainties
in physically-based reflectance retrieval, and the reflectance targets provide a simple approach for
reflectance transformation. The complete model for the image DN accounting for the variability of the
radiance measurement and the BRDF effects is given for image j and object k as follows:

DN jk = arelj
(aabsRk(θi, θr, ϕ)j + babs) + brelj

(1)

where Rk(θi, θr, ϕ)j is the reflectance factor for specific view/illumination geometry, θi is the incident
illumination zenith angle; θr is the reflection view zenith angle; ϕ = ϕr − ϕi is the relative azimuth
angle, where ϕr and ϕi are the azimuth angles of reflected and incident light, respectively; aabs and
babs are the linear parameters to transform reflectance to DN; arelj

and brelj
are the relative image-wise

gain and offset parameters; in this study we are using only the arelj
parameters. The definition for the

reflectance factor is the hemispherical directional reflectance factor (HDRF) [22].
Rk(θi, θr, ϕ)j can be presented using the vertical reflectance of the object at the specific solar

illumination angle, Rk(θit , 0, 0), and the anisotropy factor, ani f (θi, θr, ϕ)j. The anisotropy factor
is derived as the ratio of the modelled directional and vertical reflectance, ρmodel(θi, θr, ϕ)j and
ρmodel(θit , 0, 0), respectively [43]:

Rk(θi, θr, ϕ)j = Rk(θit , 0, 0)
ρmodel(θi, θr, ϕ)j

ρmodel(θit , 0, 0)
= Rk(θit , 0, 0)ani f (θi, θr, ϕ)j (2)

where θit is a selected sun illumination angle that appeared during the campaign. In our current
implementation, we use the simple empirical BRDF model developed by Walthall et al. [44] and Nilson
and Kusk [45]. Previously, the model was used by Beisl et al. [43,46] with 1D pushbroom and 2D
frame format images. The 3-parameter model, ρmodel(θr, ϕ), is feasible for data collected during a short
period of time (Equation (3)), but an extended version, ρmodel(θi, θr, ϕ), is used for cases with a varying
sun zenith angle (Equation (4)):

ρmodel(θr, ϕ) = bBRDF1 θ2
r + bBRDF2 θrcosϕ + bBRDF3 (3)

ρmodel(θi, θr, ϕ) = bBRDF1 θ2
i θ2

r + bBRDF2(θ
2
i + θ2

r ) + bBRDF3 θiθrcosϕ + bBRDF4 (4)

where bBRDFi , m = 1, . . . , 4, are the BRDF parameters. A hot-spot term can also be included [45],
but such an option is not used in this particular study. In the adjustment, the anisotropy factor is used,
which reduces the number of BRDF parameters for the 3-parameter model to 2. The anisotropy factors
for models 3 and 4, respectively, are given as follows:

ani f (θr, ϕ) = b′BRDF1 θ2
r + b′BRDF2 θrcosϕ + 1 (5)
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anif(θi, θr, ϕ) =
bBRDF1 θ2

i θ2
r + bBRDF2(θ

2
i + θ2

r ) + bBRDF3 θiθrcosϕ + bBRDF4

bBRDF2 θ2
i + bBRDF4

(6)

The complete error equation for a radiometric tie point is as follows:

vDN jk = arelj
aabsRk(θi, θr, ϕ)j + arelj

babs + brelj
− DNjk (7)

In addition to the radiometric tie points, other observations can also be included to the combined
adjustment. In the current implementation, we use radiometric control points (RCP) (reflectance
panels) to calculate the reflectance transformation. The error equation for RCP k with reflectance RRCPk

and reflectance observation RRCPobsk
is as follows:

vRCPk = RRCPk − RRCPobsk
(8)

In order to avoid instability of the calculation, the relative parameters and the BRDF parameters
(in the 4-parameter case; Equation (4)) are also treated as weighted observations. The error equation
for the relative image-wise gain parameter with an observation arel_obsj

is given as follows:

varelj
= arelj

− arel_obsj
(9)

Error equations for the BRDF parameters are formed for each m (m = 1, . . . , 4) parameter with
observation bBRDFobsm

:
vBRDFm = bBRDFm − bBRDFobsm

(10)

An optimal solution can be calculated using nonlinear weighted regression by minimizing the
weighted sum of residuals [47]:

x̂ = (ATWA)
−1

ATWy (11)

where x̂ is the vector of unknowns, W is the weight matrix i.e., the stochastic model (Section 2.1.2),
A is the design (Jacobian) matrix, including the derivatives of the functional model with respect to
unknowns, and y is the vector of observations.

The unknowns of the model can be summarized as follows:

• Absolute reflectance transformation parameters for the entire block: aabs, babs

• image-wise relative correction parameters for number-of-images—1 images (one of the images is
selected as the reference image): arelj

, brelj
;

• BRDF model parameters: bBRDFm , m = 1, . . . , number-of-parameters;
• nadir reflectance for each radiometric tie point k: Rk(θit , 0, 0).

Relevant parameters are selected for each adjustment task. For example, during overcast
conditions it is not necessary to use the BRDF model, whereas under stable conditions the relative
correction parameters are not usually necessary.

2.1.2. Weighting the Observations

The weighting of the observations, has considerable impact on the fitting process [47]. The rule
of employing weights is to adjust the impact of using observations with different relative accuracies.
For independent observations, the corresponding weights are considered based on a priori known
standard deviations. By employing this scheme, an observation with a larger standard deviation will
less contribute in the adjustment result. For independent observations, the weights are introduced to
the fitting process as the diagonal elements in the matrix W. One of the objectives of this investigation
is to study impacts of different weighting settings. The practical values used for the dataset in this
study are presented in Section 2.4.2.
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The weight of an image observation of a radiometric tie point (wDN) is based on the standard
deviation of the image observation (σDN) scaled by the image DN:

wDN =
σ0

2

(σDN DN)2 , (12)

where σ0 is the a priori standard deviation of unit weight. σDN is defined separately for each object
type and spectral band based on expected variations in the tie point windows. Based on our experience,
feasible σDN values are 0.05–0.10 for crops and 0.2–0.3 for forest; furthermore, variations are larger in
the sunny conditions than in overcast conditions due to the impacts of shadows, specular reflection
and other impacts.

The weight for the relative image-wise correction parameter (wa_rel) is based on the estimated
variation of the illumination conditions and the estimated quality of the a priori estimates (σa_rel):

wa_rel =
σ0

2

σa_rel
2 (13)

The weights for the RCPs (wRCP) are based on the estimated standard deviation of the reference
reflectance observations (σRCP):

wRCP =
σ0

2

σRCP
2 (14)

The weights for the BRDF parameters (wBRDF_m; m = 1, . . . , 4) are based on the estimated standard
deviations of the a priori values of parameters (σBRDF_m):

wBRDF_m =
σ0

2

σBRDF_m2 (15)

The a priori standard deviation of the unit weight is calculated for the desired object type
as follows:

σ0 = σDN(aabsRexpect + babs). (16)

where Rexpect is considered as the expected reflectance for selected object type, for example, the average
reflectance spectra of canopy under study. This setting impacts only to the a posteriori stochastic
model of the adjustment. When considering weight of an image DN (Equation (12)), it can be seen that
if the DN represents average object reflectance in the area, the corresponding radiometric tie point has
the unit weight (1.0).

