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Abstract: Topography complicates the modeling and retrieval of land surface albedo due to shadow
effects and the redistribution of incident radiation. Neglecting topographic effects may lead to a
significant bias when estimating land surface albedo over a single slope. However, for rugged
terrain, a comprehensive and systematic investigation of topographic effects on land surface albedo
is currently ongoing. Accurately estimating topographic effects on land surface albedo over a
rugged terrain presents a challenge in remote sensing modeling and applications. In this paper,
we focused on the development of a simplified estimation method for snow-free albedo over a
rugged terrain at a 1-km scale based on a 30-m fine-scale digital elevation model (DEM). The
proposed method was compared with the radiosity approach based on simulated and real DEMs.
The results of the comparison showed that the proposed method provided adequate computational
efficiency and satisfactory accuracy simultaneously. Then, the topographic effects on snow-free
albedo were quantitatively investigated and interpreted by considering the mean slope, subpixel
aspect distribution, solar zenith angle, and solar azimuth angle. The results showed that the more
rugged the terrain and the larger the solar illumination angle, the more intense the topographic
effects were on black-sky albedo (BSA). The maximum absolute deviation (MAD) and the maximum
relative deviation (MRD) of the BSA over a rugged terrain reached 0.28 and 85%, respectively, when
the SZA was 60◦ for different terrains. Topographic effects varied with the mean slope, subpixel
aspect distribution, SZA and SAA, which should not be neglected when modeling albedo.

Keywords: land surface albedo; snow-free albedo; rugged terrain; topographic effects; black-sky
albedo (BSA)

1. Introduction

Land surface albedo, defined as the fraction of incident solar radiation (0.3–3 µm) reflected by
land surfaces [1,2], is one of the most significant geophysical variables affecting the Earth’s climate
and controlling the surface radiation budget. It plays a crucial role in a variety of models, including
general circulation models, land surface climate models, energy balance models, hydrology models,
and biosphere models. Land surface albedo under ambient light conditions, also known as blue-sky
albedo, is a combination of directional hemispheric reflectance, known as black-sky albedo (BSA), and
bihemispherical reflectance, known as white-sky albedo (WSA); blue sky albedo takes into account
the proportion of diffused skylight illumination and the solar zenith angle [3–6]. Over recent decades,
land surface albedo remote sensing estimation algorithms have been developed, demonstrating
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that a bihemispherical integration method using the bidirectional reflectance distribution function
(BRDF) [7–9] has a robust performance and is widely used in albedo estimation. This method for
estimating albedo generally assumes that the land surface terrain is flat and homogeneous [10,11],
and albedo products have been created with this method using different satellite datasets, such as the
Moderate Resolution Imaging Spectroradiometer (MODIS) [12], the polarization and directionality of
Earth reflectances (POLDER) [13], the multi-angle imaging spectroradiometer (MISR) [14], and the
Clouds and the Earth’s Radiant Energy System (CERES) [15].

Spatial heterogeneities, which are comprised of complex topography and heterogeneous land
cover, complicate the estimation of land surface albedo [16]. Directly applying albedo estimation
methods that are suitable for flat terrain to a rugged terrain leads to large errors [17,18]. Actually,
topography plays different roles in albedo estimation at different spatial scales [19]. For a single
slope, physical-based BRDF models, such as the improved four-scale geometric-optical model for
sloping terrain (GOST) [20], the improved soil-leaf-canopy radiative transfer model for sloping terrain
(SLCT) [21], the improved Li-Strahler geometric-optical canopy model for sloping terrain (GOMST) [8],
the vertical vegetation model (VVM) [7], the path length correction (PLC) model [22], have been
developed based on the radiative transfer principle and the geometric optical theory, which depend on
the orientation of the plant stand and the particular configuration of the sun direction and the terrain
slope [7,8]. By integrating the BRDF over the exitance hemisphere for a single irradiance direction,
the BSA for a single slope can be obtained; by integrating the BRDF over all viewing and irradiance
directions, the WSA for a single slope can be calculated. Investigations have shown that the albedo
for a single slope is related to the slope and aspect of the single slope [7,8,23,24]. With an increase
in slope, the albedo becomes sensitive to the aspect of the slope, and the slopes facing away from
the sun may display larger albedos than those of the sunward facing slopes due to increased mutual
shadowing [8]. In addition, the terrain shadowing and diffused radiation from the adjacent slopes
significantly influences the single slope albedo [8]. For a rugged terrain, the topographic effects on
albedo generally focus on the integrated effects caused by subpixel slopes within one remote sensing
pixel [18,19]. Neglecting the subpixel topography variability in albedo estimation over a rugged terrain
leads to significant deviations [17,19,25], which can reach a relative error of 33% for a mean slope
of 40◦ [19]. It has been shown that MODIS albedo retrievals are also highly sensitive to subpixel
topography, and the MODIS albedo over a rugged terrain can change up to 100% for spruce vegetation
in winter [26].

