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Abstract: Estimating the transformation between two images from the same scene is a fundamental
step for image registration, image stitching and 3D reconstruction. State-of-the-art methods are
mainly based on sorted residual for generating hypotheses. This scheme has acquired encouraging
results in many remote sensing applications. Unfortunately, mainstream residual based methods may
fail in estimating the transform between Unmanned Aerial Vehicle (UAV) low altitude remote sensing
images, due to the fact that UAV images always have repetitive patterns and severe viewpoint changes,
which produce lower inlier rate and higher pseudo outlier rate than other tasks. We performed
extensive experiments and found the main reason is that these methods compute feature pair
similarity within a fixed window, making them sensitive to the size of residual window. To solve
this problem, three schemes that based on the distribution of residuals are proposed, which are
called Relational Window (RW), Sliding Window (SW), Reverse Residual Order (RRO), respectively.
Specially, RW employs a relaxation residual window size to evaluate the highest similarity within a
relaxation model length. SW fixes the number of overlap models while varying the length of window
size. RRO takes the permutation of residual values into consideration to measure similarity, not only
including the number of overlap structures, but also giving penalty to reverse number within the
overlap structures. Experimental results conducted on our own built UAV high resolution remote
sensing images show that the proposed three strategies all outperform traditional methods in the
presence of severe perspective distortion due to viewpoint change.

Keywords: transform estimation; residual order; 3D reconstruction; camera pose estimation

1. Introduction

Transform estimation is an essential process in many remote sensing applications. For example,
in the tasks of image or point cloud registration [1–4], change detection [5], large scale 3D reconstruction,
and image stitching [6], data that acquired from different sensors, different time, and different angles
should be transformed to a unified coordinate system. Therefore, the performance of these systems are
rely on the accuracy of the estimated transformations. As for UAV aerial images, typical applications
including large scale image stitching [7] and image-based 3D reconstruction [8]. The estimators are
mainly based on matched keypoinits between UAV images. Mainstream feature descriptors such
as Scale Invariant Feature Transform (SIFT) [9], Speeded Up Robust Features (SURF) [10], or binary
descriptors [11] often couple with k-dimensional tree method [12] for feature matching. As shown in
Figure 1a–c, SIFT descriptors have been extracted from two images of the same scene, respectively
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with severe viewpoint change, slight viewpoint change, and scale change. The matching results are
represented by the lines among matched keypoints. Noteworthy that the pink lines depict the correct
matched results, while the yellow lines represent the wrong matched keypoints. One can see that
feature matching approach only consider the similarity between feature descriptor, while neglecting the
consistency of the space distribution of matched feature points. As a consequent, the wrong matches
may influence the accuracy of camera poses, which are derived from the estimated transformations.
Therefore, we need to remove the wrong matches while keeping the correct matches as many as
possible. This process is called matched feature refinement, where the correct and the wrong matches
are denoted as inliers and outliers, respectively.

(a) Slight viewpoint
change

(b) Severe viewpoint
change

(c) Scale change

Figure 1. The inliers and the outliers of Scale Invariant Feature Transform (SIFT) feature matching
results of Unmanned Aerial Vehicle (UAV) aerial images under different scenes, where red lines and
yellow lines denote the correct and the wrong matches, respectively.

As for the transform estimation algorithm, Random Sample Consensus (RANSAC) [13] is one
of the most famous that has been widely used in remote sensing area, such as registration [14], robot
localization [15] and plane fitting in point clouds [16]. Typically, RANSAC for UAV-based image
transform estimation algorithm includes the following three key steps. First, one need to choose an
appropriate model/structure, usually fundamental or homographic matrix, to represent the transform
between two UAV images. Second, a sample subset contains minimal data items is randomly selected
from the matched keypoints. Then a fitting transform and the corresponding parameters are computed
using only the elements of this sample subset. Third, check the consistency of the entire matched
keypoints according to the transformation which is obtained from the second step. A matched feature
pair will be considered as an outlier if the fitting residual exceeds a specified threshold. Otherwise,
the matched pair will be regarded as an inlier.