2.1.3. Implementation

In a typical radiometric block adjustment task for mosaic generation, a uniform grid of radiometric
tie points is generated in the ground coordinate system utilizing the digital surface model (DSM) from
the area so that 20–100 tie points appear in each image. In order to take DNs from the images, the image
coordinates of the tie points are calculated in each image using the collinearity equation augmented
with the radial and tangential lens distortion parameters [19]. The visibility of the radiometric tie point
in each image is checked. For flat environments, such as agricultural fields, a simple projection of the
XYZ coordinates in images is sufficient; for complex environments, such as forest, the analysis of the
3D environment is often needed. If a point is visible in a certain image, then the observation equation
is formed; an average DN within an image window of suitable size is used as the radiometric tie point
observation. The image observations of the RCPs are obtained similarly; the reflectance reference is
based on a laboratory or in situ measurement of the targets with a spectrometer. Observations for
the relative parameters can be based on drone or terrestrial irradiance measurements [31], or else a
constant value (e.g., 1.0) can be used. The least squares method is then run to find the optimal values
for the unknowns. Each spectral band is processed separately. After solving the radiometric model
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parameters, the radiometric output products are calculated, such as hyperspectral orthophoto mosaics
or hyperspectral point clouds.

Inputs to the processing include the images corrected using the laboratory based radiometric
corrections, the image geometric model parameters (camera interior orientations and lens distortions
and exterior orientations of images), the 3D model of the object (a DSM or point cloud), the coordinates
of the reflectance panels and the reflectance spectra, information of the solar angles and the irradiance
information for each image if available. The user gives parameters of the processing, including the
radiometric model, radiometric tie point window size, distribution of the radiometric tie points, as well
as the a priori standard deviations of observations for the weighting purposes. All this information is
given in input files and afterwards the entire processing is carried out automatically. After adjustment,
the statistical analysis of the results can be carried out using statistical tools of the least squares
regression. The results are evaluated using different statistics, such as the values and the a posteriori
standard deviations of the parameters, and uniformity statistics.

The radiometric block adjustment has been developed as C++ software at the Finnish Geospatial
Research Institute (FGI). It is part of the complete UAV image data processing environment, including
image pre-processing tools, photogrammetric software for geometric processing and GIS software for
data analysis.

2.2. Agricultural Test Site

Dataset for the empirical study was captured in an agricultural test site in southern Finland, in the
city of Vihti (355466 E, 6701384 N; the ETRS-TM35FIN coordinate system); the site belongs to the
Natural Resources Institute Finland. The area of interest was approximately 20 ha and was covered
with winter wheat; the canopies were in a pre-heading stage thus the top layers were mainly formed
by leaves (Figure 2a).
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Figure 2. (a) An unmanned airborne vehicle (UAV) flight on 23 May 2014 (Photo by Lauri Markelin);
(b) map of the test area showing flights f1, f2, f3, f4, ground control points (GCP), vegetation samples
and reflectance panels.

For geo-referencing purposes, a total of 15 GCPs were targeted using circular targets with a 30 cm
diameter. They were measured using the virtual reference station real-time kinematic GPS (VRS-GPS)
method with accuracies (RMSE) of approximately 3 cm in the X and Y coordinates and 4 cm in the
Z coordinates [48]. Black, grey and white reflectance reference panels of a size of 1 m × 1 m and a
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nominal reflectance of 0.03, 0.09 and 0.50 [49] were deployed in the area. The targets were organized
into two groups for all targets (W1,G1,B1; W2,G2,B2) and four white targets were distributed to
different parts of the area (Wf1; Wf2; Wf3; Wf4) (Figure 2b). Altogether 21 vegetation samples were
used when evaluating the spectral quality; their measured dry biomass range was 0.9 to 266.5 g·m−2,
with an average and median of 126.4 g·m−2 and 122.0 g·m−2, respectively.

2.3. UAV Campaign

An octocopter UAV with a MikroKopter autopilot was used (Figure 2a). Its payload capacity was
1.5 kg, and the maximum flight time was 10 min. A tunable Fabry-Pérot Interferometer (FPI) based
hyperspectral camera was used for the image capture (the model 2012b owned by the FGI) [9–12].
The camera weighs about 700 g and has an image size of 1024 × 648 pixels, an 11 µm pixel size and
a focal length of 10.9 mm; the image field of view (FOV) is ±18◦ in the flight direction, ±27◦ in the
cross-flight direction and ±31◦ at the format corner. GPS and irradiance sensors were fixed to the
frame of the UAV and connected to the imager. The spectral range of the imager is 500–900 nm, and the
spectral channels can be selected flexibly for each application. In this study, 35 bands were captured
with a full width at half maximum (FWHM) of 24–32 nm (Table 1).

The UAV flight campaign was carried out on 23 May 2014. The area was covered with four
flights during a time period of 2.5 h (Table 2). The flying altitude was 100 m above ground level,
giving a ground sampling distance (GSD) of 10 cm. The number of images capture during each flight
was 100–200. The forward overlaps were 68–74% and the side overlaps were 51–60%. The resulting
view-zenith angles in the output mosaics were mostly less than ±15◦ but in some areas the view zenith
angles were up to ±25◦ (Figure 3a); it is expected that these large view angles will cause anisotropy
effects in the mosaics. The largest view zenith angles appeared between the flight lines; within the
flight lines the view zenith angles were mostly less than ±5◦.

Table 1. Spectral settings of the UAV hyperspectral camera.

Central wavelength L0 (nm)

507.60, 514.50, 517.50, 533.60, 537.40, 549.60, 554.40, 574.20, 579.30, 590.40,
594.70, 600.80, 605.70, 630.70, 638.20, 663.80, 670.10, 677.80, 683.70, 691.10,
698.40, 705.30, 711.10, 724.60, 731.30, 751.50, 757.90, 786.40, 794.00, 812.80,
819.70, 845.80, 852.30, 872.80, 879.90

FWHM (nm)
24.00, 20.00, 22.00, 24.00, 24.00, 24.00, 24.00, 24.00, 20.00, 22.00, 22.00, 32.00,
28.00, 32.00, 30.00, 32.00, 30.00, 28.00, 32.00, 32.00, 30.00, 28.00, 28.00, 30.00,
30.00, 28.00, 30.00, 30.00, 28.00, 30.00, 32.00, 30.00, 34.00, 32.00, 30.00

Table 2. Characteristics of the image blocks. SunZen: Sun zenith angle; SunAz: Sun azimuth angle;
FH: Flying height; GSD: Ground sample distance; p, q: Forward and side overlap, respectively.

Date, Flight Time (UTC + 3) Exposure (ms) SunZen (◦) SunAz (◦) FH (m) GSD (cm) Overlaps p, q (%)

Flight 1 (f1) 10:39–10:47 4 48.2 128.2 97.9 9.4 74, 60
Flight 2 (f2) 11:17–11:26 4 45 139.2 83.5 7.97 68, 51
Flight 3 (f3) 13:03–13:11 4 39.9 175.9 94.4 9.12 72, 60
Flight 4 (f4) 13:17–13:23 4 39.8 187.3 99.2 9.65 74, 60

An irradiance sensor based on the Intersil ISL29004 photodetector with a spectral sensitivity
range of 400–1000 nm was integrated into the camera to measure the irradiance during each exposure.
Since the sensor is not calibrated, relative, broadband irradiance intensity values can be obtained [31].
Consistent with our previous experience, the flight direction influenced the irradiance recording due to
the tilting of the irradiance sensor with respect to the sun’s illumination, because the tilt compensation
was not applied. This caused large variability in the irradiance recordings (Figure 3b). Some low
irradiance values appeared during flights f3 and f4 (indicated with arrows in Figure 3b), which were
due to the clouds blocking the sun’s illumination. Only a few images were captured in cloud shadow
during the experiments, which could be eliminated from the analysis process. In the following analysis
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flights f3 and f4 are combined because they were captured within 20 min time period; the combined
dataset is referred as f34. Medians of the irradiance observations were used as a priori irradiance levels
of the flights in the processing (shown as dashed lines in Figure 3b). The a priori value for the arel
parameter was calculated for each flight as the ratio of the median of the irradiances of each flight
j (irradmed_j) and the selected reference flight (irradre f )

arel j = irradmed_j/irradre f (17)
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Figure 3. (a) View zenith angle to each point of image mosaics; (b) onboard irradiance recordings for
each image during flights f1, f2, f3 and f4. The dashed lines are medians of irradiance recordings during
each flight.

