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Abstract: Accurate and timely information related to quantitative descriptions and spatial
distributions of urban areas is crucial to understand urbanization dynamics and is also helpful
to address environmental issues associated with rapid urban land-cover changes. Thresholding
is acknowledged as the most popular and practical way to extract urban information from
nighttime lights. However, the difficulty of determining optimal threshold remains challenging
to applications of this method. In order to address the problem of selecting thresholds,
a Genetic Algorithm-based urban cluster automatic threshold (GA-UCAT) method by combining
Visible-Infrared Imager-Radiometer Suite Day/Night band (VIIRS DNB), Normalized Difference
Vegetation Index (NDVI), and Normalized Difference Built-up Index (NDBI) is proposed to
distinguish urban areas from dark rural background in NTL images. The key point of this proposed
method is to design an appropriate fitness function of GA by means of integrating between-class
variance and inter-class variance with all these three data sources to determine optimal thresholds.
In accuracy assessments by comparing with ground truth—Landsat 8 OLI images, this new method
has been validated and results with OA (Overall Accuracy) ranging from 0.854 to 0.913 and Kappa
ranging from 0.699 to 0.722 show that the GA-UCAT approach is capable of describing spatial
distributions and giving detailed information of urban extents. Additionally, there is discussion on
different classifications of rural residential spots in Landsat remote sensing images and nighttime
light (NTL) and evaluations of spatial-temporal development patterns of five selected Chinese
urban clusters from 2012 to 2017 on utilizing this proposed method. The new method shows great
potential to map global urban information in a simple and accurate way and to help address urban
environmental issues.
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1. Introduction

Urbanization plays an important role in almost all dimensions of contemporary global changes.
Despite the small fraction of overall land area that urban areas account for, cities are populated by
more than 54% of people in the world, and the total population living in urban areas is expected to
increase by more than 2 billion by 2050 [1]. Rapid urbanization is closely associated with a wide range
of environmental issues such as urban heat islands [2], growing energy consumption [3], pollution
emissions [4], ecological damage [5] and urban climate change [6]. As such, accurate and timely
information related to the amount and spatial distributions of urban areas is crucial to understand
urbanization dynamics and to address the environmental issues mentioned above.
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Remote sensing technology has been applied for acquiring consistent and continuous data to study
urban dynamics because of its ability to perform large-scale simultaneous observations and to obtain
up-to-date and periodic information. Therefore, great strides have been made in remote sensing-based
methods for mapping cities and monitoring urbanization at different scales [7]. Previous studies
have utilized high and medium spatial resolution images to explore the progress of urbanization for
individual metropolitan areas [8–13]. However, these relatively high resolution data are difficult to
meet the needs of quick mapping urban dynamics at large scale of such urban clusters and global
extents. The reasons for this shortcoming are that some methods based on high resolution data require
labor-intensive work and a large number of cloud-free images in chosen months. Additionally, issues
of spectral and spatial consistency from different scenes may exist, which also remains a challenge for
high resolution data being applied in global urban studies. Instead, coarse resolution images which
are more suitable at regional and global scales, such as MODIS and nighttime light data, have been
extensively applied for discovering patterns of urban land-use changes [14–17].

In particular, nighttime light (NTL) data are valuable remote sensing data sources for detection of
urban growth [18–21], because of their capability of indicating the intensity of human activities such
as population density, socioeconomic development, and energy consumption. These data can help
distinguish bright urban built-up areas from dim countryside background. There are two primary NTL
sources—Defense Meteorological Satellite Program Operational Line-scan System (DMSP-OLS) and
Suomi NPP Visible-Infrared Imager-Radiometer Suite Day/Night band (VIIRS DNB). The DMSP-OLS
nighttime light images have been utilized in numerous previous studies for mapping urban land-use
due to their appropriate temporal and spatial resolution [22,23]. Although they are widely recognized
as useful data in the field of urban remote sensing at national, continental and global scales [24–27],
the DMSP data have a set of weaknesses including coarse spatial resolution, six-bit quantization,
saturation on urban cores and lack of on-board calibration [28,29]. By contrast, VIIRS DNB offers many
improvements over DMSP-OLS in terms of higher resolution, dynamic range, 14-bit quantization,
in-flight calibrations [18,30]. Hence, VIIRS DNB data are anticipated to be widely utilized in science
applications particularly in urban studies instead of DMSP-OLS to avoid the limitations of the
last generation.