Although RANSAC is an efficient tool for generating candidate transform, the success of
hypothesise-and-verify scheme relies on “hitting” at least one minimal subset containing only inliers
of a particular genuine instance of the geometric model. Under RANSAC, each member of a subset S
is chosen randomly without replacement. Assume that the size of a minimal subset is p, the number
of all matched feature pairs is denoted as N with N � p. Then the probability that S contains all
inliers is approximately (1− ε)p, where ε is the outlier rate. Note that (1− ε)p decreases exponentially
with p. In the case of UAV aerial images transform estimation, we have p = 4 for homographies
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and p = 7 or p = 8 for fundamental matrices. Since large scale scene usually consists of several
planes, the pseudo outliers rate is very high in this situation. Namely the value of ε may be close to 1,
where the probability of S contains all inliers is drastically decreased.

It is worth noting that matched keypoints in UAV aerial images are usually contaminated with
heavy wrong matches due to the complex depth of field, repetitive pattern, etc. In other words,
for large value of p, consecutively getting p inliers via pure random selection is not an easy task.
Thanks to the widespread usage of robust estimators in computer vision, many innovations have
been proposed to speed-up random hypothesis generation. These methods aim to guide the sampling
process such that the probability of hitting an all-inlier subset is improved. The trick is to endow
each input features with a prior probability of being an inlier. Consequently, that data with high
probabilities are more likely to be simultaneously selected. For example, Chin [17] proposed a guided
sampling scheme, called Mult-GS, which is driven only by residual sorting information and does not
require domain-specific knowledge. Multi-GS uses feature similarity within a fixed residual window
to evaluate whether two keypoints pair come from the same transform or not. However, experimental
results show that setting fixed residual window size may reduce the robustness of the sampling process,
since the performances are sensitive to the size of the residual window.

In order to solve this problem, we proposed more flexible strategies to determine the window
size. The inlier probabilities are conditioned on the selected feature pairs and the similarity enables
accurate hypothesis sampling. First, a relaxation residual window size is employed for evaluating
the highest similarity within a relaxation model length. Second, we fixed the number of overlap
structures with sliding the window size for computing the similarity. Third, a similarity metric
that based on the permutation of residual values is proposed. The metric not only includes the
number of overlap structures, but also gives penalty to the number of reverse order within the overlap
structures.The experimental results conducted on our UAV remote sensing images show that the
proposed three algorithms are all superior to Multi-GS in the condition of severe perspective distortion
due to viewpoint change.

2. Related Works

The simplest strategy for estimating transformation between matched features is to minimize
the square of transformed residuals of keypoints. There are many variants of this scheme, such
as Weighted Least Squares (WLS) [18], M estimator [19], Least Median of Squares (LMS) [20],
S estimator [21], Repeated Median Mstimator [22]. Although simple and fast, the break point of
these methods are normally higher than 50%, since the performance is sensitive to the percentage of
outliers. The mainstream approaches are mostly based on hypothesis-and-verify strategy. Specially,
many enhancements on the hypothesis-and-verify framework are proposed in the framework of
RANSAC. For example, Progressive Sample Consensus(PROSAC) [23] employs the most promising
keypoint correspondences to generate hypotheses. Although consistent, PROSAC may fail in repetitive
texture regions where the feature descriptor are usually not distinguish. Other works include Optimal
Randomized RANSAC [24], Adaptive Scale Kernel Consensus (ASKC) [25] and Iterative Kth Ordered
Scale Estimator (IKOSE) [26], etc. In order to improve the accuracy of transformation between oblique
aerial image, Hu et al. [27] proposed a spatial relationship scheme that employed angular, location and
neighbor constraint to remove outliers. However, these methods cannot guarantee the consistency of
hypotheses due to their randomized nature.