2.4. Data Processing Chain

The entire processing chain for the FPI imagery has been developed in previous studies [12,32–35]
and it includes the following steps:

1. Applying radiometric laboratory calibration corrections to images;
2. Determining the orientation parameters of the images;
3. Using dense image matching to create a DSM;
4. Determining a radiometric imaging model;
5. Calculating the hyperspectral image mosaics.

In the following sections, the geometric (2–3) and radiometric (1, 4, 5) processing steps used in
this investigation are described.
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2.4.1. Geometric Processing

During the geometric processing phase, the orientations of selected three reference bands (bands 2,
13 and 24 in Table 1) were first determined using the Agisoft PhotoScan Professional commercial
software (AgiSoft LLC, St. Petersburg, Russia). All flights were processed separately. The outputs
of the process included the camera calibrations (Interior Orientation Parameters—IOP, including
the models for the lens distortions), the exterior orientations of each image (Exterior Orientation
Parameters—EOP) and the 3D object coordinates of the tie points; they were transformed to the
ETRS-TM35FIN coordinate system using the GCPs for the area. The dense DSM was calculated using
the PhotoScan software with a better than 10 cm point interval. Reprojection errors as a result of the
PhotoScan processing were approximately 0.5 pixels or less, which indicated good accuracy (Table 3).
Point densities in the dense point clouds were 107–157 points/m2. EOPs of the remaining 32 unaligned
bands were calculated automatically by matching to the reference bands using the in-house software;
this procedure provided subpixel accuracy in the band alignment [50].

Table 3. Results of geometric processing by the PhotoScan. N adj ima: number of images used in the
adjustment; N GCPs: number of GCPs; GSD: Ground Sample Distance; N pts/m2: number of points
in m2 in the dense digital surface model.

Flight number Number of Cubes N adj ima N GCPs GSD (cm) N pts/m2 Reprojection Error (pix)

Flight 1 128 426/384 5 9.4 113.177 0.419
Flight 2 166 498/498 6 7.97 157.322 0.377
Flight 3 139 414/414 7 9.12 120.24 0.39
Flight 4 204 612/611 7 9.65 107.389 0.435

2.4.2. Radiometric Processing

The sensor corrections included the correction for vignetting and other sensor nonuniformities,
which were determined in the laboratory and the dark current correction that was determined using a
black image taken before each flight [9].

The radiometric block adjustment method was used to calculate the radiometric imaging model.
Different parametrizations were used (the case numbers refer to Table 4):

1. Absolute calibration via the empirical line method for each of flights: f1, f2 and f34 (el3) and the
combined flight f34 (el1); cases 1, 5;

2. el3 or el1 and BRDF correction; cases 2, 6;
3. or el1 and BRDF and relative image-wise corrections (arel); cases 3, 7;
4. full model with absolute calibration and BRDF and arel corrections; cases 4, 8.

The above cases 2–4 included the radiometric block adjustment. In the cases 1–3, the empirical
line parameters were calculated using panels measured in a single image. In the case 4, the absolute
calibration parameters were treated as unknowns and solved in the adjustment; the panels were
measured in all images where the view zenith angle to the panel was smaller than 10◦. The calculations
were performed for the full dataset (flights f1, f2, f34) and for the dataset consisting of flight f34. In the
former dataset, the full four-parameter BRDF model (Equation (4)) was used, whereas for the latter
dataset only the three parameter model was used (Equation (3)).

A uniform grid of tie points was generated in the area with a 15 m point interval; this provided
approximately 25 radiometric tie points for each image. In most cases, the DN observation of the
radiometric tie point was calculated using an image area of 30 × 30 pixels (3 m × 3 m at object), but tie
point areas of 10 × 10 pixels (1 m × 1 m) and 2 × 2 pixels (0.20 m × 0.20 m) were also evaluated.
The image observations for RCPs were calculated as the average for an object area with a size of
0.20 m × 0.20 m.

The impacts of the observation weighting and other settings were studied empirically using
green (L0 = 549.6 nm), red (L0 = 663.8 nm) and NIR (L0 = 794.0 nm) bands. The tested settings
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are based on considerations of feasible values and experience gained in our earlier studies and the
present dataset (Table 5). The σa_rel values were 0.05, 0.10 and 0.20, indicating expected precision of
approximately 5%, 10% and 20% of the a priori parameter values. For σDN , values of 0.05 and 0.10 were
used, indicating a 5% and 10% variation within the window, which is feasible for homogeneous crop
canopies. Two different a priori values were used for the BRDF parameters. The major analyses were
made using σBRDF_m (m = 1, . . . , 4) of 20, 50 or 100% of the a priori values, and also another weighting
approach was used; BRDF observations were included to the adjustment for the first time and they
were investigated in this study. The σRCP values were 0.01 and 0.001 in reflectance units. To calculate
σ0 (Equation (16)), the expected reflectance was set to 0.05 in the red and green wavelengths and 0.30 in
the NIR range. The a priori values for the arel were calculated based on the medians of the irradiance
recordings by the Intersil radiometer during the flights (Equation (17)) or a constant value of 1.0 were
used. A priori values for the aabs and babs were calculated using the empirical line method and the
a priori values for the reflectance unknowns were calculated by scaling the average DNs of each tie
point with the a priori values of the reflectance transformation.

Table 4. Parameter settings, number of parameters and number of observations used in calculations
for different adjustment models. The cases 1–4 were calculated using the full blocks with all four
flights and the cases 5–8 were calculated with the flight f34. arel : Number of relative image-wise
correction unknowns; Bidirectional Reflectance Distribution Function (BRDF): number of BRDF
unknowns; aabs, babs: number of reflectance calibration unknowns; EL: number of empirical line
unknows; RTP: number of radiometric tie points; RTP-obs: number of radiometric tie point DN
observations; RCP: number of reflectance panels.

Case arel BRDF aabs, babs EL RTP RTP-obs RCP

(1) full, el3 - - - 3 × 2 - - -
(2) full, brdf, el3 - 4 - 3 × 2 1426 10,303 -
(3) full, arel , brdf, el3 451 4 - 3 × 2 1426 10,303 -
(4) full, arel , brdf, abs 451 4 2 - 1426 10,303 8
(5) f34, el1 - - - 2 - - -
(6) f34, brdf, el1 - 2 - 2 816 5252 -
(7) f34, arel , brdf, el1 212 2 - 2 816 5252 -
(8) f34, arel , brdf, abs 212 2 2 - 816 5252 4

Table 5. A priori values and standard deviations for the observations used in the calculations. arel :
relative image-wise correction parameters; Irrad.: median irradiance observation; σa_rel : standard
deviations of arel ; bBRDF_m: a priori values of the BRDF parameters; σBRDF_m: standard deviations of
the BRDF parameters 1, . . . , 4; p4_1: p4 settings for bands 1–23; p4_2: p4 settings for bands 24–35;
σRCP: standard deviation of radiometric control point; σDN : standard deviation of image observations.