Previous methods of urban extraction from NTL data can be generally grouped into three ways
including classification-based, novel index-based, and threshold techniques-based methods. In the way
of image classification, NTL images are recognized as a kind of grey-scale map such as Normalized
Difference Vegetation Index (NDVI). Cao et al. [31] and Pandey et al. [32] used semi-automatic Support
Vector Machines (SVM) with DMSP-OLS nighttime lights and SPOT Vegetation (SPOT-VGT) data to
map urban areas. Nevertheless, accuracy of these methods is sensitive to the selection of training
samples. For this reason, solid priori knowledge of urbanization dynamics is necessary while it is not
always available in common situations. In terms of the index-based way, Zhang et al. [33] proposed
Vegetation Adjusted NTL Urban Index (VANUI) by combining MODIS NDVI with NTL to study urban
structures and achieved relatively good result on the global scale. Additionally, Sharma et al. [34] made
fusion of MODIS and VIIRS data to design Urban Built-up Index (UBI) for urban studies. This kind
of method would be more reliable and rational with more scientific explanations from the respect of
urban mechanism. Lastly, owing to the fact that NTL data show brighter light in urban areas while
dimmer in the countryside, the simple way to map urban land use is to select a suitable value also
named threshold to segment images. As such, many previous approaches based on thresholding
extract urban areas with pixel values higher than the threshold from DMSP-OLS nighttime light
data [26,35–37]. Xie et al. [38] proposed an object-based method to estimate optimal thresholds for
incompatible time series, but this method required reference images which were almost unavailable
and this method was not suitable for 14-bit quantized VIIRS DNB because it was difficult to traverse the
14-bit data range for every urban object. Despite the fact that thresholding methods are acknowledged
by their wide applications in urbanization detection, the difficulty of selecting the optimal thresholds
remains a challenge for applications of this method. Moreover, some empirical and subjective way
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to determine thresholds even lead to poor accuracy and reliability. Accordingly, if the selection of
optimal threshold values could be modified by an automatic way without any human interactions,
it could greatly improve the reliability and utility of the threshold-based method. As such, Genetic
Algorithms (GA) [39], automatic ways to produce optimal solution meaning thresholds in this paper,
were employed to avoid difficulty and subjectivity in threshold value determination. Meanwhile,
taking city cluster as study region can make a great trade-off between accuracy and efficiency. In some
classification and index methods [31–34], the integration of NDVI images and light data show higher
accuracy than employing nighttime lights as the only data source, because they can supplement each
other. Generally, if the method could automatically select optimal thresholds for NTL data with
supplement of other data sources to extract urban areas from city cluster, it would greatly improve the
ability of quick mapping urban extents at large scales.

In this research, to address the difficulty of determining thresholds, we developed the Genetic
Algorithm-based urban cluster automatic threshold (GA-UCAT) method to map urban areas by
combining VIIRS DNB nighttime light data and MODIS NDVI and NDBI (Normalized Difference
Built-up Index). By connecting biological individual with image value in the computer world, this new
method modified from GA changes biological evolutions to optimization process. Because the modified
fitness function of GA-UCAT represents the quality of segmentation results of urban areas, the best
solution automatically produced by GA is the optimal thresholds for mapping urban extents. It is
noted that even though details of GA-UCAT introduced in the methodology seem relatively complex
and abstract, because of existing GA Toolbox, this method can be applied in an easy an efficient way.
The results cover two parts including explanation of integration of three data sources and accuracy
assessments by comparing with Landsat images. Finally, difference classifications of rural residential
spots between land cover derived from VNIR data and land-use from NTL images, and spatial and
temporal urbanization dynamics in five typical Chinese urban clusters are discussed.

2. Study Area and Data

2.1. Study Area

Chinese cities have been witnessing rapid urbanization with fast economic and population
growth since the reform and opening-up policy. Typical Chinese urban agglomerations with different
economic development levels have been selected for case study to validate the robustness and
accuracy of this GA-UCAT method. They are Yangtze River Delta (YRD), Chengdu-Chongqing
(CC), Changsha-Zhuzhou-Xiangtan (CZX), Beijing-Tianjin-Hebei Region (BTH), and Pearl River Delta
(PRD) [40–43] (Figure 1). Except for CZX, the other four urban clusters belong to the state key
construction project, while even those four vary from each other in size, population, per capital
gross domestic product (GDP), and development rate. As such, they are suitable for robustness and
accuracy assessments of the proposed method. In addition, according to previous state statistics data,
urbanization and economic growth in these five regions are expected to maintain a high speed owing
to their dominant geographic positions and policy supports. Therefore, to guide urban clusters to
develop in a booming and continuous way, it is necessary to obtain up-dated and accurate information
about urbanization dynamics of the selected Chinese city agglomerations.

2.2. Data

2.2.1. VIIRS DNB

VIIRS is the new-generation radiometer and VIIRS DNB nighttime lights make a huge leap
forward over the DMSP-OLS. We used Version 1 VIIRS DNB Nighttime Lights monthly composited
data from 2012 to 2017 which are available for download in NOAA National Geophysical Data
Center (https://ngdc.noaa.gov/eog/viirs/download_dnb_composites.html). Because of the 14-bit

https://ngdc.noaa.gov/eog/viirs/download_dnb_composites.html
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quantization ranging from 0 to 16,384, VIIRS DNB data are more sensitive to lights from Earth, meaning
that they are suitable data sources for detecting urbanization.Remote Sens. 2018, 10, x FOR PEER REVIEW  4 of 21 
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Figure 1. Study area and data: (a) VIIRS DNB (b) MODIS NDVI and (c) MODIS NDBI in
YRD, CC, CZT, BTH, and PRD in 2015. Yangtze River Delta (YRD), Chengdu-Chongqing (CC),
Changsha-Zhuzhou-Xiangtan (CZX), Beijing-Tianjin-Hebei Region (BTH) and Pearl River Delta (PRD).

2.2.2. MODIS Data

Since 2000, MODIS has recorded data for long-term global study and it is one of the most popular
data sources in a wide range of scientific applications [44]. We employed the 500 m annual MODIS Land
Cover Type product (MCD12Q1) which is available to the public on the Internet (https://e4ftl01.cr.usgs.
gov/MOTA/MCD12Q1.051/2013.01.01/). International Geosphere-Biosphere Program (IGBP), the
most popular classification system in MCD12Q1, was selected for this paper to compare with results of
GA-UCAT. The 500 m MODIS 8-day surface reflectance product (MOD09A1) is used to generate NDVI,
NDBI, and Modified Normalized Different Water Index (MNDWI). NDVI combining near-infrared
band (NIR) and red band reflectance (Equation (1)) has been widely utilized for representing vegetation
cover. Zha et al. [45] proposed NDBI (Equation (2)) which is sensitive to the built-up areas and is
promising to map urban land-use changes. Finally, MNDWI (Equation (3)) developed by Xu et al. [46]
can mask water cover from images and this index performs well especially in urban areas. These three
indexes are derived as:

NDVI =
NIR− R
NIR + R

, (1)

NDBI =
MIR− NIR
MIR + NIR

, (2)

MNDWI =
G−MIR
G + MIR

, (3)

where R, G, NIR, MIR are reflectance in red, green, near-infrared, and intermediate infrared
band respectively.