Albedo depends on both land surface characteristics and the atmosphere. Topography alters land
surface characteristics and solar illumination geometry. Thus, the topographic effects on albedo over a
rugged terrain are related to the spatial distribution characteristics of the subpixel topography, the
solar zenith angle (SZA), and the solar azimuth angle (SAA) [17,19,25]. Compared to a single slope,
it is difficult to investigate the variation in albedo over a rugged terrain by integrating the effects of
subpixel slopes. The lack of a rigorous and effective physical BRDF/albedo model for rugged terrains
has contributed to this challenge. Wen et al. [19] developed a land surface albedo estimation and scale
correction method over a rugged terrain by the hemispheric integration of surface reflectance over a
rugged terrain, where the rugged terrain reflectance was estimated based on the subpixel reflectance.
Considering that the analysis of topographic effects on land surface albedo required huge amounts
of typical albedo data over the rugged terrain to ensure the reliability of the analysis results, this
method was inconvenient for the large-scale simulation of surface albedo because the rugged terrain
reflectances under the entire hemispheric view space were required during each albedo calculation
under different SZAs and SAAs. Therefore, we dedicated ourselves to developing a simplified method
to estimate the albedo over a rugged terrain directly by the subpixel albedo in this paper based on the
same idea in Wen et al. [19].

In this paper, we focused on quantitatively investigating topographic effects on snow-free albedo
over a rugged terrain based on the developed method. The BSA was related to both the topography
and the solar illumination geometry. The shadows induced by adjacent topographies immensely
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affected the BSA. However, the WSA was independent of solar illumination geometry and shadow
effects. Therefore, to emphasize the topographic effects on albedo, BSA was selected instead of WSA
in this paper. This paper was organized as follows. First, a BSA estimation method for rugged terrain
was proposed in Section 2. Section 3 described the DEM datasets and the generation method of the
reference BSA dataset. The proposed BSA estimation method was validated in Section 4.1; Section 4.2
quantitatively investigated topographic effects on snow-free BSA given variations in mean slope,
subpixel aspect distribution, SZA, and SAA. Finally, a conclusion was provided in Section 5.

2. Methods

2.1. BSA over a Rugged Terrain

The rugged terrain, which is comprised of a number of subpixel slopes with different slopes and
aspects, is shown in Figure 1a, where it is assumed that the entire terrain is horizontal. The SZA and
SAA are denoted by θs and φs, respectively, with respect to the horizontal plane.
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According to the definition of albedo [1], the BSA ρBSA_low(θs, φs) over a rugged terrain under a
clear sky is calculated by:

ρBSA_low(θs, φs) =
Φb

e

Φb
i

(1)

where Φb
e and Φb

i represent the reflected and incident radiation flux over the whole pixel under a clear
sky, respectively. The incident radiation flux over a rugged terrain is equal to the incident radiation
flux received by the corresponding projected horizontal pixel. Therefore, Φb

i is equal to

Φb
i = Es cos θs

∫
cos ajdAtj (2)

where Es represents the direct solar irradiance independent of topography,
∫

cos ajdAtj represents
the area of the projected horizontal pixel, aj denotes the slope of the subpixel slope, dAtj denotes the
incremental surface area of the subpixel slope and the subscript tj is the jth subpixel slope.

2.2. BSA Estimation Method Derivation

The subpixel slope BSA upscaling approach, based on the radiosity theory [27], is a feasible
scheme to estimate the BSA over a rugged terrain. However, with the upscaling approach, many
parameters are required, including reflectance characteristics, vegetation structural parameters,
illumination conditions, and the radiation of each subpixel slope, which results in more uncertainties
and computational complexities. The parameterized idea adopted by Wen [19] is an alternative method
to estimate BSA due to its simplicity and efficiency.
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This idea assumes that a virtual slope with slope α and aspect β exists, where incoming and
outgoing radiation are the same as the sum of those over a rugged terrain, as shown in Figure 1. Thus,
Φb

e can be expressed as:
Φb

e = Es cos ie
sρBSA_eq(ie

s, ϕe
s)Ae(θs, φs) (3)

where ρBSA_eq(ie
s, ϕe

s) represents the BSA of the virtual slope; ie
s and ϕe

s represent the relative
SZA and SAA corresponding to the virtual slope, respectively; and Ae denotes the area of the
virtual slope surface, which depends on both the subpixel topography distribution and the solar
illumination geometry.

According to the principle from the mountain radiative transfer theory [28], under a specific solar
illumination geometry and by neglecting the multi-scattering effects from an adjacent terrain, the
incremental reflected radiation flux of the jth subpixel slope, dΦb

ej, is given by

dΦb
ej = ΘsjEs cos isjρBSA_high(isj, ϕsj)dAtj (4)

where Θ represents the shadow factor, which is set to 1 for an illuminated slope and 0 otherwise [29–31]
and can be calculated using the ray-tracing method. Thus, Θsj indicates whether or not the subpixel
slope is sunlit. Variables isj and ϕsj represent the relative SZA and SAA, respectively, corresponding to
the subpixel slope, and ρBSA_high(isj, ϕsj) represents the BSA of the subpixel slope.