Case a Priori arel σa_rel
bBRDF_m

m: 1; 2; 3; 4_1/4_2
σBRDF_m

m: 1; 2; 3; 4_1/4_2 σRCP σDN

r10i,b50,g001 Irrad. 0.10 0; 0; 0; 0.1/0.2 0.25; 0.25; 0.25; 0.05/0.1 0.001 0.05
r10i,b20,g001 Irrad. 0.10 0; 0; 0; 0.1/0.2 0.10; 0.10; 0.10; 0.02/0.04 0.001 0.05

r10i,b100,g001 Irrad. 0.10 0; 0; 0; 0.1/0.2 0.50; 0.50; 0.50; 0.1/0.2 0.001 0.05
r05i,b50,g001 Irrad. 0.05 0; 0; 0; 0.1/0.2 0.25; 0.25; 0.25; 0.05/0.1 0.001 0.05
r10i,b_c,g001 Irrad. 0.10 0; 0; 0; 0.05/0.4 0.10; 0.10; 0.10; 0.025/0.05 0.001 0.05
r20i,b50,g001 Irrad. 0.20 0; 0; 0; 0.1/0.2 0.25; 0.25; 0.25; 0.05/0.1 0.001 0.05
r10i,b50,g01 Irrad. 0.10 0; 0; 0; 0.1/0.2 0.25; 0.25; 0.25; 0.05/0.1 0.01 0.05

r10i,b50,g001,dn10 Irrad. 0.10 0; 0; 0; 0.1/0.2 0.25; 0.25; 0.25; 0.05/0.1 0.001 0.10
r10c,b50,g001 1.0 0.10 0; 0; 0; 0.1/0.2 0.25; 0.25; 0.25; 0.05/0.1 0.001 0.05
r20c,b50,g001 1.0 0.20 0; 0; 0; 0.1/0.2 0.25; 0.25; 0.25; 0.05/0.1 0.001 0.05

2.4.3. Mosaic and Point Cloud Calculations

Image mosaics were calculated using a GSD of 20 cm. For the mosaic calculation, the image
pixel value was taken from the image where the ground points appeared in the most nadir geometry.
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We also sampled multi-view observations for the vegetation samples. Various radiometric processing
options, depicted in Section 2.4.2, were used for these calculations.

2.5. Performance Assessment

The performance assessment of the radiometric block adjustment included an evaluation of the
internal quality and the external accuracy.

After the radiometric adjustment the quality of the calculated parameters were assessed
by considering the validity of the parameters and evaluating the estimated standard deviations.
Additionally, the mosaics were considered visually. The internal uniformity of the dataset was
evaluated quantitatively using a coefficient of variation (CV) over the entire block area:

CVk = 100σtiek /avetiek (18)

where avetiek and σtiek are the average and standard deviation of DNs respectively and CVk is the CV,
for tie point k, calculated on the overlapping images. The average CV of all radiometric tie points was
used as metrics.

In the external evaluation, the reflectance spectra of the reference panels were used to consider the
quality of the corrected image mosaics. Likewise, the reflectance spectra of the 21 vegetation samples
were used to assess the quality of the mosaics and the consistency of the multi-view observations.

3. Results

3.1. Studies of the Radiometric Model Parameters

We calculated radiometric block adjustments with different settings for selected bands in the
green, red and NIR regions. We first studied impacts of weighting and adjustment settings on the
BRDF corrections, relative image-wise corrections (arel) and the absolute calibration parameters using
the values presented in Table 5. After that we studied different radiometric models using the models
presented in Table 4. In most cases we assessed the results by considering the parameter values;
the setting did not have impact if it did not change the parameter values. To assess the impact of
calibration model we considered the image mosaics. We also studied the CV-statistics in all cases.
The full dataset and the flight f34 dataset gave consistent results thus in most cases only results of full
dataset are presented.

3.1.1. Impact of Different Weighting, a Priori Values and Parameters

Impacts of different parameters on the estimated BRDF parameters and their standard deviations
are shown in Figure 4. In Figure 4a,b, the adjustment settings are given in the x-axis and they are
defined in detail in Table 5. The y-axis provides the parameter values and standard deviations.

All BRDF parameters behaved similarly and therefore only results of parameter bBRDF1

(Equation (4)) are presented. The BRDF parameters were highly stable with respect to different settings,
including different weighting of arel parameters, BRDF parameters, DNs, and the size of radiometric tie
point window (Figure 4a). The a priori values of BRDF parameters had a large effect on the estimated
values of the BRDF parameters (Figure 4a; case: r10i, b50, g001 vs. r10i, b_c, g001), but both sets of
BRDF parameters provided similar anisotropy values in the solar principal plane (Figure 4c), thus the
differences did not impact on the radiometric correction in practice. Secondly, decreasing weights of
the RCPs greatly impacted the BRDF parameters of the green band (Figure 4a, case: r10i, b50, g01);
this setting also reduced the estimated anisotropy (Figure 4d) and thus impacted also the mosaic quality.

Weighting settings of the BRDF parameters impacted significantly to the a posteriori standard
deviations of the BRDF parameters (Figure 4b, cases with b100, b50 and b20). The lower the weights of
the BRDF parameters were (i.e., the larger the a priori standard deviation), the larger the a posteriori
standard deviations. Furthermore, deceasing size of the tie point windows increased the standard
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deviations of BRDF parameters (for example, case: r10i, b50, g001, w2). Increasing the DN a priori
standard deviation decreased the standard deviations of BRDF parameters (case: r10i, b50, g001, dn10).
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Figure 4. Impact of adjustment settings on the BRDF parameters and anisotropy factors for green
(L0 = 549.6 nm), red (L0 = 663.8 nm) and NIR (L0 = 794.0 nm) bands. (a) Values of the BRDF parameter
bBRDF_1 with different settings and (b) a posteriori standard deviations of bBRDF_1; (c) Anisotropy
factors in the solar principal plane for green band resulting from different initial values of the BRDF
parameters; (d) anisotropy factors in the solar principal plane obtained using low and high a priori
standard deviations for RCPs. Weighting and a priori value settings: r05i, r10i, r20i: σa_rel = 0.05,
0.1 and 0.2, respectively, a priori values: Intersil irradiance; r10c, r20c: σa_rel : 0.1 and 0.2, respectively,
a priori values: 1.0; b100, b50, b20: σBRDF 100%, 50% and 20% of a priori values; b_c: Second BRDF
setting; g001, g01: σRCP = 0.001 and 0.01, respectively; dn10: σDN = 0.10, in other cases σDN = 0.05;
w2, w10, w30: tie point window size 2 × 2, 10 × 10 and 30 × 30 pixels, respectively (if not marked,
30 × 30 pixels).