2.2.3. Landsat 8 OLI

Landsat 8 Operational Land Imager (OLI) and Google Earth tiled maps were selected as validation
data for accuracy assessments and discussion respectively. Landsat 8 OLI images in 2015 were
downloaded from the Sharing Project of Landsat 8 surface reflectance product on the website of the
Remote Sensing and Digital Earth Institute of the Chinese Academy of Sciences [47].

https://e4ftl01.cr.usgs.gov/MOTA/MCD12Q1.051/2013.01.01/
https://e4ftl01.cr.usgs.gov/MOTA/MCD12Q1.051/2013.01.01/


Remote Sens. 2018, 10, 277 5 of 21

3. Methods

Thresholding techniques have been widely used to extract urban areas from nighttime light data
because of their great simplicity when an optimal threshold is available. However, there is always
a problem of figuring out the optimal threshold in an effective and automatic way. This difficulty
challenges applications of this method to monitor urban dynamics from NTL images. Therefore,
we proposed a Genetic Algorithm-based urban cluster automatic threshold (GA-UCAT) method to
map urban areas from the VIIRS DNB image. NDVI and NDBI data were combined with VIIRS DNB
to improve the accuracy of this method because using these three data together can describe urban
characteristics in a better way.

To address the problem of determining optimal thresholds, we chose the Genetic Algorithms
proposed by John Holland [48], because this method can efficiently search for the overall near optimal
value. Firstly, it is necessary to explain the way of connecting GA with remote sensing images such as
VIIRS NTL data. In Genetic Algorithms, an individual in the population represented by chromosome is
converted to sequential binary code in the computer code world. Then, it is easy to connect this binary
code with image values by the way of changing binary to decimal. Thus, GA and remote sensing
data are connected by the transformation of chromosome and image DN values. Secondly, the way of
GA methods to determine the optimal threshold for classification needs to be well explained. Fitness
function is the key point of the GA related to optimization issues. Therefore, in GA-UCAT, we modified
the fitness function to represents the quality of segmentation results by combining VIIRS DNB, NDVI,
and NDBI. The best individual produced by modified fitness function means the optimal threshold for
extracting urban extents from NTL images in our method.

This proposed method is divided into three major steps including data processing, modified
Genetic Algorithms, and final segmentation. In order to fully explain how this method works,
we provide details about the core process in the flow chart (Figure 2). Particularly, fitness calculating
process (Figure 2c) is the core of GA and the process of modified GA (Figure 2b) is the key part of this
new method. Namely, Figure 2c is key part of (b) while (b) is an important step of (a). Thus, fitness
calculation is the crucial part in GA-UCAT and it is explained with details in methodology.

3.1. Data Processing

VIIRS DNB and MODIS data were projected to Albers Conic Equal Area and then they were
co-registered and resampled to the same resolution as MODIS data, 500 m. After that, NTL data were
filtered by MNDWI to exclude water cover.

3.2. Modified Genetic Algorithms Process

There are four basic parts in GA including population initializing, coding, fitness function, and
genetic process. Still, it is a bit abstract to think about how these biological processes produce optimal
thresholds for NTL images. Population initialization is preparations for GA and it sets the computing
environment of iterative optimization. The rule of coding is a bridge to connect chromosome and
image DN value. Modified fitness function calculating is the most important part in this method
because its results are the rule to measure whether the individual is the best one. Therefore, in order
to convert thresholding selection problems to the optimal solution of fitness function, we combined
between-class variance and inter-class variance to establish fitness function in GA-UCAT. The genetic
process including selection, crossover, and mutation contributes to figure out the overall optimal result
instead of being trapped in local extremes. Figure 2b with examples vividly shows the way these
biological processes are represented in the computer world.

3.2.1. Population Initializing

Population initialization is the first stage of GA to set parameters. According to repeated tests of
different parameters, the accuracy of this method is not sensitive to this process. Thus, in this paper,
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we set population quantity (100), crossover rate (0.1), mutation rate (0.05), the number of maximum
generation (50) and the length of chromosome (12) from preliminary tests. All these four parameters
occur in Figure 2b.
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3.2.2. Coding

In GA-UCAT, coding means a transformation from chromosome to a sequential binary code in
the computer code world and these codes are easily converted to decimal format representing image
values (such as converting “000,001,101,010” to DN = 106). Accordingly, the best chromosome figured
out by GA is the binary format of optimal DN value for thresholding technics.

3.2.3. Fitness Function Calculating

GA works follow “survival of the fittest”, the principle of biological evolutions. In the computer
code world, the fittest meaning the optimal solution is selected by fitness function. Accordingly, in order
to establish proper fitness function to measure the quality of classification, two indicators including
between-class variance also named Otsu [49] and inter-class variance were chosen in GA-UCAT.
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Furthermore, to obtain better accuracy, this study incorporated the integration of VIIRS DNB, NDVI,
and NDBI in modified fitness function and this is explain in Section 4.1. The fitness calculation is
divided into following four parts and to fully explain this process, chromosome of “000,001,101,010” is
taken as an example.

Firstly, the initial segmentation of NTL data was carried by the decimal value of chromosome
(Chi). For example, NTL is classified by 106 (decimal format of “000,001,101,010”). This value divided
the VIIRS DNB image into two parts C0 and C1 representing urban and non-urban areas respectively:

c0 = {u1, u2, . . . , un0}, for u ≥ Chi (4)

c1 = {n1, n2, . . . , nn1}, for n < Chi (5)

where u and n are DN values in urban and non-urban areas. The n0 and n1 are the amount of urban
and non-urban pixels respectively.