ρBSA_high(isj, ϕsj) is affected by topographic obstructions because several parts of the reflected
radiation from the outgoing hemisphere are obstructed. Variable dΦb

ej can be approximately calculated
as follows:

dΦb
ej = dΦ̃

b
ejVj (5)

where dΦ̃
b
ej denotes the reflected radiation flux neglecting obstructions from the adjacent terrain, and

Vj represents the sky view factor, which can be calculated using the DEM [32]. Sky view factor Vj
represents the unobstructed portion of the sky at a given location and ranges between 0 and 1. A value
of V close to 1 indicates that almost the entire hemisphere is unobstructed and visible, which is the
case for exposed features, such as planes and peaks; values close to 0 are present in deep sinks and
lower regions of deep valleys, where almost no sky is visible [33].

Therefore, ρBSA_high(isj, ϕsj) is equal to:

ρBSA_high(isj, ϕsj) =
dΦ̃

b
ejVj

dΦb
ij

= ρ̃BSA_high(isj, ϕsj)Vj (6)

where ρ̃BSA_high(isj, ϕsj) denotes the BSA neglecting obstructions from an adjacent terrain. Thus, the
sum of the subpixel slope radiation fluxes over a rugged terrain, Φb

e is as follows:

Φb
e = Es

∫
A(s)

cos isjρ̃BSA_high(isj, ϕsj)VjdAtj (7)

where A(s) denotes the subpixel slopes that are illuminated by the sun. Combining Equations (3)
and (7), we obtain ∫

A(s)

cos isjρ̃BSA_high(isj, ϕsj)VjdAtj = cos ie
sρBSA_eq(ie

s, ϕe
s)Ae(θs, φs) (8)

To focus on the topographic effects on BSA, land cover type within the rugged terrain is assumed
to be homogeneous, and the differences among ρ̃BSA_high(isj, ϕsj) for different subpixel slopes are
only caused by different solar illumination geometries and DEM characteristics. ρ̃BSA_high(isj, ϕsj) has
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an identical function form with that of ρBSA_eq(ie
s, ϕe

s), except that the latter input angle parameters
are different.

To unify the symbols and simplify the deduction, Equation (8) is substituted with∫
A(s)

Y(uj, vj)VjdAtj = Y(ue, ve)Ae(u, v) (9)

where Y(uj, vj) = cos isjρ̃BSA_high(isj, ϕsj), Y(ue, ve) = cos ie
sρBSA_eq(ie

s, ϕe
s), uj = cos isj, vj = cos ϕsj,

ue = cos ie
s, ve = cos ϕe

s, u = cos θs, and v = cos φs. To construct the virtual slope, we obtain the specific
formulas for ue, ve and Ae, which determine if the virtual slope exists. An alternative method based on
the Taylor expansion, which is similar to the derivation strategy of the Hapke shadow function [34,35],
was used to solve Equation (9). Specifically, Y is assumed to be mathematically well behaved, and Y is
expanded on both sides of Equation (9) in a Taylor series about u and v:

Ae(u, v)[Y(u, v) + ∂Y
∂u (u, v)(ue − u) + ∂Y

∂v (u, v)(ve − v) + . . .]
= Y(u, v)

∫
A(s)

VjdAtj +
∂Y
∂u (u, v)

∫
A(s)

(uj − u)VjdAtj +
∂Y
∂v (u, v)

∫
A(s)

(vj − v)VjdAtj + . . . (10)

Since u and v are independent variables, and Y is an arbitrary function of u and v, Equation (10) is
satisfied only if the coefficients of Y and its partial derivatives are separately equal on both sides of the
equation. Neglecting the higher order terms of the Taylor expansion for Y, we obtain Equation (11):

Ae(u, v) =
∫

A(s)
VjdAtj

Ae(u, v) =
∫

A(s)
(uj − u)VjdAtj/(ue − u)

Ae(u, v) =
∫

A(s)
(vj − v)VjdAtj/(ve − v)

(11)

Solving Equation (11), ue, ve, and Ae can be specifically and respectively be formulated as:

Ae(u, v) =
∫

A(s)
VjdAtj

ue =

∫
A(s)

ujVjdAtj∫
A(s)

VjdAtj

ve =

∫
A(s)

vjVjdAtj∫
A(s)

VjdAtj

(12)

By combining Equations (1), (2), and (12), we obtain:

ρBSA_low(θs, φs) =
cos ie

sρBSA_eq(ie
s, ϕe

s)Ae(θs, φs)

cos θs
∫

cos ajdAtj
(13)

By introducing Equation (12) into Equation (13), we obtain

ρBSA_low(θs, φs) = ρBSA_eq(ie
s, ϕe

s)

∫
A(s)

cos isjVjdAtj

cos θs
∫

cos ajdAtj
(14)

Equation (14) shows that the BSA over a rugged terrain can be obtained by the product between
the BSA of the virtual slope and a specified factor. Its discrete formula is written as
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ρBSA_low(θs, φs) = ρBSA_eq(ie
s, ϕe

s)

N
∑

k=1
Θsk cos iskVk/ cos ak

N cos θs
(15)

where N represents the number of the subpixel slopes within the pixel, and k denotes the kth
subpixel slope.