Results of the evaluation of the arel parameters are presented in Figure 5.
Weighting of the arel parameters had significant impact on their adjusted values; the larger the

σa_rel , the more the arel parameters changed in the adjustment (Figure 5a, for example, cases: r05i,
b50, g001 vs. r20i, b50, g001). The a priori values of the arel parameters were either based on the
median values of the irradiance measurements (Equation (17)) or else we used a constant value of
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1.0 (e.g., cases: r20i, b50, g001 and r20c, b50, g001). The results indicated that in areas f1 and f2,
the different a priori values provided similar results; this was due to the small differences in the a priori
values in these two cases. The differences were larger in areas f3 and f4, where the arel parameters
based on the irradiance data were 15–20% larger than the constant value of 1.0. The a priori standard
deviations of the arel parameters impacted significantly to the a posteriori standard deviations in most
cases (Figure 5b).
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Figure 5. Impact of the adjustment settings on arel parameters and their standard deviations for all
images. Green band with L0 = 549.6 nm. (a) Impacts of varying weighting and the initial values of
the arel on the adjusted values of arel and (b) on their a posteriori standard deviations; (c) impacts
of varying weighting of RCPs and DNs on the arel parameters and (d) on their a posteriori standard
deviations; (e) impact of the varying size of the tie points’ image window size on the adjusted values of
arel and (f) on their a posteriori standard deviations. Weighting and a priori value settings: r05i, r10i,
r20i: σa_rel = 0.05, 0.1 and 0.2, respectively, a priori values: Intersil irradiance; r10c, r20c: σa_rel : 0.1 and
0.2, respectively, a priori values: 1.0; b100, b50, b20: σBRDF 100%, 50% and 20% of a priori values; g001,
g01: σRCP = 0.001 and 0.01, respectively; dn10: σDN = 0.10, in other cases σDN = 0.05; w2, w10, w30:
tie point window size 2 × 2, 10 × 10 and 30 × 30 pixels, respectively (if not marked, 30 × 30 pixels).
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The adjustment of the arel parameter was smaller when σDN was larger, which was consistent
with our expectations, since the adjustment allowed for larger residuals for the radiometric tie points;
the larger σDN resulted in lower a posteriori deviation of arel parameters (Figure 5c,d, case: r10i, b50,
g001, dnsd10). Decreasing weighting of RCPs had minor impact on the arel parameters (Figure 5c, case:
r10i, b50, g01).

Deceasing size of the tie point window caused some deviations on the estimated the arel
parameters, but their average levels were similar to the cases with the largess tie point window
size (Figure 5e, case: r10i, b50, g001, w2). The decreasing tie point window size also increased the a
posteriori standard deviations of arel parameters (Figure 5f). These impacts were caused by the noise in
the radiometric tie point windows that was compensated for when using averages of larger windows
as radiometric tie point observations.

The absolute calibration parameters were stable throughout most of the calculations; the results of
aabs are given in Figure 6 as an example. Differences were mostly less than 5%. The largest difference
appeared in the green band when using lower weights for the RCPs (case: r10i, b50, g01). The largest
impacts in the standard deviations of the parameters could be observed when decreasing weights of
RCPs and decreasing the tie point window size (cases: r10i, b50, g01; r10i, b50, g001, w2).
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Figure 6. Impact of different adjustment settings on (a) aabs parameters and (b) a posteriori standard
deviation of aabs for green (L0 = 549.6 nm), red (L0 = 663.8 nm) and NIR (L0 = 794.0 nm) bands.
Weighting and a priori value settings: r05i, r10i, r20i: σa_rel = 0.05, 0.1 and 0.2, respectively, a priori
values: Intersil irradiance; r10c, r20c: σa_rel : 0.1 and 0.2, respectively, a priori values: 1.0; b100, b50,
b20: σBRDF 100%, 50% and 20% of a priori values; g001, g01: σRCP = 0.001 and 0.01, respectively;
dn10: σDN = 0.10, in other cases σDN = 0.05; w2, w10, w30: tie point window size 2 × 2, 10 × 10 and
30 × 30 pixels, respectively (if not marked, 30 × 30 pixels).
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3.1.2. Impact of the Calibration Model

We studied the impact of calibration model according to the plan shown in Table 4. First, we only
calculated the absolute calibration for each flight using the empirical line method by measuring the
panels using single image in each block. Then, we calculated the radiometric block adjustment by
adding the BRDF, arel and absolute parameters sequentially. When the absolute parameters were
included, the panels were measured in all images where the view angle to the panel was less than 10◦.
Standard deviations for the parameters were as follows: σa_rel = 0.05; σDN = 0.05; σBRDF 50% of the a
priori value; σRCP = 0.001; this model corresponds the model r05i, b50, g001, (w30) in Figures 4–6.

We conducted visual assessments to obtain a rough impression of the results. When we only
performed the reflectance calibration using the empirical line method, the individual flight lines were
clearly visible in the mosaics due to the BRDF effects (Figures 7a and 8a). Adding the BRDF parameters
improved the homogeneity significantly (Figures 7b and 8b). The impact of the relative parameters can
be seen in particular in the beginning of flight f3 (in the center of the block), where the impacts of a cloud
shadow is compensated for (Figure 7c). For flight f34, adding the absolute parameters caused some
nonuniformity in the mosaic in the upper part of the area (Figure 8c); this effect did not appear in the
full block, however. The likely reason for this effect is that the weighting settings favored minimization
of RCP residuals for the f34-case whereas in the full block calculation the radiometric tie point residuals
had larger impact. This indicates that careful selection of weighting settings are of importance.
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empirical line method; (b) reflectance transformation using empirical line method and BRDF-

Figure 7. Color infrared mosaics of the entire flight area with green (L0 = 549.6 nm), red (L0 = 663.8 nm)
and NIR (L0 = 794.0 nm) bands. Radiometric model: (a) Reflectance transformation using empirical line
method; (b) reflectance transformation using empirical line method and BRDF-correction, and (c) full
radiometric block adjustment with absolute calibration and relative image-wise corrections and
BRDF correction.
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Figure 8. Color infrared mosaics of the area of flights f34 with green (L0 = 549.6 nm), red (L0 = 663.8 nm)
and NIR (L0 = 794.0 nm) bands. Radiometric model: (a) Reflectance transformation using empirical line
method; (b) reflectance transformation using empirical line method and BRDF-correction, and (c) full
radiometric block adjustment with absolute calibration and relative image-wise corrections and
BRDF correction.
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3.1.3. Coefficient of Variation Statistics

Figure 9 shows CVs in the radiometric tie points for the selected green, red and NIR bands.
The CVs were highly uniform in most cases. The CVs were on the level of 4%, 5% and 6% for the NIR,
green and red bands, respectively. In the poorest cases, the CVs were on the level of 14% for the green
and red bands and 11% for the NIR band. When taking into account the different weighting of the
parameters, the largest impact could be observed in the green band for cases where we decreased
the weighting of the RCPs (case: r10i, b50, g01); the CV was approximately 3%. However, it can
be considered that the result was not accurate, because the calculated parameters had non-realistic
values and the reflectance values in the mosaic of the green band were too high, for example, the black
panel reflectance was 0.082 while the reference value is 0.029 (measurement was performed directly
on mosaics). The size of the radiometric tie point window had a large impact on the CV. When using
a 20 cm × 20 cm window, the CV was quite poor (case: r05i, b50, abs, w2); increasing the window
size to 1 m × 1 m (case: r05i, b50, abs, w10) improved the CV close to the level for a window of
3 m × 3 m (case: r05i, b50, abs, w30). However, the large CVs were due to the DN variability within
the tie point windows, not due to the non-uniformity of the block; when using large windows the
averaging compensated for the DN deviations due to the texture and resulted in better uniformity
results. The adjustment model also greatly impacted the CV. When the BRDF parameters were not
included in the calculations, the CVs were approximately 100% larger than with the BRDF correction
(case: el3 vs. el3, b50); adding arel parameters improved homogeneity by up to 20% (case: el3, r05i, b50).
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Figure 9. Mosaic homogeneity evaluation using coefficient-of-variation (CV) of radiometric tie points
after adjustment for bands green (L0 = 549.6 nm), red (L0 = 663.8 nm) and NIR (L0 = 794.0 nm).
Weighting and a priori value settings: r05i, r10i, r20i: σa_rel = 0.05, 0.1 and 0.2, respectively, a priori
values: Intersil irradiance; r10c, r20c: σa_rel : 0.1 and 0.2, respectively, a priori values: 1.0; b100, b50,
b20: σBRDF 100%, 50% and 20% of a priori values; g001, g01: σRCP = 0.001 and 0.01, respectively;
dn10: σDN = 0.10, in other cases σDN = 0.05; w2, w10, w30: tie point window size 2 × 2, 10 × 10 and
30 × 30 pixels, respectively (if not marked, 30 × 30 pixels). el3: Empirical line model for flights f1, f2
and f34; el1: Empirical line model for flight f2.