Recently, some guided sampling methods have been proposed for accelerating the hypothesis
generation. This strategy usually has a process of feature pairs similarity analysis in the sampling
stage, which are mainly based on feature matching scores or location residuals. Typical methods
including dynamic and hierarchical algorithm [28], Top-k [29], Global optimization [30], Multi-GS [17],
kernal-based method [31], and Random Cluster Model Sampling (RCMSA) [32,33], etc. Specially,
Multi-GS accelerates hypothesis sampling by guiding it with information derived from residual
sorting. It is crucial that sorted residual sequence encodes the probability of two points come from the
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same model, which encourages sampling within coherent structures and thus can rapidly generate
all-inlier minimal subsets. As for RCMSA [32,33], its basic idea is to enhance the robustness of
minimal subset. As a result, they used feature clusters for generating candidate structures. Moreover,
the mode seeking approach [34] employed Medoid Shift [35] for seeking the mode in residual sorts.
The candidate structures then can be generated via the conditional probability that based on each
mode. Similarly, Residual Consensus(RECON) [36] used Kolmogorov-Smirnov (KS) [37] test to
evaluate whether two residual sort come from the same distribution or not. Then the sampling process
is based on the score of KS test. On the other hand, in [38–40], information exploited from keypoint
matching scores is used to extract promising hypothesis. Unfortunately, for multi-structure data, these
methods usually fail to achieve one clean solution within a reasonable time budget. Note that all
of Multi-GS [17], RCMSA [32,33] and Multi-GS-Oset [41]accelerate promising hypothesis generation
by using information derived from residual sorting. These methods can effectively handle most
multi-structure data. However, the limitation is that they assume spatial smoothness (i.e., the inliers of
a model instance must be coherent). This assumption is more restrictive than the spatial proximity
assumed by [42] and is often violated in practice.

We are also aware of recent work proposed in [43], which guides sampling process by using
residual information as well. This method performs a sequential “fit-and-remove” procedure
to estimate model instances of multi-structure data. Similarly, Lai [44] proposed the Efficient
Guided Hypothesis Generation (EGHG) method for multi-structure epipolar geometry estimation.
This algorithm combines two guided sampling strategies: a global and a local sampling strategy, which
are all guided by using both spatial sampling probabilities and keypoint matching scores, for efficiently
achieves accurate solutions. Noteworthy that these transform estimators has been successfully used in
many remote sensing tasks, such as fundamental matrix estimation with only translation and radial
distortion [45], multi-modal correspondence [46], Quasi-Homography transform estimation for wide
baseline stereo [47], and rotation-scaling-translation estimation based on fractal image model [48].
In particular, robust estimators are suitable for the model fitting task in point clouds, such as plane and
roof reconstruction [49–51], road fitting and segmentation [52,53], etc. Apart from the “fit-and-remove”
scheme, there are several strategies for estimating transformation. For example, Zai et al. [54] proposed
a covariance matrix descriptors to find candidate correspondences. Then a non-cooperative game is
constructed to isolate mutual compatible correspondences, which are considered as true positives.
As a consequent, the transformation can be acquired via correct correspondences. Although these
methods have achieved promising performances in many applications, estimating the transformation
between UAV images is still a challenging task, due to severe viewpoint changes, repetitive pattern
and complex depth of field.

3. The Proposed Residual Analysis Method

Pipeline of the proposed sampling algorithm including three key steps, which are respectively
match, sample and update. In the match stage, feature extraction and matching, such as PSIFT [55]
along with kd-tree, are conducted on two UAV aerial images. Parallax of the two images should larger
than a certain threshold to ensure that keypoint coordinates in two images are not identical. In the
sampling stage, the candidate models are generated from minimum feature sets. Entry in each set
is sampled based on conditional probability distribution, which is related to the similarity among
keypoint pairs. In the updating stage, similarity matrix is updated via the overlap structures in sorted
residual sequence. The conditional probability distribution is then updated from the similarity matrix.
Details are given as follows.