Secondly, VIIRS DNB, NDVI, and NDBI images were masked by the initial segmentation image,
the result of previous step. This part assumed that if the Chi such as 106 is the optimal threshold for
NTL data, segmentation of the Chi would achieve best accuracy in all of these three data sources.

In the third part, between-class variance and inter-class variance are calculated as σ2
b and σ2

in:

σ2
b =

n0

Nimg
× (

∑n0
m=1 um

n0
− imga)

2

+
n1

Nimg
× (

∑n1
m=1 nm

n1
− imga)

2

, (6)

σ2
in =

n0

Nimg
×

n0

∑
m=1

(ua −
∑n0

m=1 um

n0
)

2

+
n1

Nimg
×

n1

∑
m=1

(na −
∑n1

m=1 nm

n1
)

2

, (7)

where ua, na, and imga represent DN average of C0, C1 and the whole image respectively.
In the last stage, because the maximum between-class variance and minimum inter-class variance

both represent the best quality of thresholding segmentation, we built a segmentation function by
using σ2

b divide σ2
in. By combining segmentation function of VIIRS DNB, NDVI, and NDBI, the fitness

function was built as follows:

fitness(Chi) = ρ×
σ2

b−viirs

σ2
in−viirs

+ ω×
σ2

b−ndvi

σ2
in−ndvi

+ ε×
σ2

b−ndbi

σ2
in−ndbi

. (8)

where ρ, ω, and ε represent weights of the segmentation function of three data sources respectively.
After repeated experiments, setting ρ as twice the sum of ω and ε (scale of 2:1:1), can achieve high
accuracy in all case studies. It is mainly because this scale contributes to balance the weight of NTL
and VNIR. The fitness value of Chi (like 106) is calculated and all individuals in the population need to
calculate fitness value in the same way.

3.2.4. Genetic Process

The genetic process covers three parts: selection, crossover, and mutation. Selection is used to
pick up the best individual with the highest fitness value, which is exactly the process of determining
optimal threshold. The Roulette Wheel Selection (RSS) was chosen in this process because of its
simplicity and effectiveness. In addition, crossover and mutation were processes allowing GA to
search for overall optimal values without being trapped in the local extremums. There are two
conditions for the modified GA meeting the end of loop: when fitness values do not change in five
continuous generations or when the number of generations achieve the maximum generation which is
set in the initialization.
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3.3. Final Segmentation

After the process of GA with modified fitness function, an optimal threshold of NTL data
is determined to segment bright urban extents from dark background. It is worth noting that
this paper utilized and modified Genetic Algorithms Toolbox for MATLAB from the University
of Sheffield [50] and this toolbox allows greater possibility for the GA-UCAT method to be employed
by other researchers.

3.4. Accuracy Assessments of Ga-Ucat Method

Lastly, this method was validated by compared with classification results of Landsat 8 OLI images.
The Maximum Likelihood Classification (MLC) method was utilized to classify three classes including
vegetation, water, and impervious areas from Landsat data. After MLC, vegetation and water cover of
classification results were merged into non-urban areas while the impervious areas were recognized as
urban extents. Then, accuracy assessments were conducted from qualitative and quantitative respects.

4. Results

4.1. GA-UCAT

Results of GA-UCAT cover four parts including case study in PRD, spectral characteristics of
data sources, details inside the algorithm, and comparison with MCD12Q1. A case study in the Pearl
River Delta was conducted to prove whether incorporating f VIIRS DNB, NDVI, and NDBI is the
best choice for the proposed method (Figure 3). Compared to the Landsat 8 OLI classification image
(Figure 3f) with higher resolution, the result of solely employing NTL underestimates urban areas but
the other two VNIR images of indexes overestimate them particularly NDVI (Figure 3b). However,
the combination of them in the GA-UCAT method (Figure 3d) performs well by comparison with the
validation data (Figure 3e,f). From the case study in 2015, it was found that by integrating all three data
together rather than using them singly, the GA-UCAT method shows more similarity to validation
data in terms of spatial patterns of urban distributions.
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The following two parts aimed to explain why GA-UCAT combine NTL with NDVI and NDBI
perform better than using VIIRS DNB separately. From the spectral respect, Figure 4 shows that these
three data sources can express characteristics of urbanization to some extent and by complementing
each other they are expected to show the entire appearance of urban areas. This finding results from
data features that pixel values of urban areas are higher in NDBI and NTL images while lower in
NDVI. Because these three data are adept at expressing urban characteristics from different aspects,
they can supplement one another. Additionally, when small noise brought by clouds or other reasons
occurs, the integration of them can mitigate this negative influence. As such, combining them together
in GA-UCAT is a better way to display entire characteristics of urban land use.
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Figure 4. Horizontal transects of 2015 MODIS false color image from the city of Beijing. The purple
represents urban areas and green represents vegetation areas (a) and pixel value of VIIRS DNB (b),
NDVI (c) and NDBI (d) according to the transect. Note that data in this figure are all normalized into
the same range for visualizing and the horizontal axis represent the image value of the image.

Furthermore, Figure 5 investigates the detailed performance of three data sources in the modified
fitness function. The between-class and inter-class variance (represented by F and T respectively in
Figure 5) of VIIRS DNB, NDVI, and NDBI (Figure 5a) show generally similar tendency with a unimodal
distribution while different in details. It is known that if the DN values could make between-class
variance maximum and inter-class variance minimum at the same time, this value would achieve the
best segmentation result. However, Figure 5a shows there is always a small gap between the best DN
values of those two indicators especially in NDBI (Figure 5(a3)). This gap turns DN optimal values
of the segmentation function (S in Figure 5) to be offset from the best solution. On the other hand,
Figure 5b shows the situation of combining all three data together in GA-UCAT. The selected threshold
represented by dashed lines (Figure 5b) obtains the best segmentation by matching between-class
variance maximum and inter-class variance minimum of these three data sources. Namely, from the
inside details of this method, integration of these data together proves to be a better way to determine
an optimal threshold.