3.1.4. Selected Adjustment Model

Based on the previous evaluations, we concluded that the global adjustment model with absolute
calibration, and BRDF and arel corrections provided the best results and we used it as the basis for the
following analyses. In addition, we evaluated all the cases presented in Table 4.

For the RCPs, we used a 3 m× 3 m window size, because the results showed that the deviations of
the parameters were lower when larger window size was used. We selected relatively small σa_rel value
of 0.05 in order to not permit too large drifting of the arel parameters. The selected σDN value of 0.05 is
realistic for crops and gives enough weight to the DN observations in order to enable calculation of
the BRDF and arel parameters. We used small σRCP value of 0.001 to obtain high weights for the RCPs
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in order to constrain the block tightly to the RCPs. σBRDF_m of 50% of the a priori values was used
because we did not have accurate estimates for the BRDF parameters.

3.2. Radiometric Adjustment of All Bands

The following sections present the results of all bands with the selected adjustment model
(Section 3.1.4).

3.2.1. Reflectance Transformation Parameters

We calculated the reflectance transformation parameters (aabs, babs) using the empirical line
method for each flight and band together with three reference panels and also using the simultaneous
radiometric block adjustment (Figure 10). Parameters that were calculated using different datasets
and techniques followed similar trends but small differences appeared. Differences between bands
were caused by the sensor characteristics and the atmospheric and background conditions. Differences
between different flights were mainly due to changes in the illumination during the day. The increasing
level of illumination can be seen in the gain factor (aabs) (Figure 10a). However, flight f3 had the lowest
level of illumination due to cloudiness in the image used in the calibration, which resulted in the
lowest values for the aabs parameter. The impact of the high reflectance on the background vegetation
in the NIR range was visible in the offset factor (babs) (Figure 10c). The standard deviations of the
parameters based on the radiometric block adjustment had smooth behaviour and indicated good
accuracy of the parameters; the standard deviations based on the empirical line method had much
larger variations (Figure 10b,d).
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Figure 10. The empirical line parameters and their a posteriori standard deviations for all bands:
(a) aabs (a_abs) and (b) a posteriori standard deviation; (c) babs (b_abs) and (d) a posteriori standard
deviation. el-f1 to el-f4: parameters by empirical line method using three targets for flights f1, f2, f3
and f4; ba-full: radiometric block adjustment with full dataset; ba-f34: radiometric block adjustment
using flight f34.
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3.2.2. Relative Parameters

Figure 11 shows the relative parameters (arel) for each image in green (L0 = 549.6 nm),
red (L0 = 663.8 nm) and NIR (L0 = 794.0 nm) bands. Deviations from the a priori parameters were up
to 20%. The corrections were quite similar for the green and the NIR bands; the largest corrections
appeared with the red band. A posterior standard deviations were approximately 0.01, 0.015 and
0.02 for NIR, green and red bands, respectively. Larger values appeared in the ends of the flight lines,
which was due to the lower number of radiometric tie points in those images.
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Figure 11. (a) Estimated arel parameters and (b) their a posteriori standard deviations for green
(L0 = 549.6 nm), red (L0 = 663.8 nm) and NIR (L0 = 794.0 nm) bands.

3.2.3. BRDF Correction

All HDRF observations of flights f34 were plotted as a function of the solar zenith and azimuth
angles (Figure 12a,d). The plots were quite noisy because observations were not filtered. The modeled
anisotropy (Equation (5); Figure 12b,e) followed the expected behavior [51]. The sensor is viewing the
well-illuminated side of the canopies in the backward direction, which results in a higher reflectance,
whereas in the forward scattering direction, the shadowed side of the canopies is viewed, which results
in a lower reflectance. This behavior was highlighted in the red band due to the absorption of
radiance by chlorophyll which caused strong reduction of reflectance in the forward scattering direction
(Figure 12b). In the NIR band the anisotropy plot was bowl shaped and the anisotropy factor increased
as the function of the view zenith angle, because the shadow effects were weaker due to lower
absorption of radiance by chlorophyll (Figure 12e). The BRDF correction reduced the anisotropy effects
(Figure 12c,f).

Figure 13 shows the estimated BRDF parameters and standard deviations of all bands for the
full dataset and for the f34 dataset. The parameters of the neighboring bands correlated while the
greatest difference appeared between the visible and NIR spectral ranges, which we had expected [51].
Some differences also appeared between the neighboring bands, which can partially be attributed
to uncertainties in the sensor calibration and band quality. The a posteriori standard deviations of
parameters were quite high in the four-parameter model (Figure 13b); this is due to fact that we
considered these parameters unknown and therefore used large a priori standard deviation values.
In the three-parameter model, the standard deviations were at low level (Figure 13d). Considering the
reflectance values calculated using the estimated parameters in the four-parameter case, we could see
that they were not correct. For example, in the NIR-band (L0 = 794.0 nm) the resulting nadir reflectance
was 0.09, which was significantly lower than the expected value on the level of 0.3. This indicates
that the absolute values of the parameters were not accurate; however, as the results have shown,
the relative anisotropy factors were consistent.



Remote Sens. 2018, 10, 256 20 of 29

We calculated anisotropy factors at the solar principal plane using the BRDF model equations for
the full dataset and the sub-dataset consisting of flights f34 (Figure 14). The visual bands had quite
similar anisotropy factors, whereas anisotropy of the NIR bands was different. The anisotropy plots
are consistent with the HDRF plots in Figure 12. The anisotropy for the full dataset and the flight f34
were similar indicating that the adjustment process was consistent.
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Figure 12. Hemispherical directional reflectance factor (HDRF) plots created using the flight f34 data.
(a) Raw HDRF observations; (b) anisotropy model and (c) BRDF corrected reflectance factors of green
band; (d) Raw HDRF observations; (e) anisotropy model and (f) BRDF corrected reflectance factors of
NIR band. In (b,e) the model is based on block adjustment.
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Figure 13. (a) BRDF parameters and (b) their standard deviations in the 4-parameter case for the full
data; (c) BRDF parameters and (d) their standard deviations in the 2-parameter case for the flight f34.
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Figure 14. Anisotropy factors for green (L0 = 549.6 nm), red (L0 = 663.8 nm) and NIR (L0 = 794.0 nm)
bands in the solar principal plane for (a) the full dataset and (b) flight f34 with sun zenith angle of 39.8◦.