Equations (13) and (14) indicate that this method combines well with any single slope BSA
estimation method to estimate the BSA over a rugged terrain. In this paper, the combined PROSPECT
leaf optical property model and the SAIL canopy bidirectional reflectance model, also referred to as
PROSAIL, is selected as a the single slope surface reflectance and the BSA estimation method. The
PROSAIL model has been widely used to study plant canopy spectral reflectance [36] and is relatively
mature and efficient. For an infinitely inclined homogeneous vegetation canopy, the topographic
influences on the anisotropic reflectance simulated by the PROSAIL model can be categorized into two
aspects: photon path length alteration inside the vegetation layer and the adjustment of the extinction
coefficient. The first effect is handled by a simple geometric correction of the solar-terrain sensor
and the consideration of vertical tree growth [18,24]. Second, a spherical leaf inclination distribution
function (LIDF) is assumed, which allows the effective extinction coefficient for a unit path length to
be fixed in all directions, where the topographic effects on the extinction coefficient can be neglected.
Given the specific vegetation parameter and the terrain configuration, we can use Equations (13)
and (14) and the PROSOIL model under topographic considerations to estimate the BSA over a
rugged terrain.

2.3. Topographic Effect Analysis Methods

The topographic effects on BSA are influenced by the spatial distributions of the subpixel slopes,
SZA and SAA. A local sensitivity analysis method is used in this paper to analyze the effects of these
different factors. This method estimates the effect of a single factor on the outputs while maintaining
the other factors at their nominal values [37]. The maximum absolute deviation (MAD) and the
maximum relative deviation (MRD) are used to quantitatively analyze these sensitivities:

MAD =
N

Max
i=1

{
ai

model

}
−

N
Min
i=1

{
ai

model

}
(16)

MRD =

[
N

Max
i=1

{
ai

model

}
−

N
Min
i=1

{
ai

model

}]
/

N
Max
i=1

{
ai

model

}
(17)

where N represents the amount of estimated BSAs, and i represents the BSA index. Variable ai
model

denotes the ith estimated BSA calculated by the proposed method in this paper.

3. Datasets

3.1. Simulated DEM Dataset

To simulate and evaluate the BSA over a rugged terrain, nine simulated DEMs with 30 m spatial
resolution were generated to provide various magnitudes of roughness [19]. The statistical mean
values of the elevation, slope and sky view factor are listed in Table 1. For this research, only the central
1 × 1 km area (i.e., 33 × 33 grid cells) of the aforementioned DEMs was used to avoid calculation
errors at the edge of the DEM.
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Table 1. Basic parameters for nine simulated DEMs.

Filter Exaggeration Mean Elevation (m) Mean Slope (◦) Mean Sky View Factor

5 × 1 1 29.49 1.33 1.00
3 × 1 1 29.49 1.88 1.00
1 × 1 1 29.49 2.51 1.00
5 × 1 10 294.89 12.84 0.95
3 × 1 10 294.89 17.59 0.90
1 × 1 10 294.89 22.62 0.85
5 × 1 20 589.78 23.70 0.83
3 × 1 20 589.78 30.90 0.74
1 × 1 20 589.78 37.72 0.64

3.2. Global Digital Elevation Model (GDEM)

With an average elevation exceeding 4500 m, the Tibetan Plateau (Figure 2) is the largest and
highest plateau in the world. This plateau is characterized by high spatial heterogeneity due to the
presence of mountainous areas [38]. Therefore, it is an ideal region to compare and validate the
developed method in this paper. A 100 km × 100 km test area, with elevations ranging from 2492 m
to approximately 6769 m, is identified from the plateau. The DEM shown in the upper-right part of
Figure 2, with a 30-m spatial resolution of the study area, was collected by the Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) of the global digital elevation model, version 2
(ASTER GDEM2). The terrain over the southern parts of the study area was relatively complex and
rugged, whereas the northern terrain was relatively gentle. This study area, with a high spatial
heterogeneity, was suitable for the study of topographic effects on BSA.
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Figure 2. The Tibetan Plateau and the study area.

To effectively investigate the topographic effects on BSA, three typical categories for 1-km real
DEMs, with typical surface fluctuations, were selected from the study area: gentle slope terrain (10◦),
moderate slope terrain (20◦), and steep slope terrain (30◦). Each DEM category was comprised of six
representative DEMs with different subpixel aspect distributions. Their slopes and aspect distributions
are shown in Figure 3, where the code names of the DEMs (e.g., dem-10-1) are marked in the legend.
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The subpixel aspect distributions of the six DEMs from 1-km DEM category with a mean slope of 10◦

had the following characteristics, subsequently: dominant southwest-oriented distribution, relatively
uniform distribution, dominant southwest-oriented distribution, relatively uniform distribution,
dominant eastward-oriented distribution, and dominant northward-oriented distribution. The
DEMs with a mean slope of 20◦ had the following characteristics, subsequently: dominant
northward-oriented distribution, dominant eastward-oriented distribution, relatively uniform
distribution, dominant southwest-oriented distribution, dominant northward-oriented distribution
and dominant southward-oriented distribution. The DEMs with a mean slope of 30◦ had the following
characteristics, subsequently: dominant northwest-oriented distribution, dominant southwest-oriented
distribution, dominant southwest-oriented distribution, dominant southeast-oriented distribution,
relatively uniform distribution and dominant eastward-oriented distribution.
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Figure 3. Distributions of slope (a,c,e) and aspect (b,d,f) within a 1-km pixel under real DEMs with
different mean slopes: (a,b) 10◦; (c,d) 20◦; and (e,f) 30◦. In the legends of (b,d,f), N, NE, E, SE, S, SW, W
and NW stand for north, northwest, east, southeast, south, southwest, west and northwest, respectively.
In the north, the SAA is 0◦. The SAA gradually increases in a clockwise rotation of the determined
direction, until the SAA is 360◦ (i.e., when the SAA rotated back to its original north position).
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3.3. Reference BSA Dataset Simulation Based on the Radiative Approach