Figure 6 indicates that results of the GA-UCAT method show similar spatial distributions of urban
extents with MCD12Q1 data. The year of 2012 is chosen, because MODIS land cover data were only
updated to it. Hence, it is meaningful to propose effective ways with high accuracy to detect urban
land-use changes. In addition, even though they share similar spatial distributions, by comparison
with high-resolution ground truth from Google Earth, it is found that MCD12Q1 underestimates urban
areas particularly in less developed city clusters with lower built-up intensity such as CC and CZX.
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The reason for this underestimate could be weakness of distinguishing suburban built-up areas from
vegetation cover influenced by seasonal factors. Besides, compared with MODIS reflectance, NDVI
data are a stronger indicator for telling the difference between built-up areas and vegetation land cover,
as well as NDBI and VIIRS DNB. As such, NDVI and NDBI data rather than MOIDS reflectance bands
are chosen in the GA-UCAT method. Generally, on the city cluster level, this new method can work for
extracting urban land use and the accuracy evaluation of it is conducted in the next part.
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Figure 5. The between-class variance (F), inter-class variance (T) and segmentation function (S) of VIIRS
DNB, NDVI, and NDBI in the situations of using them separately (part a) or together (part b). All these
terms have been explained in methodology. The labels of the x-axis represent normalized DN of data
and labels of the y-axis represent the normalized function value. Note that data in this figure are all
normalized into the same range for visualizing and the horizontal axis represents values of F, T, and S.

4.2. Accuracy Assessments of GA-UCAT

In order to evaluate the performance of the GA-UCAT method in a comprehensive way, qualitative
and quantitative aspects are both chosen as evaluation tools. Meanwhile, four relatively large cities
representing the development level of the whole clusters, are selected from every city agglomeration,
namely Shanghai from YRD, Changsha from CZX, Beijing from BTH, and Guangzhou from PRD.
There are two main reasons why to just choose four representative cities as validation areas rather than
the entire urban clusters directly. It is mainly due to the difficulty of collecting a lot of high quality
validation images without severe contamination of cloud in the chosen months. Another reason is
to mitigate the influence of different classification results of rural residential spots in terms of land
use and land cover. In other words, this discrepancy results from the results that Landsat 8 images
classify rural residential spots into urban built-up land cover while NTL data treat them as rural land
use. This part is thoroughly discussed in Section 5.1. Because this difference has greater impact in
outer suburban districts especially in small cities, we select major cities in the accuracy assessments
to avoid it. Additionally, given the perennial cloud cover of Chengdu-Chongqing cluster, this paper
did not succeed in collecting suitable validation data for Chengdu or Chongqing. Lack of one among
five may not greatly influence the quality of the assessments. To sum up, cities selected in accuracy
assessments are core parts of the whole clusters, which we believe are capable of representing the
entire performance of GA-UCAT.

For qualitative assessments, to evaluate the performance of spatial distributions of GA-UCAT
results, Figure 7 shows comparison of classification results between this method and Landsat 8
OLI images. Despite scale effect between those two data sources, it is evident that the results of
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the proposed method show similar spatial distributions with the validation data both in false color
images and Maximum Likelihood Classification (MLC) results especially in Shanghai (Figure 7a) and
Guangzhou (Figure 7d) which enjoy the fastest economic growth in the country. Furthermore, results
of the proposed method describe well detailed spatial patterns of urban land use in Shanghai even in
Chongming Island, the less developed part. However, in Figure 7b, GA-UACT results in Changsha
are not shown to be as precise as other cities. This mainly results from less urbanized situations of
Changsha with low built-up intensity showing a dispersed distribution of city extents compared with
the others. Additionally, in terms of urban size in Beijing, M LC of Landsat data are a bit larger than
GA-UCAT results, which probably results from the difference of data characteristics and scale factors
between VIIRS NTL data and Landsat images (Figure 7c). In Figure 7d, the results from GA-UCAT are
almost consistent with Landsat images and they all indicate that the south and central of Guangzhou
are more urbanized than other parts there. To sum up, although Landsat classification images show
slightly more fragmentation than GA- UCAT results, the latter almost describe the same boundary
of urban areas as the former. These accuracy assessments of qualitative aspect demonstrate that the
GA-UCAT method performs well in delineating spatial distributions of urban land use.
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Figure 6. The comparison between GA-UCAT results and MCD12Q1 product. Their original data
sources are also shown in this graph. VIIRS DNB, MOD09A1, MODIS NDVI, results of GA-UCAT
and MCD12Q1 images in the chosen city clusters in the year of 2012. MOD09A1 represents a false
color of MODIS reflectance data. The label “GA-UCAT” represents the results of the proposed method
and MCD12Q1 represents IGBP classification results from MODIS data. Yangtze River Delta (YRD),
Chengdu-Chongqing (CC), Changsha-Zhuzhou-Xiangtan (CZX), Beijing-Tianjin-Hebei Region (BTH)
and Pearl River Delta (PRD).
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Figure 7. Accuracy assessments of GA-UCAT by comparing with validation data from the visualization
aspect. VIIRS DNB, results of the GA-UCAT method, Landsat false color images, and Landsat 8 OLI
supervised Maximum Likelihood Classification (MLC) results in (a) Shanghai, (b) Changsha, (c) Beijing
and (d) Guangzhou in 2015. Note that just one city in every cluster was selected in the accuracy
assessments of this proposed method.