3.3. Performance Assessment

3.3.1. Uniformity of the Image Block

The different settings impacted on the homogeneity of the mosaics (Figures 7 and 8) and the
CVs (Figure 15). The CVs in the radiometric tie points were mostly 0.10–0.16 when not using the
radiometric block adjustment. Adding the BRDF parameters improved the results to the level of
0.06–0.08. We achieved the best CVs at the level of 0.04–0.06 with the full radiometric model including
the BRDF, arel , aabs and babs. In the cases when not using the BRDF correction, the CVs of the flight f34
were lower than of the full dataset (Figure 15, case: nocorr); when the BRDF correction was used the
CVs were in the same level for the both scenarios. The logical explanation for this behavior is that the
variation was larger during the 2.5 h time period than during the 20 min time period, but the estimated
model efficiently compensated for these variations.

The spectra of the reflectance panels were sampled from the images without applying BRDF
correction, because the correction was calculated for the areas covered by vegetation, and were not
likely to be suitable for the panels. The spectra followed the reference values quite well (Figure 16a).
The RMSEs of the reflectance panels’ residuals were in reflectance units in the range of 0–0.01 for the
black and grey panels, and about 0.01–0.03 for the white panel (when excluding the extremes of the
reflectance range) (Figure 16b); in percentages of the brightness they were at the level of 5% for the
grey and white panels and almost 10–30% for the black panel. These are good quality levels; the high
relative RMSEs at low reflectance levels could be expected [52].
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Figure 15. Coefficient of variation (CV) for the (a) full dataset and (b) flight f34 dataset. nocorr:
no radiometric correction; brdf-el: empirical line based reflectance transformation separately for each
flight and BRDF correction; a_rel-brdf-el: empirical line based reflectance transformation separately
for each flight and BRDF and relative image-wise correction; a_rel-brdf-abs: full radiometric block
adjustment with absolute calibration and BRDF and relative image-wise correction.
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Figure 16. Evaluation of quality of the mosaics using reflectance panels. (a) Spectra of white (W),
grey (G) and black (B) reflectance panels; (b) RMSEs of residuals of panel spectra in corrected data with
respect to the reference spectra for each panel. RCP: Radiometric control point; W-ref, B-ref and G-ref
show the reference spectra measured in laboratory.

3.3.2. Vegetation Spectra

We took vegetation spectra for the vegetation sample points from the most nadir mosaics
calculated with only the empirical line calibration (Figure 17a) and with the BRDF and arel corrections
and reflectance calibration (Figure 17b,c). We did not include the three first bands and the bands
exceeding 800 nm in these plots because of the uncertainties in the sensor calibration and stability in
these bands. The resulting spectra followed the typical form of vegetation. Some undulations appeared
in the spectra, which are likely due to remaining calibration uncertainties of the sensor and effects
caused by vibrations of the platform. Different models provided quite similar spectra.

We took the spectra of the high biomass sample (dry biomass 266.5 g·m−2) from all the images
where it appeared (Figure 18). The different reflectance levels, which were due to the different view
angles, can be observed in the uncorrected datasets (Figure 18a). The BRDF correction compensated
for most parts of the view angle-related differences both with the f34 and full dataset processing
(Figure 18b,c).
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Figure 17. Spectra sampled for selected soil (dry biomass < 53 g·m−2) and vegetation samples
(dry biomass > 100 g·m−2) from the most nadir images; the legend shows the measured dry biomass as
g·m−2 for each sample. (a) Full dataset with empirical line based reflectance calibration and no BRDF
correction; (b) the full dataset and (c) the dataset with flights f34 with BRDF and relative corrections
and the reflectance calibration.
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Figure 18. Impact of radiometric processing in spectral values on multiple overlapping images.
Reflectance spectra of vegetation sample 21 was observed in seven overlapping images; individual
lines plotted with different colors represent spectra taken from the images. The radiometric processing
options were as follows: (a) Full dataset with empirical line based reflectance calibration and no BRDF
correction; (b) the full dataset and (c) the dataset with flight f34 with BRDF and relative image-wise
corrections and the reflectance calibration.

4. Discussion

This investigation studied the performance of a global optimization-based radiometric correction
of hyperspectral, close-range image blocks captured using a drone. The method was developed in
a previous study [12,32], and it has been used to correct datasets captured in various environmental
remote sensing applications [12,33–36]. In this study, we implemented and assessed the combined
adjustment model including the absolute calibration using reflectance panels and option to process
images captured with different solar elevations simultaneously. Furthermore, it was crucial to
implement the rigorous weighting scheme for the combined adjustment task. We then systematically
assessed the impacts of different settings and weighting of the observations in the radiometric
correction results in order to find the optimal parameters.

The dataset for the empirical study covered an area of 20 ha and consisted of four sub-blocks
that were captured under sunny conditions during an approximately 2.5 h time range. We used a
hyperspectral 2D frame format camera based on the tunable FPI. The resulting view zenith angles in the
mosaics were in most cases less than±15◦; this resulted in maximum intersection angles of 30◦ between
adjacent strips, thus significant anisotropy effects appeared in the mosaics [29,53]. The empirical results
showed that the BRDF correction was crucial for the datasets captured over homogenous crop canopies
in sunny conditions. The relative image-wise parameters were not critical to the dataset, but they
did improve the homogeneity. For the multi-temporal dataset, a good mosaic uniformity could
be obtained by various approaches: (1) The full radiometric block adjustment including absolute
calibration parameters and relative image-wise and BRDF corrections; (2) the empirical line method
with reflectance panels in each subarea and a global BRDF correction; (3) the empirical line method in
one area, an image-wise relative correction with a priori values based on irradiance recordings and
a global BRDF correction. The processing improved the radiometric uniformity of the mosaics and
spectra significantly. Good enough a priori values are required for different parameters in order to
ensure that the estimation converges to the correct values. Our results showed that the weighting of
parameters had significant impact on the results; in this study, the a priori values and weighting of the
arel parameters had the largest impacts.

These results support our previous results. The image-wise relative correction parameters
(arel) have been significant in the studies carried out under varying weather conditions [12,34–36],
while when capturing images in sunny conditions, the BRDF corrections have been significant [12,33].
The importance of utilizing the onboard irradiance recordings were shown in particular in the



Remote Sens. 2018, 10, 256 24 of 29

investigation concerning tree species classification and estimating forest stand variables, where the
datasets were captured over a test area covering over 10 km during two days under highly variable
weather conditions [35,36]. Comparisons of analysis with and without radiometric correction have
shown that the radiometric correction improved the estimation results [12,36].

The corrections of the sensor artifacts, such as the vignetting corrections, have been common in
UAV remote sensing research literature [4,7,13–15,23,24]. In most studies, single or multiple reflectance
panels have been used to carry out the reflectance transformation [6,13–15]. Some of the previous
studies have reported of the normalization of UAV based radiance observations using the field based
radiance observations of a reference panel [7,31] or irradiance observations measured on the ground
or onboard UAV to support radiometric processing in varying conditions [8,31], but in most cases
the instability of the illumination conditions has not been considered. The instability of illumination
conditions has not been critical in most research projects to date, which have been optimized to be
carried out under good conditions. Potential approaches for eliminating the need for BRDF correction is
to use image blocks with greater side and forward overlaps, thus minimizing the view angle differences
in the mosaics, and to use flight directions towards and away from the sun. When considering Figure 14,
we can conclude that in order to obtain <±2.5% anisotropy effects at the solar principal plane in the
red and green bands, the view zenith angle range should be below <±3◦ and this would require
image overlaps of 80% for the camera used in this study. The presented approach is vital for practical
applications, in order to enable the utilization of datasets captured under different conditions and to
minimize the number of image lines (and side overlaps).