3.1. Similarity Evaluation Based on the Distribution of Structures

As mentioned in the pipeline, similarity between matched keypoint pairs play an important role
in the sampling process. Therefore, this section proposes three metrics for evaluating the similarity.
Let {xi}N

i=1 denotes an input matched keypoint set between two UAV aerial images, where xi stands



Remote Sens. 2018, 10, 291 5 of 19

for the i-th matched pair. Without loss of generality, let xi = (ui, vi, u′i, v′i), where (ui, vi) and (u′i, v′i)
are the coordinates of matched feature points, respectively. Let Θ = {θm}M

m=1 denote M transform
matrices, then the residuals for xi are calculated via the feature coordinate transformation. Assume
that the residuals of the i-th matched keypoint pair are the following equation.

r(i) = (ri
1, ri

2, ..., ri
M) (1)

where ri
m (m ∈ {1, 2, ..., M}) denotes the m-th residual for the i-th matched keypoint pair. Since the

similarity is based on residual order, we then sort the sequence according to the residual values, given
as follows.

a(i) = (ai
1, ai

2, ..., ai
M) (2)

where ai
m (m ∈ {1, 2, ..., M}) represents the m-th smallest residual. For example, ai

1 stands for the best
transformation of the i-th matched keypoint pair. Based on the residual order, Multi-GS proposed
a similarity metric that relates to the number of overlapping within top h structures, as given in
Equation (3).

f (xi, xj) =
1
h
|ai

1:h ∩ aj
1:h| (3)

where |ai
1:h ∩ aj

1:h| denotes the number of overlap structures in top h structures for matched keypoint
pair xi and xj, concerning with 1 ≤ h ≤ M. Multi-GS recommended the length of residual window size
as h = 0.1M. However, our experiments reveal that there exists two key factors in the sampling process.
First, the size of residual window is very important in generating promising models. In other words,
the window size should be adaptive determined by the distribution of residuals. Second, mainstream
methods didn’t take the order of residual into account, which may results in different order with the
same similarity. In order to handle these two problems, we proposed two flexible strategies, terms in
relaxation window and sliding model, for adaptively select the window size. Moreover, we investigate
the influence of residual order, then employ a penalty term in the similarity metric to enhance the
robustness of sampling process.

3.1.1. Relaxation Windows

Figure 2 depicts the motivation of the proposed relaxation method. For example, assume {θm}M
m=1

are M transform matrices or candidate structures, then two residual sequences can be generated from
matched keypoint pairs of x1 and x2, respectively. Let the window size in residual sequences is equal
to 6 (red rectangle). Note that there are three overlapping models, namely {θ1, θ2, θ4}, within the
specific window. As a consequent, in Multi-GS, the similarity between matched keypoint pair x1

and x2 is equal to 0.5, which is the proportion of overlapping models within the window. It is worth
noting that if the window size is extended to 9, we then have f (x1, x2) = 1. As mentioned above,
this phenomenon is caused by the setting of fixed window size. Therefore, we introduce a relaxation
strategy for generating an appropriate size of window. The motivation is to evaluate the similarity
from more windows, then the results may objectively recover the possibility of whether two pairs of
matched features are come from the same structure or not. The details of our relaxation method is
given as the following equation:

f (xi, xj) = max
ε∈[0,ξ]

|ai
1:h ∩ aj

1:h|
h + ε

(4)

where |ai
1:h ∩ aj

1:h| denotes the number of overlap structures in top h structures for matched keypoint
pair xi and xj, concerning with 1 ≤ h ≤ M, and h denotes the baseline window size, [0, ξ] stands
for the relaxation area. Then the the relaxation strategy searching for the maximum similarity from
[h, h + ξ]. For example, in Figure 2, given h = 6 with ξ = 2(yellow rectangle), we need to search the
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maximum similarity with the window size that ranges from 6 to 8. As a consequent, the similarity
value would be 3

4 , since the similarity will reach the maximum value when the window size is 8. In this
case, the overlap models within the window are {θ1, θ2, θ3, θ4 θ5, θ7, θ8}.