In respect of quantitative evaluation, given that Landsat data are accurate enough for the data
employed in the proposed method, accuracy assessments are conducted by setting Landsat MLC
results as ground truth data. Table 1 shows the validation results of the GA-UCAT method. It covers
comparison of the amount of urban area and two important accuracy evaluation indicators.

Table 1. The quantitative evaluation of the GA-UCAT method in selected cities. GA-UCAT represents
the results of this proposed method and L8 MLC represents that the validation data are the results of
Maximum Likelihood Classification of Landsat 8 OLI.

City GA-UCAT (km2) L8 MLC (km2)
OA Kappa

Urban Area Non-Urban Area Urban Area Non-Urban Area

Shanghai 3040.29 3299.71 2921.40 3418.60 0.861 0.722
Changsha 744.50 11,074.50 783.90 11,035.10 0.854 0.699

Beijing 2998.23 13,411.77 3314.74 13,095.26 0.913 0.701
Guangzhou 1534.75 1628.68 1443.13 1523.73 0.906 0.708

Data missing in Chengdu due to contamination of clouds.
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By comparing the urban areas extracted from experiment results with the validation data, it was
found that the GA-based method performs well in all four cities. Despite being overestimated a
small number of urban areas derived from this new method are close to the Landsat classification
in Shanghai and Guangzhou with high economic growth and advanced urban development level.
Although the amount of urban area extents from the GA-UCAT method in Changsha and Beijing is
less than the validation data, the difference between them is acceptable. This underestimate results
from fragmentized spots in the classification of Landsat images, when compared to complete urban
boundary of segmentation results from NTL data, especially in the less developed city of Changsha.
Two assessment indicators, named overall accuracy (OA) and Kappa, are both calculated from the error
matrix between the results of the proposed method and the MLC images. For the term of OA, Beijing
gets the best accuracy (OA = 0.913) and other cities also perform well in evaluation of overall accuracy
ranging from 0.854 to 0.913. Kappa is almost always around 0.7, indicating the high accuracy of the
new method in delineating urban land use. Admittedly, the GA-based method does less well in the
city of Changsha (OA = 0.854, Kappa = 0.699), while the result of the accuracy evaluation is relatively
high enough for classification. In a word, on combining qualitative and quantitative assessments,
the performance of the GA-UCAT method shows great ability to describe distributions and quantify
characteristics of urban areas with high accuracy. Therefore, this proposed method can be recognized
as a promising way for detecting urbanization in future applications.

5. Discussion

5.1. Rural Residential Spots

Information about spatial-temporal distributions of urbanization is essential for city studies and
also helpful to address some environmental problems associated with rapid urbanization, such as
air pollution and urban heat island (UHI). However, urban extents classified by Landsat and NTL
images show slight divergence in the outskirts especially rural residential spots. There are two basic
conditions of urban extents including area with intensive population density and built-up areas also
named impervious area (ISA). These two terms represent different aspects from land use and land
cover respectively. Land cover and land use are often employed as synonyms with slight difference.
High intensity of anthropogenic activities detected by NTL data represents similar concerns with land
use, which pays much attention to the function of urban areas. ISA indicates the real situations of
land cover, which is usually detected by remote sensing particularly in the field of VINR images from
spectrum characteristics. Rural residential spots are kinds of ISA without intensive population, so they
are classified into urban land cover in the classification result of Landsat but rural land use of NTL
images. The results of them are almost accordant within core urban areas but show discrepancy in
outer suburban districts. Figures 8 and 9 describe this difference from spectral characteristics and
case study respectively. The reason why rural residential spots in exurban zone are classified into
urban areas in VNIR bands is demonstrated in part A of Figure 8. The Landsat false color image of
Beijing and its surround indicates that the urban core (Figure 8(a3)) of Beijing and ISA in rural areas
(Figure 8(a4)) show similar spectral characteristics while the spectral polyline of rural residential spots
is quite different from non-urban areas with dense vegetation cover (Figure 8(a2)). By contrast, VIIRS
DNB in part B shows evident distinction between urban land use (Figure 8(b3)) and ISA in outskirts
(Figure 8(b4)). In a word, from the spectral respect, Figure 8 explain why Landsat and NTL classify
rural residential into different types. Furthermore, Figure 9 shows a typical case study in the outer
suburb by comparing part A and part B with validation data (part C) from Google Earth. This case
study is aimed to describe the difference mentioned above in a specific way. By zooming in Google
Map tile (c2), it confirms that rural residential spots are made up by built-up ISA with low intensity.
Figure 9(a2) is the result of supervised classification of Landsat images (Figure 9(a1)). Compared
with Google Map tile (c1), ISA in Figure 9(a3) representing sparse rural residential spots with low
built-up intensity is classified into urban land cover in Landsat images. Hence, the area amount of
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urban land cover from Landsat classification is larger than that of urban land use because of sparse
rural settlements. On the contrary, VIIRS DNB data (Figure 9 Part B) in the same place show different
information in detail. There is almost no rural residential spots with low intensity of human activity
being classified into urban land use in nightlight data. From the aspect of spectral features and case
study, it was found that Landsat images determine the pixel class according to the physical property
without considering too much the function or application type of it but NTL data classify it in the
opposite way.
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Figure 9. Part A is Landsat 8 OLI in Beijing and its surround (a1), (a2) is local zoom-in of the rectangle
in (a1) and (a3) is the result of classification. The (b1) is VIIRS DNB, (b2) is local zoom-in of the
rectangle, and (b3) is the result of the GA-UCAT method. The (c1) is images from Google Earth and
(c2) is zoom-in of the rectangle in (c1).
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The difference of classification results of rural residential settlements from Landsat and NTL
images has an impact on their applications in urban studies. The urban boundary extracted from
Landsat classification results shows fragmentized shape, because urban extents classified from them
cover rural residential spots with dispersive distributions. By contrast, for the reason that NTL images
focus on urban land use usually showing in concentrated form, their classification results can produce
a relatively complete city boundary. Taking UHI as an example to explain how this boundary issue
effects city studies, if the fragmentized boundary from Landsat images is applied, then the UHI
intensity would be decreased by the low temperature of the rural settlement. Conversely, a relatively
complete urban border is produced from results of GA-UCAT. For the reason that information of city
extents is the basis for detecting temporal and spatial patterns of urban dynamics, a complete boundary
is more useful in city studies. However, it is worth noting that despite this slight difference of Landsat
and NTL data, given the resolution gap between them, Landsat images were accurate enough to
validate the GA-based method in this paper. Additionally, because this difference, often appearing
in small cities or remote suburbs, to mitigate its impact on accuracy assessments, key cities with
booming economy have been chosen in that part. Generally, by pointing out the discrepancy between
Landsat VNIR and NTL image, it explains why only large cities instead of the whole clusters are
selected in accuracy assessments in this paper. Besides, this discussion proposes novel aspects that
it is necessary to consider this differentia before application. For example, if the utility focused on
land cover, then Landsat images would be the better choice. Conversely, NTL data are more suitable
for some city studies paying close attention to land use. Also, it is necessary that the impact of these
difference classifications on urban studies such as urbanization dynamics and UHI needs further
quantitative description.