The residuals in the reflectance panels were less than 5% in most of the bands. These results
were in similar levels as obtained in previous studies. Aasen et al. [13] and Yang et al. [15] developed
sensor calibration procedures for the Cubert UHD 185-Firefly and performed the reflectance calibration
using single or several reflectance panels. The extracted reflectance had good correspondence with
the reference values; for example in [15] the discrepancies between reflectance values derived from
calibrated images and the ASD Field Spec Pro spectrometer were of less than 3–4% in the spectral
range of 500–950 nm for the green tarp. Jakob et al. [14] used the radiometric correction toolbox in
two test areas in rough mine exploration sites with single strip datasets consisting of 10 or 20 images.
Their study with the Rikola hyperspectral imager yielded smooth spectra with a high similarity to
measured validation spectra, but relatively large differences appeared in overall reflectance intensity.
It was explained by non-identical measurement conditions and spatial coverages of the sensors,
as well as potential position errors of the measurement spots; furthermore, they processed only single
strips with 10 or 20 images. Laliberte et al. [37] used the dodging method of a commercial software
to compensate for the BRDF effects and other nonuniformities in the multispectral camera (Mini
MCA-6) datasets, and the empirical line calibration method to transform the digital numbers to the
ground measured reflectance spectra; their results showed less than 2% (in reflectance) residual when
calculating linear fit of the reflectance mosaic and reference reflectance.

Our approach was to compensate for the disturbance due to the reflectance anisotropy. Another
option is to utilize the anisotropy as an additional feature in the remote sensing process [51,53,54].
For example, Roosjen et al. [53] used commercial software to calculate orthophotos for each overlapping
image and to model the anisotropy using the reflectance values obtained from the images. Our method
combines the radiometric processing into single process and enables capture of HDRF observations
of selected objects directly from image block data (Figure 12). In this study we showed that the
BRDF correction eliminated efficiently differences of multiview observations. The anisotropy factors
estimated in the global adjustment process were consistent to theoretical expectations and previous
results [51], but the estimated BRDF parameters did not converge to correct absolute values. In future
studies, better approximate values for the BRDF model parameters should be tested, for example,
by first estimating the parameters from the dataset and using those as approximate parameters.
In future studies, also implementation of different BRDF models to the radiometric block adjustment
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should be investigated. Detailed considerations about the resulting reflectance quantities and their
uncertainty analysis are also vital [22].

The approach presented here provides a theoretically sound approach to radiometric correction.
It is suitable for homogeneous targets (e.g., typical agricultural crops) as such, but further developments
are needed to optimize it for all of the different situations encountered in UAV remote sensing, and also
to make the method more reliable and fast. For different objects, important parameters to be considered
include suitable BRDF models and the parameters of the method being used (radiometric tie points,
weighting of observations). The model can also be extended by different parameters if necessary,
for example, using physical atmospheric parameters and topographic correction. The method was
sensitive to a priori values, in particular to the illumination level of the dataset; thus more accurate
methods for measuring the incident irradiance would help in improving the estimation process.
The current method solves the reflectance of each radiometric tie point and uses a similar BRDF
model over the entire object area. In future developments, a division of the area according to the
illumination conditions (overcast, direct sun illumination) is necessary, and several BRDF models
should be used for nonhomogeneous datasets; in this study we intentionally removed the few images
captured below cloud shadow. To accelerate the method, the number of reflectance unknowns could
be minimized by segmenting the object into uniform areas and solving reflectance only for those
particular segments. A more efficient matrix inversion is possible by considering the sparsity in the
Jacobian matrix and efficiently employing the block diagonal sub-matrices. Finally, as the parameters
solved for the neighboring bands were correlated; the process could be accelerated by estimating
parameters only for those bands having significantly different values.

5. Conclusions

Remote sensing using drones equipped with miniaturized 2D frame format multi-spectral and
hyperspectral cameras represents a powerful and low-cost tool for measuring various phenomena at
ever greater levels of accuracy. Typically, the area of interest is covered by hundreds of overlapping,
small-format images, which provide redundant information about the object. However, due to various
disturbances the reflectance values of overlapping images are not consistent. We have proposed
a radiometric block adjustment method for instituting the radiometric correction. It estimates a
radiometric correction model using a global optimization method that utilizes redundant information
in the image block and also makes it possible to integrate various external observations during
the processing phase. Different observations are weighted using their realistic standard deviations.
This study extended the combined adjustment model, by including processing of images with different
solar elevations and reflectance panels observations, and developed a comprehensive weighting
scheme for different types of observations. The combined model required careful consideration of the
weighting of the observations. We systematically assessed the impacts of method parameters and the
weighting of observations regarding the quality of the output products. The empirical results showed
that the method performed consistently and significantly improved the uniformity of the datasets.
It was shown that the block homogeneity was similar for the dataset captured over the 2.5 h time as
for the dataset capture during shorter time of 20 min. However, it also appeared that the method was
sensitive to a priori values, in particular to the illumination level; thus, we suggest that it would be
advantageous to devise more accurate measurement methods for the incident irradiance. The current
practice is to calculate image mosaics using the most nadir parts of images. We also demonstrated
how spectral multi-view point clouds can be corrected using the model calculated by the radiometric
block adjustment. Our results increased understanding of the global optimization-based radiometric
correction methods and provided information for the further development of the method. The results
are vital for developing rigorous, automated procedures for processing and analysis of large multi-
and hyperspectral image block data captured using 2D frame-format cameras.
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Abbreviations

aabs, babs The empirical line parameters to transform reflectance to DN
arel , brel The relative image-wise gain and offset parameters
Rk(θi, θr, ϕ) The reflectance factor for specific view/illumination geometry of image
θi, ϕi Incident illumination zenith and azimuth angles
θr, ϕr Reflectance zenith and azimuth angles
DNjk Digital grey value of object k in image j
Rk(θit , 0, 0) The vertical reflectance of object k at the specific solar illumination angle of θit

ρmodel(θi, θr, ϕ) The modeled reflectance based on the 4-parameter BRDF-model
ρmodel(θr, ϕ) The modeled reflectance based on the 3-parameter BRDF-model
ani f (θi, θr, ϕ) The anisotropy factor
bBRDFm Parameter of the 3 or 4 parameter BRDF-model, m = 1, . . . , 3 or 4
RRCP, RRCPobs Calculated and observed reflectance of a radiometric control point
W Weight matrix used in the radiometric block adjustment
σ0 A priori standard deviation of unit weight
σDN Standard deviation of the image observation
σa_rel , wa_rel Standard deviation and weight for the relative image-wise correction parameter
σRCP, wRCP Standard deviation and weight of the RCP
σBRDF_m, wBRDF_m Standard deviations and weight of the BRDF parameters, m = 1, . . . , 3 or 4
CVk Coefficient of variation for radiometric tie point k
f1, f2, f3, f4 Independent flights 1, 2, 3 and 4 used in the study. f34 is combination of flights f3 and f4.
BRDF Bidirectional Reflectance Distribution Function
CV Coefficient of Variation
DN Digital Number (Image grey value)
DSM Digital Surface Model
EL Empirical Line method
EOP Exterior Orientation Parameter
FPI Fabry-Pérot Interferometer
FWHM Full Width of Half Maximum
G Green
GCP Ground Control Point
HDRF Hemispherical Directional Reflectance Factor
IOP Interior Orientation Parameter
NIR Near-Infrared
R Red
RCP Radiometric control points
RMSE Root-Mean-Square-Error
RTP Radiometric Tie Point
UAV Unmanned Aerial Vehicle
VRS-GPS Virtual reference station real-time kinematic GPS method
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