Considering that it is difficult to obtain the albedo reference over a rugged terrain, and current
land albedo products have poor accuracies over a rugged terrain, the radiosity approach [39–41], which
is a widely used computer simulation model, was used to generate the reference BSA to evaluate the
performance of the proposed method. In this paper, the terrain was described by the DEM, and the
land cover was assumed to be homogeneous in the simulation scenario.

Specifically, the procedure included three steps: the anisotropic reference reflectance simulation
based on the radiosity approach, the spectral BSA calculation by integrating the reflectance over the
hemispheric exitance given an illumination direction, and the broad-band shortwave BSA calculation
by integrating the spectral BSA weighted by the incident radiation. In the first step, the reflectance
characteristics of each subpixel slope were acquired based on the PROSAIL model under topographic
consideration and upscaled to reflectance values over a rugged terrain based on the radiosity approach.
In this paper, considering that the BSA of soil has a similar variation with topography as that of
vegetation, only the vegetation BSA variation was analyzed; the input parameter specifications in the
PROSAIL model are shown in Table 2 and Figure 4.

Table 2. Specification of input parameters in the PROSAIL model.

Model Parameters Unit Range

Leaf parameters

Leaf structure index unitless 1.5
Leaf chlorophyll content [µg/cm2] 40
Leaf dry matter content [g/cm2] 0.009

Leaf water content [cm] 0.01
Leaf brown pigment [g/cm2] 0.0

Soil parameters Reflectance —— Shown in Figure 4a

Canopy structure parameters
LAI [m2/m2] 3

Leaf inclination distribution function —— Spherical
Hot spot size parameter [m/m] 0.01

Atmospheric condition Incoming radiation —— Shown in Figure 4b

Illumination view geometry

Solar zenith angle [◦] 0–90 at a 5◦ interval
Solar azimuth angle [◦] 0–360 at a 5◦ interval
View zenith angle [◦] 0–90 at a 5◦ interval

View azimuth angle [◦] 0–360 at a 5◦ interval

Terrain DEM —— Nine simulated DEMs
and real DEMs
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4. Results and Discussion

4.1. Modeled BSA Accuracy Assessment

To analyze the accuracy of the modeled BSA with the proposed method, a simulation scenario
was constructed based on both the nine simulated DEMs and three real DEM categories. For the
simulation scenarios, the realistic tree shape parameters, component signatures, and other parameters
are listed in Table 2. Then, the modeled BSAs are estimated by the proposed method in Section 2.2,
and the reference BSAs are generated by the method in Section 3.3. The determination coefficient (R2),
root mean square errors (RMSE), mean absolute percentage error (MAPE) and mean bias (Bias) are
adopted to evaluate the accuracy of the proposed method.

Figure 5a shows the comparison results of the modeled and reference BSAs over nine simulated
DEMs. It is found that these two types of BSAs are close in magnitude, indicating that a majority
of data points are distributed around the 1:1 line with a small RMSE (0.0060), MAPE (0.0038) and
Bias (0.0038). This demonstrates that the modeled BSA is consistent with the reference BSA. Table 3
presents the error statistics of the BSA for different simulated terrains. The RMSE varies from 0.0002
to 0.0074, and the MAPE increases from 0.0001 to 0.0066 as the mean slope increases from 1.33◦ to
37.72◦, which indicates that with an increase in mean slope, the accuracy of the proposed method
gradually decreases but is still acceptable. This can be explained by the increase in mean slope, which
causes the multi-scattering effects and the terrain obstruction effects for the reflected radiation to
become increasingly obvious; however, the proposed method neglects multi-scattering effects and
approximately considers the terrain obstruction effects. These results confirm the capability of the
proposed method for estimating BSA with simulated DEMs.

The real DEMs provide a great number of terrains with different subpixel slope distributions,
which are closer to the natural characteristics of the terrain than those of the simulated DEMs with
normal distributions. Figure 5b indicates that the modeled BSA shows an adequate performance, with
a high R2 close to 1, a low RMSE of 0.0038, a MAPE of 0.0023 and a Bias of 0.0023. Table 4 presents the
error statistics under different real terrain conditions. Overall, the results obtained from the comparison
with the real DEMs are similar to those of the simulated DEMs. Therefore, the proposed method
provides a high-quality BSA dataset and can be applied to investigate the topographic effects on BSA.

\multicolumn{2}{>{\PreserveBackslash\raggedleft}p{\cellWidthb}}{\diagbox[width=4.3cm, 

height=1.1cm] 

 

Figure 5. Scatterplots between the reference and the modeled BSAs over (a) simulated DEMs and
(b) real DEMs.
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Table 3. Accuracy statistics of the modeled BSA over different simulated DEMs.