Specially, our experimental results show that h = 0.08M, ξ = 0.04M will obtain more promising
results, which means the searching interval is[0.08M, 0.12M]. The details of parameter selection are
shown in the experimental results session.

Figure 2. Feature similarity based on relaxation window in residual sequences of matched keypoint
pairs. The red and the yellow rectangle present the baseline window and the relaxation window,
respectively. The similarity will reach the maximum value when the window size is equal to 8, since
the overlapping models within the window are {θ1, θ2, θ3, θ4 θ5, θ7, θ8}.

3.1.2. Sliding Windows

An alternative approach to evaluate the similarity is to fix the number of overlap hypothesises,
while varying the window length to search an appropriate similarity. The basic idea is to calculate the
number of overlap structures in spanning windows, until the number of the overlap structures meet
a specified parameter. Then the similarity is derived from the proportion of the fix number and the
searching length. The equation is given as below:

f (xi, xj) =
α

K
(5)

where α is the fixed number of models, K denotes the length of search window with |ai
1:K ∩ aj

1:K| = α.
From the section of experiment results, we found that α = 0.05M balance the trade-off between time
complexity and sampling accuracy. Figure 3 gives an example of the proposed sliding approach.
Assume that α = 4, we then have |a1

1:K ∩ a2
1:K| = 4 when K = 7. As a consequent, f (x1, x2) =

4
7 is the

similarity between matched feature pair x1 and x2.

Figure 3. Feature similarity based on sliding windows, where α = 4. When K = 7, the number of
overlapping models is 4. Then the similarity between x1 and x2 is 4

7 .

3.1.3. Feature Similarity Based on Reverse Residual Order

As mentioned above, Multi-GS only consider the number of overlap hypothesises within a
fixed window, while neglecting the fact that residual order is very important for feature similarity
evaluation. To this end, we propose a similarity metric that based on the permutation of residual
values. The similarity equation is given as follows:

f (xi, xj) =
1
h
|ai

1:h ∩ aj
1:h| − β(h) · τ(|ai

1:h ∩ aj
1:h|) (6)

while β(h) is a penalty factor relating to the window length h, τ(|ai
1:h ∩ aj

1:h|) denotes the reverse
number of the overlap structures within a specific window.

Figure 4 gives an example of the proposed metric. Let the window length h = 6, the normalized
factor β = 0.05. Note that the overlap model set of x1 is {θ2, θ4, θ1}, while {θ1, θ2, θ4} for x2.
Let {θ2, θ4, θ1} be the baseline order, then {θ1, θ2} and {θ1, θ4} are the reverse pairs in the sorted
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residual sequence of x2. As a consequent, the reverse number is equal to 2, and then the similarity
between x1 and x2 is 0.5− 0.05× 2 = 0.4. Since the number of reverse order is associated with h,
in order to guarantee f (xi, xj) ≥ 0, we then set β(h) = 1

h2 with h > 3.

Figure 4. Reverse residual order for similarity metric, where the red rectangles denote the overlapping
structures. Given the baseline order {θ2, θ4, θ1} in x1, {θ1, θ4} and {θ1, θ2} are regarded as the reverse
pairs in x2. The similarity between x1 and x2 then become 0.5− 0.05× 2 = 0.4, given h = 6 and
β = 0.05.

3.2. Candidate Structure Sampling Based on Conditional Probability Distribution

The similarity between matched keypoint pairs reflects the possibility of whether the keypoints
are from the same structure. Then the similarity should be with smaller value between different
structure, while with higher value within the same structure. In other words, the similarity can be
seen as the probability to sample candidate structures. Namely, the matched feature pairs are sampled
according to a conditional probability.