5.2. Temporal and Spatial Evolution of Five Typical Chinese Urban Clusters

One of the applications of the GA-UCAT method in urbanization dynamics is to study
spatial–temporal evolutions of city clusters. Urbanization information of five typical Chinese urban
agglomerations was extracted by the GA-UCAT method for the year of 2012, 2015, and 2017. In order
to make assessments clear and evident, it is necessary to evaluate spatiotemporal evolution from the
qualitative and quantitative respect.

In term of the qualitative way, spatial distributions and growth patterns of all five urban
agglomerations were explored in detail. In Figure 10, it is clear to see that CC (d), CZX (b) and
BTH (c) are dual-nuclei city clusters, in which two major metropolises obviously cover most urban
areas and almost all urbanized development happens around their boundary. Specifically, dual-nuclei
cities like Beijing and Tianjin in the BTH Region make great contributions in carrying on economic and
urbanization growth of the whole city clusters [51]. On comparison with this two-core growth pattern,
the Yangtze River Delta (a) and the Pearl River Delta (e), the most developed regions with greatest
GDP in the country, belong to the multi-core pattern namely several major cities with large urban
land use there. This is mainly due to dense urbanization of both YRD and ZRD located in the estuary
of the river which is a key factor for international trade. Although these two regions share a similar
growth pattern, there are still some differences of urbanization dynamics between them. By learning
from “Universal Gravitation”, urbanization studies employ gravity terms such as radiation capacity
and extents, to represent the impact of central cities on their satellite towns. Figure 10a shows that
the distributions of urban areas in the YRD are more disperse than in the PRD. These characteristics
indicate that central cities in the YRD have larger radiation extents while major cities in PRD show
stronger radiation capacity within limited areas. Generally, in Figure 10, there is a growth tendency
from 2012 to 2017 particularly in the CZX and PRD. In the CZX and BTH, almost all urbanization arose
around the major core cities at relatively low intensity. Arguments whether the urban growth pattern
of BTH is positive or negative have sparked a heated discussion in the whole society particularly in
the study of Chinese urbanization. Compared with the other three regions especially PRD, in which
the urbanization process takes on larger areas with higher intensity, the BTH urbanized way is less
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vigorous in urban agglomerations development. Nevertheless, the major cities in PRD show stronger
radiation capacity in the whole clusters, which allows the region to develop in a continuous way with
great vigor. Besides, taking Beijing as an example, an inappropriate pattern of urban growth may
bring pressure on citizens living there such as severe traffic congestion, crowded dwelling conditions,
and even shortage of water resources. Generally, from spatial means, by investigating the distributions
and growing patterns of five selected city clusters, it was found that the multi-core pattern shows
faster and more continuous urban growth than the dual-core one and major cities with strong radiation
capacity and large radiation extents can conduct promising development of the whole region.
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From the quantitative respect, Figure 11 and Table 2 show specific and detailed information of
urbanization in five selected city clusters. In Figure 11, it is clear that the number of urban areas in the
Yangtze River Delta (urban area in 2012 is 12,354.75 km2) are much more than the others. However,
the CZX is the least urbanized region due to its minimum city extents, which coincides with the
social-economic development status of this whole clusters. The YRD not only shows the largest urban
areas but also has the greatest urbanization from 2012 to 2017. Additionally, the number of urban areas
in BTH, CC, and PRD are generally on a similar level while the first one is slightly more developed
than the latter two. The progress of urbanization in the PRD shows a great increase from 2012 to
2015, sharing the similar tendency of economic growth in this region. However, by only comparing
with the absolute amount of the built-up area it is not able to show the entire growth conditions
because the size of five regions differ a lot from each other. Therefore, urban rate, a more evident index,
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is proposed to discover the temporal dynamics of urbanization. Different from the result of absolute
amount, the urban rate of the PRD (14.38% in 2012) is highest. Following PRD, YRD comes second top
in five selected city clusters and urban proportion of these two regions is almost as twice as others.
This finding is relatively consistent with great economic prosperity development there in recent years.
The other rate of urban area ranges from large to small as: the BTH, CZT, and CC, while they are
almost on a similar level. When it comes to the changes from 2012 to 2017, the YRD shows high growth
rate over the whole period while PRD represents a slightly different growth tendency. By integration
of absolute number and proportion data, PRD and YRD are classified as the most urbanized urban
clusters of these five selected cases. The urban rates in another three regions grew steadily from 2012 to
2017. Further study needs to pay attention to this slow development with more quantification indexes,
in order to explore why their urbanization development lags behind PRD and figure out how to help
them break through the barrier of growth. To sum up, discussion here confirms applications of results
from the GA-UCAT method in exploring spatial-temporal evolution.
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Figure 11. Urban areas change from 2012 to 2017 in five typical Chinese urban clusters. The histogram
in this figure represents the area of urban extents. The line chart shows urban rate changes from 2012
to 2017. The left axis represents the quantity of urbanization while the right axis represents the urban
rate. Yangtze River Delta (YRD), Chengdu-Chongqing (CC), Changsha-Zhuzhou-Xiangtan (CZX),
Beijing-Tianjin-Hebei Region (BTH) and Pearl River Delta (PRD).