Mean Slope (◦) R2 RMSE MAPE Bias

1.33 1.0000 0.0002 0.0001 0.0001
1.88 1.0000 0.0003 0.0002 0.0002
2.51 1.0000 0.0006 0.0003 0.0003
12.84 0.9985 0.0059 0.0037 0.0037
17.59 0.9961 0.0071 0.0050 0.0050
22.62 0.9873 0.0078 0.0059 0.0059
23.70 0.9893 0.0078 0.0059 0.0059
30.90 0.9782 0.0078 0.0065 0.0065
37.72 0.9734 0.0074 0.0066 0.0066

Table 4. Accuracy statistics of the modeled BSA over different real DEMs.

Mean Slope (◦) R2 RMSE MAPE Bias

10 0.9998 0.0020 0.0011 0.0011
20 0.9994 0.0030 0.0023 0.0023
30 0.9963 0.0056 0.0036 0.0036

4.2. Topographic Effects on BSA

4.2.1. Factors Influencing the BSA over a Rugged Terrain

Real DEMs were used to investigate the topographic effects over a rugged terrain because they
provide a sufficient range of topographies that cover a wide variety of natural terrain characteristics.
Figure 6 shows the hemispheric BSAs modeled with different solar illuminations over a flat terrain
and the three typical real 1-km DEMs (i.e., dem-10-1, dem-20-1, and dem-30-1), which indicate that
BSA distributions with solar illumination geometries are intensively affected by topography. Figure 6a
shows that the BSA over a flat terrain monotonously increases with SZA regardless of the SAA value.
When the terrain is relatively flat in dem-10-1, several minor changes occur in the shape of the BSA
distribution, as shown in Figure 6b. The BSA increases with SZA when the SZA is substantially less
than 90◦ and has a weak relationship with the SAA, but the BSA decreases when the SZA is close to
90◦ due to the terrain block of incident radiation. With an increase in mean slope for dem-20-1, the
shape of the BSA distribution evidently changes and becomes asymmetric, as shown in Figure 6c.
The north-facing slope terrains are dominant in dem-20-1, which indicates that the BSA is dependent
on the SAA. The BSA increases monotonously with the SZA and is relatively large when the SAA is
oriented north. In comparison, the BSA first increases then decreases with the SZA and becomes small
when the SAA is oriented south due to the existence of shadows. As the terrain becomes more rugged
in dem-30-1, the BSA generally decreases, and the shape of the BSA distribution clearly changes. This
phenomenon can be explained by the fact that shadow effects are more obvious in dem-30-1 and
substantially influence the BSA. Thus, we conclude that the subpixel slope distribution and the solar
illumination geometry are two important factors influencing BSA, and BSA variations with varying
illumination angles present different trends under different terrain conditions. Specifically, the mean
slope, subpixel aspect distribution, SZA, and SAA are four main controlling factors for quantitatively
analyzing the topographic effects on BSA.
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Figure 6. Hemispheric distribution of BSA under different SZAs and real 1-km DEMs: (a) flat terrain;
(b) dem-10-1; (c) dem-20-1; and (d) dem-30-1. The radial coordinate is the SZA, and the angular
coordinate is the SAA. The red line represents the north-south line; the backward side represents the
northern aspect (i.e., where SAA is equal to 0◦), and the forward side represents the southern aspect
(i.e., where SAA is equal to 180◦).

4.2.2. BSA Variation with Mean Slope

The 1-km DEMs over the study area were used to investigate the subpixel effects of the mean
slope on the BSA (shown in Figure 7). When the SZA is 0◦, a shadow does not exist, but the spatial
variations in the subpixel slope and aspect within the rugged terrain affect the BSA. The MAD and
MRD of the BSA reach 0.08 and 36%, respectively. However, when the SZA is 30◦, shadows occur, and
the topographic effects on the BSA are further enhanced. The MAD and MRD of the BSA increase
to 0.12 and 50%, respectively. When the SZA is 60◦, the MAD and MRD of the BSA reach 0.28 and
approximately 85%, respectively, due to more obvious shadow effects and terrain obstruction effects.
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Generally, BSA presents a decreasing trend with an increase in mean slope. When the SZA is 0◦,
the BSA clearly decreases with an increase in mean slope because several parts of the outgoing reflected
radiation in the hemisphere are obstructed even though there is not a shadow present. However, when
the SZA is 30◦, and the SZA is 60◦, the BSA variation with an increase in mean slope is maintained,
but it is not as obvious. This is because BSA is affected by various factors, such as SZA, SAA, shadows,
terrain obstruction, and the slope and aspect distribution of the subpixel slopes. When the terrain is
gently rugged (20◦), the shadow and occlusion effects of the terrain may be weak, but the alteration
in regional illumination angle caused by the topography may result in an increase in BSA, as shown
in Figure 7b,c. The regional SZA of the subpixel slope facing the sun is small, whereas that of the
subpixel slope facing away from the sun can be relatively large, which indicates that the BSA is low
when sunward subpixel slopes account for the majority of the data. When the terrain is steep (30◦),
the effects of shadows and terrain obstruction play a dominant role, which means that many subpixel
slopes cannot be illuminated by the sun, and many parts of the outgoing reflected radiation in the
hemisphere are obstructed. Therefore, the BSA decreases significantly regardless of the SZA, as shown
in Figure 7.