Let S = {xs1 , xs2 , ..., xsp , }, where {s1, s2, ..., sp} ⊂ {1, 2, ..., N} denotes the minimal number of
matched keypoint pairs that can be used to generate a candidate hypothesis. First, randomly sample a
matched pair xs1 , then the second matched pair is generated in a greedy probability way based on the
similarity with the first matched pair. The conditional probability is given as follows:

p1(i) =

{
α1 f (xi, xs1) if i 6= s1

0 otherwise
(7)

where α1 = 1
∑

i 6=s1

f (xi ,xs1 )
is the normalize factor. Obviously, the higher value of p1(i) means the higher

probability that a matched pair may be chosen. The rest matched pairs can be selected in the same
manner. Assume that the selection of each pair is independently, then the probability of the (k + 1)-th
matched keypoint pair can be expressed as the product of the probability that related to k matched
pairs, which have already been selected. The equation is given as follows:

pk(i) =

αk
k

∏
j=1

f (xi, xsj) if i /∈ {s1, s2, ..., sk}

0 otherwise
(8)

Therefore, candidate transformations are sampled based on the distribution of conditional
probability. Once a new hypothesis/transformation is generated, it can be added to the structure set
Θ. Meanwhile, the similarity matrix between matched keypoint pairs can be updated according to
residuals generated via the new hypothesis. Since the similarity values are based on residual analysis,
the computational cost for updating the similarity matrix is really expensive. In order to speed up the
sampling process, the similarity matrix can be updated after sampling a patch of structures. In other
words, once a new candidate structure is generated, it may not been inserted to the structure set Θ
immediately. For example, the similarity matrix can be updated after b(b = 10) candidate structures
are generated, where the residual list for each matched pair is updated via binary insert algorithm.

4. Algorithm Summary

As mentioned before, the proposed approach aims at extracting fundamental matrix and
multi-homographic transformations between high resolution UAV aerial images from different
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viewpoints. Algorithm 1 presents the pipeline of the proposed strategy, where the fundamental
and the homographic matrices need 4, 8 matched keypoint pairs, respectively.

Algorithm 1 Transformation Estimation Based on Residual Analysis.

Input: Matched keypoint set P of input images I1 and I2;
Initialize: Sampling threshold t; Scale of inliers s.
Output: Fundamental matrix and homographic matrices between I1 and I2.

Inliers and the outliers of P.
Step 1: Perform RANSAC on the P, and generate b initial models to construct transformation set S.

Where 4 keypoint pairs for homographic transform and 8 points for fundamental matrix.
Step 2: Compute the residual order of each matched feature pairs;

Update the similarity matrix according to the relaxation widows, the sliding model,
and the reverse residual order, respectively.

Step 3: Sampling minimal matched feature set via conditional probability, which is based on
feature similarity. Generate new transformation according to the minimal matched feature set.

Step 4: Expand the structure set S after b new models are generated.
Step 5: Repeat step 2, until the maximum iteration or the state reach a specific condition.

5. Time Complexity Analysis

Since the proposed three strategies are motivated by Multi-GS, we will then analyze the time
complexity comparison among Multi-GS and the proposed methods. Note that for each iteration,
the following two steps of Multi-GS are time-consuming. First, hypothesises are generated based
on conditional probability, which are related to the similarity matrix for each feature pair. Second,
once specific batch of transformations are generated, the total number of transformations in model set
would be expanded and then the similarity matrix should be updated. Obviously, the cost of updating
similarity matrix is far more higher than generating transformations. Therefore, the time complexity is
mainly depended on how to generate effective structures based on similarity among feature pairs.