Table 2. The urbanization growth from 2012 to 2017 in five urban clusters.

Cities
Urban Area (km2) Urban Rate (%)

2012 2015 2017 2012 2015 2017

YRD 12,354.75 13,476.50 14,206.25 11.90 12.98 13.72
CC 6067.75 6421.00 6551.75 3.25 3.44 3.51

CZX 997.25 1072.00 1189.50 3.55 3.82 4.23
BTH 8086.00 8145.75 443.50 3.77 3.80 3.94
PRD 5994.00 7344.25 7551.25 14.38 17.61 18.11

Yangtze River Delta (YRD), Chengdu-Chongqing (CC), Changsha-Zhuzhou-Xiangtan (CZX), Beijing-Tianjin-Hebei
Region (BTH) and Pearl River Delta (PRD).

6. Conclusions

To address the problem of determining optimal thresholds in the studies of urbanization dynamics,
a Genetic Algorithm-based urban cluster automatic threshold (GA-UCAT) approach is proposed in
this paper. By combining VIIRS DNB, NDVI, and NDBI data, the GA-UCAT method takes advantages
of complementary characteristics of these three data sources in terms of displaying well the difference
between urban and non-urban land use. The Genetic Algorithms are employed in GA-UCAT to
automatically determine the best solutions named thresholds. This GA-based method estimates the
optimal threshold by modified fitness function incorporating between-class variance and inter-class
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variance. Note that the relatively complex methodology of GA-UCAT was introduced in detail,
this is to explain why and how this method can work to produce optimal thresholds. However,
the application of this method is much easier, because of the existing Genetic Algorithms Toolbox of
MATLAB. The simplicity and efficiency allows great potential for the GA-UCAT method to be widely
applied in further urban studies.

Results cover details of GA-UCAT and accuracy assessments of this new method. The case
study in PRD proves that integration of the three data sources mentioned above is the better choice.
The reasons for this combination are explained from the aspects of spectral features and results of
modified fitness function. Additionally, compared with MCD12Q1, which was only updated to 2012,
this new method tackles issues of non-temporally current data which are common in global land
cover products. In terms of comparing with Landsat 8 OLI images, the accuracy assessments for
the GA-UCAT method conducted from both qualitative and quantitative respects, confirm that the
GA-based method with combination of NTL and VNIR data can automatically determine optimal
thresholds with simplicity, efficiency, and high accuracy. This proposed method is validated to perform
better in developed regions, where it is more necessary and urgent to obtain timely and detailed urban
information for guiding continuous and rapid development. Because even the lower accuracy in less
urbanized cities such as Changsha (OA = 0.854 and Kappa = 0.699) is recognized as an acceptable result,
this new method has proved to be accurate enough for mapping urban dynamics. To conclude, the high
efficiency and accuracy of the GA-UCAT method confirm its promising application for monitoring
urbanization at mega-cluster scales.

Additionally, discussion in this paper includes two parts namely the difference of classification
results between Landsat VNIR and VIIRS DNB images and an example of the application of GA-UCAT
in spatial-temporal urban changes. This discrepancy mainly results from the fact that Landsat images
classify rural settlement spots into urban built-up land cover but NTL data classify them as rural
land use. Without the influence of fragmented rural settlements, the results of the GA-UCAT method
can describe urban distributions with a relatively complete boundary, which is important to the city
studies especially in urbanization dynamics and UHI. Because this difference is often found in less
developed regions, to mitigate its influence on accuracy assessments, the most developed cities are
selected from every cluster. Besides, to evaluate the spatial-temporal urbanized patterns, urbanization
information in five typical Chinese urban agglomerations including the YRD, CC, CZX, BTH, and PRD
was extracted by the GA-UCAT method in the years of 2012, 2015, and 2017. There are two major ways
of spatial distributions and growth named dual-core and multi-core patterns and the latter one shows
a faster development rate in the case study. From both the absolute amount and the proportion of
built-up area, the YRD and PRD are the most urbanized regions in the country with the greatest area
amount of urban land use and fastest city growth from 2012 to 2017. Compared with them, CC, CZX,
and BTH show relatively low urban rate and growth especially CZX, the least developed city cluster
among them. This coincides with situations of economic growth, cluster size, population and GDP.

In summary, the GA-UCAT method is promising in urban studies and it could be employed in
other regions with more comparisons and quantitative descriptions utilized to discover details of city
development in the future. Moreover, this method can be further modified for the last generation NTL
data (DMSP-OLS) available from 1992 to 2013. After making DMSP-OLS and VIIRS DNB comparable,
using the proposed method can produce long temporal series urbanized information which is crucial
to address environmental issues resulting from rapid urbanization.
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