4.2.3. BSA Variations with Sub-Pixel Aspect Distributions

Three typical 1-km DEM categories were used to investigate the effects of subpixel aspect
distribution on BSA. Without loss of generality, the SAA is set to 150◦ in this analysis. For each
category, the subpixel aspect distributions of the six DEMs differ significantly. Figure 8 shows the
BSA variation with the subpixel aspect distribution. When the SZA is close to 0◦, the influence of the
subpixel aspect distribution on BSA under different terrains is minimal because shadowing does not
occur in this scenario. The influence of the subpixel aspect distribution increases with SZA regardless
of the mean slope of the terrain. When the mean slope is 30◦, the MAD of the BSA increases from
0.01 to approximately 0.15 with an increase in SZA from 0◦ to 60◦. This is because shadows gradually
occur as the SZA increases, and the subpixel aspect distribution is related to the shadow ratio and
distribution. When the terrain is relatively flat, the influence of the subpixel aspect distribution on the
BSA is minimal, as shown in Figure 8a. With an increase in mean slope, the influence of the subpixel
aspect distribution on the BSA gradually increases. The MADs of the BSAs over the terrain with mean
slopes of 10◦, 20◦, and 30◦ are 0.06, 0.08, and 0.15, respectively. Overall, with an increase in SZA and
mean slope, the influences of the subpixel aspect distribution gradually increase. In addition, the
influence of the subpixel aspect distribution has a strong relationship with the SAA, which will be
discussed in Section 4.2.5.

Based on specific solar illumination geometries and mean slopes, the topographic effects on
the BSA are dependent on the spatial distribution characteristics of the subpixel aspect. When the
proportion of the subpixel slope facing the sun is high, the BSA is relatively large, whereas the BSA
becomes small when the proportion of the subpixel slope facing away from the sun is high. For instance,
when the SZA is 60◦, and the SAA is 150◦ (i.e., the sun is to the southeast), the BSA of the dominant
eastward-oriented dem-10-5 is at a maximum in Figure 8a, the BSA of the dominant southward-oriented
dem-20-6 is at maximum in Figure 8b, and the BSA of the dominant eastward-oriented dem-30-6 is at a
maximum (and that of the dominant northwest-oriented dem-30-1) is at a minimum in Figure 8c.
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4.2.4. BSA Variation with SZA

Both in situ measurements and remote sensing data from satellite and aircraft platforms have
shown that BSA is strongly dependent on SZA [42–45]. Figure 9b,d show the BSA simulations with
different SZAs, which exhibits obvious spatial variation characteristics corresponding to the mean
slope distribution (shown in Figure 9a). As the SZA increases, the dynamic range of BSA becomes
gradually large due to the modulation in the regional illumination angle and shadow effects. When the
SZA is 0◦, BSA varies from 0.14 to 0.22. In this case, shadows do not exist because the sun is at nadir,
and the variation in BSA is mainly caused by the alteration in the regional illumination angle due to
the inclined terrain. When the SZA is 30◦, BSA varies from 0.12 to 0.24. The range increases slightly
due to the existence of shadows and the increase in SZA. When the SZA is 60◦, the BSA range, which
becomes even larger, varies from 0.05 to 0.33. The low value of BSA (close to 0) can be explained by the
fact that shadow effects are serious in some circumstances when a majority of the subpixel slopes face
away from the sun. The high BSA value can be attributed to the high proportion of subpixel slopes
facing toward the sun, where few shadows exist, even though the SZA is large.

Furthermore, three typical 1-km DEM categories are used to analyze the variations in topographic
effects based on SZA. The variations in BSA based on SZA for different terrains are shown in Figure 10.
When the terrain is flat (Figure 10a), BSA increases monotonously as the SZA increases. When the
terrain is rugged (Figure 10b,d), BSA first increases then decreases with an increase in SZA. When the
mean slope is 30◦, the MAD and MRD of the BSA over rugged terrains caused by different SZAs exceed
0.22 and approximately 88%, respectively. This is because when the SZA is close to 90◦, the shadow
effect is obvious. The SZA at the inflection points gradually decreases from 70◦ to approximately 50◦ as
the mean slope increases from 10◦ to 30◦, respectively. These inflection points can be attributed to the
increase in mean slope, which causes shadows to more easily appear when the SZA is relatively small.
It is concluded that the increasing trend in BSA with SZA gradually slows as the mean slope increases.
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4.2.5. BSA Variation with SAA