As mentioned before, let M, N denote the number of total transformations and matched
features, respectively. h, k stand for the residual window length, and the number of overlap
hypothesises/structures in the window. b denotes the number of structures in a batch. For one
hand, the cost of updating residual order list for all matched features is O(N · h · b). For another hand,
the cost of updating the similarity between each matched pair is O(N2 · h), given that the number of
overlap transformations is linearly related to the window length. Since the number of transformations
in a batch is far less the number of matched feature pairs, namely b� N, then the total time complexity
of Multi-GS for each iteration is O(N2 · h).

It is worth noting that the proposed method including three strategies, which are respectively
relaxation window, sliding window and reverse residual order. Since the total complexity of Multi-GS
is rely on the process of updating similarity matrix, the comparison then focus on the similarity for
each approach independently. Note that for the relaxation window, the window size ranges from
h− ξ to h + ξ. Since we set ξ = 0.2h in the section of experiments, the cost of updating similarity
matrix is still O(N2 · h). It means that the total time complexity of the proposed relaxation scheme is
also O(N2 · h).

The second scheme of this paper is sliding window, which calculates the number of overlap
structures in spanning windows until the number of overlap structures or the length of window reach
a specific parameter. Note that the searching length can be less than h, which means that the time
complexity is no more than O(N2 · h).

As for the reverse residual order approach, we need to calculate the reverse number in a specific
residual window size. Obviously, the residual sorting process can be done within O(k · log2 k), where
k denotes the number of overlap structures in the window. Since the reverse residual order follows
by overlapping calculation, the time complexity is less than O(N2 · (h + k · log2 k)). Note that in
the later stage of the algorithm, the number of overlap candidate models from different structure is
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very small. Then the the time complexity is about equal to O(N2(h +
k log2 k

C )), where C stands for
the number of structures in the scene. For example, as for five structures task, we can set M = 500,
h = 0.1M, C = 5. Given two features from a same structure, we found that k ≈ 0.7h in the late
stage of the algorithm. Therefore, the proportion between total cost of reverse order and multi-GS is
(h +

k log2 k
C ) : h ≈ (50 + 35 log2 35

5 ) : 50 ≈ 1.8 : 1. One can see that in the section of experimental results,
the time cost comparison supports our analysis on the complexity.

6. Experiments

This section aims at evaluating the performance proposed sampling algorithm. Therefore,
we compared the proposed strategies with RANSAC and Multi-GS, respectively with
multi-homographic and fundamental matrix extraction, on the high-resolution aerial image dataset
acquired from our UAV remote sensing systems. The image dataset contains all kinds of configurations
including low-altitude buildings, skyscrapers areas and country scenes. A total of 12 pair of images
were acquired under various conditions exhibiting different challenges such as scale changes, slight
perspective distortion and severe perspective distortion. Specially, the size of each aerial image is 30
million pixels, where these images were taken at the height of about 400 meters. Concerning with the
focus of our camera, each pixel represents 1 × 1 cm2∼5 × 5 cm2 on the ground, which means the
resolution surpass traditional remote sensing data, such as satellite images, SAR images, etc.

Moreover, in order to evaluate the efficiency of the proposed method, some metrics have been
employed such as the number of valid structures in specific time, run time of the whole sampling
process, and the mean errors of fundamental matrix which are calculated by all inliers. The results are
compared to the ground truths that are acquired from hand-craft ground control points.

6.1. Parameters Setting

As mentioned before, the window size h is a key parameter for computing the similarity metric.
Chin [2] recommended an appropriate value with h = 0.1M. In the proposed strategies, we set
h = 0.08M in the relaxation method, where the relaxation factor ξ = 0.12M. As for the sliding window
approach, the number of overlap structures is set as α = 0.05M. In order to give fair comparisons,
the window length in residual reverse order is also as h = 0.1M, while the penalty factor β = 1

h2 . As for
the homographic transformation, the metrics for evaluation including the number of valid structures
that generated within 10 s, and the run time (seconds) of hitting all structures of each methods. As for
the fundamental matrix, we evaluate the mean square error of distance between epipolar line and the
corresponding feature points.