Figure 11 shows the variation in BSA based on DEMs with different mean slopes with a specified
SAA for different SZAs. These DEMs are dem-10-3, dem-20-3, and dem-30-3, whose subpixel aspect
distributions exhibit a dominant southwest-orientation, a relatively uniform distribution, and a
dominant southwest-orientation, respectively. The influence of the SAA on BSA increases with
SZA. For a mean slope of 30◦, the MAD of the BSA with a 30◦ SZA is approximately 0.03, while the
MAD of the BSA with a 60◦ SZA exceeds 0.07. The SAA has little impact on BSA when the terrain
is relatively flat, whereas the SAA considerably affects the BSA when the terrain is rugged. The
influence of the SAA on BSA gradually increases with an increase in mean slope. Figure 11d shows
that as the mean slope increases from 0◦ to 30◦, the MAD of BSA varies from 0 to approximately
0.07, which can be explained because the shadow effects are obvious as the SZA and the mean slope
increase simultaneously.
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Furthermore, the variations in BSA with SAA under different subpixel aspect distributions are
also analyzed. Figure 12 shows the variation in BSA with SAA over the different terrains with different
aspect distributions when the SZA is 30◦. It is concluded that there is a parabolic distribution between
BSA and the SAA. When the SAA is close to the predominant aspect of the subpixel slopes, the
BSA is relatively large, as shown in the variation curves with SAA in Figures 11 and 12. This is
because the shadow area is relatively small in this situation. When the SAA is opposite that of the
predominant aspect at the end of the parabolic distribution, the BSA reaches a minimum due to the
large shadow ratio. For terrains in dem-10-2, dem-10-4, dem-20-3 and dem-30-5, which have relatively
uniform aspect distributions, the SAA has little effect on BSA. When the aspect is unevenly distributed,
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the parabolic distribution characteristics between the SAA and BSA are distinct. For dem-30-1, the
northwest-facing slopes comprise the majority; therefore, the maximum and minimum BSAs appear in
the northwestern and southeastern directions, respectively, which is where the sun is located. The BSA
variations in dem-30-2 and dem-30-3 with SAA coincide due to the analogous aspect distributions
between these two DEMs. These results demonstrate that BSA over a rugged terrain is sensitive to
SAA, and the subpixel aspect distribution has considerable influence on the relationship between the
SAA and the BSA.
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4.3. Method Limitations

The accuracy assessment shows that with an increase in mean slope, BSA estimation
errors gradually increase due to model simplification and approximations in problems such as
multi-scattering and terrain obstruction. However, in general, the multi-scattering effect from adjacent
terrains has a weaker contribution to BSAs, unless the slope lies in deep valleys or the adjacent
terrains have high reflectance [28,46]. Therefore, considering that multi-scattering effect is negligible
for snow-free land surface and the developed method has high precision in the validation experiments,
the proposed method can have an adequate performance in vegetation and soil albedo estimations;
these problems may have little effect on the analysis of topographic effects on BSA. Unfortunately, the
developed method is not applicable to snow covered land surfaces with high reflectance. In addition,
due to the model assumption of homogeneous land cover, the developed method faces a challenge in
the mixed-pixel region. Subsequent research will focus on solving these problems.
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This paper mainly uses modeled BSA data with the proposed method to analyze the topographic
effects on BSA. The developed BSA estimation method was validated against the radiosity approach.
Therefore, developing an efficient collection method for in situ albedo data over rugged terrains and
validating the developed method against in situ data are urgent. In addition, in practical applications,
DEM quality and the mismatching between the DEM and the remote sensing imagery also affect the
accuracy of albedo estimation with the developed method. These basic data processing issues need to
be further discussed and addressed, although they are beyond the scope of this paper.

5. Conclusions

Neglecting topographic effects may lead to significant bias when estimating land surface albedo.
In this paper, we presented an efficient snow-free BSA estimation method over a rugged terrain. The
proposed method was validated using simulated DEMs and real DEMs. The validation results showed
that the modeled BSAs were consistent with the reference BSA, with an RMSE smaller than 0.01, which
confirmed the ability of the proposed method to estimate BSA (with acceptable errors). By comparing
the modeled BSA using the proposed method over the real DEM scenario, the topographic effects on
BSA were investigated in detail.

The BSA over a rugged terrain is influenced by the subpixel slope distribution (mean slope and
subpixel aspect distribution) and the solar illumination angle (SZA and SAA). These factors are related
to the modulation in the regional illumination angle and shadow effects, which play key roles in the
topographic effects on BSA. The more rugged the terrain and the larger the solar illumination angle,
the more obvious topographic effects are on BSA. Specifically, for the subpixel slope distribution, the
mean slope has a higher influence on BSA than that on the subpixel aspect distribution. For the mean
slope, BSA generally presents a decreasing trend with an increase in mean slope. The larger the SZA,
the more obvious the decreasing trend in BSA is with an increase in mean slope. When analyzing
the subpixel aspect distribution, for an increase in mean slope, the influence of the subpixel aspect
distribution on BSA gradually increases. Under specific solar illumination geometries and mean slopes,
the influences of the subpixel aspect distribution on BSA are dependent on the proportion of subpixel
slopes facing the sun. For the solar illumination angle, the SZA has a greater impact on BSA than that
from the SAA. When the terrain is relatively flat, BSA increases monotonously with an increasing
SZA. As the terrain becomes rugged, BSA first increases then decreases with an increase in SZA due
to the incident radiation terrain block. For the SAA, BSA over a rugged terrain is sensitive to the
SAA, and the influence of SAA on BSA increases with an increasing SZA and mean slope. A parabolic
distribution is found between BSA and the SAA. When the SAA is close to the predominant aspect of
the subpixel slopes, BSA is relatively large.

The motivation and findings in this study can benefit land surface albedo modeling and retrieval
in the field of remote sensing. Subsequent research will focus on practical remote sensing applications
and method improvements by considering multi-scattering effects.
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