6.2. The Estimation of Multi-Homographic Transformation

According to the principle of homographic transform, there may exist multiple homographic
transformations in a scene with a number of planes, such as multi-depth of filed. It is worth noting
that the process of mult-planes extraction is a key component in the task of aerial image stitching.
For example, the accuracy of large scale orthophotomap depends on the stitching results. Therefore,
this subsection aims at evaluating the efficiency multi-homograpihcs extraction of the proposed
method on our low altitude remote sensing images. In order to give objective results, each algorithm
runs 50 times and the average results are recorded. Experimental evaluations include the number of
sampling structures, valid structures, and the run time of extracting all valid structures. In order to
show the efficiency of our proposed method, from experiment 1 to experiment 3, we aim at evaluating
the efficiency of multi-plane or multi-depth of filed extraction from UAV aerial images. Therefore,
three typical aerial images with slight viewpoint changes and severe viewpoint changes have been
selected to test our proposed schemes.
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6.2.1. Experiment 1: Three Structures in Low-Altitude Aerial Images with Slight Viewpoint Change

This experiment aims at measuring the robustness to slight perspective distortion caused by
viewpoint and camera orientation changes with the presence of tall buildings. As shown in Figure 5a,
Apartments 1 contains high-rise buildings seen from different view-points. Note that the viewpoint shift
induces a slight perspective deformation on the building and the surrounding landscape. As a result,
the matched features on the roof of the high-rise buildings, the road, and the low-rise buildings are with
different depth of field. Namely, these matched features can be expressed via different homographic
transformations. Results for all five algorithms are presented in Figure 5b–f. Firstly, RANSAC failed
in extracting all valid structure within 10 s. Secondly, the relaxation and the sliding window method
generated almost the same inliers with Multi-GS algorithm. Last but not the least, the reverse residual
order method achieved the best performance, concerning with the number of the correct matches that
have been preserved. Part of the explanation is the height of the buildings which creates noticeable
planes for which methods have a hard time to deal with. This illustrates the advantage of guided
sampling approaches which incorporates a sampling prior within its definition.

(a) Original Images (b) RANSAC

(c) Multi-GS (d) Relaxation Window

(e) Sliding Window (f) Residual Reverse Order

Figure 5. The three-homographic matrices extracted results from image pair of Apartments 1, where
green triangles, blue squares, and red circles represent the extracted inliers (correct matched features)
that located on road, high rise buildings, and low rise buildings, respectively.

6.2.2. Experiment 2: Five Structures in Low-Altitude Aerial Images with Severe Viewpoint Change

In this experiment, a pair of high resolution aerial images (HQU) with five structures has been
acquired from distinctive different viewpoints. These images show buildings captured from different
view-points and which suffer severe deformation compared to the previous scenarios.

As shown in Figure 6a, since HQU were acquired from a low-altitude camera pointing towards
the high-rise building, the scene contains severe perspective distortion. The feature matching results,
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which including inliers and outliers, together with hand-craft control points are regarded as the
input matched points. Note there are five homographic transformations in this image pair due
to the complex depth of filed, which are respectively represented as green triangle, blue square,
red circle, yellow diamond, light blue diamond. Figure 6b–f shows sampling results for RANSAC,
Multi-GS, relaxation window, sliding window, and reverse residual order, respectively. Note that
RANSAC only found out two valid homographic transformations, since the ratio of outlier and pseudo
outlier is pretty low. This phenomenon reveals that blind searching strategy does’t achieve promising
results in complex depth of filed or there are multi-planes in the scene. It is worth noting that in
the case of yellow diamond, only reverse residual order-based sampling strategy extract the valid
structure within the specific time. Part of the explanation is the inlier rate of this structure is very
low. In addition, the coordinates of feature points in this structure/plane are close to that of red
circle. Namely, the feature points in yellow diamond may influence the performance of all algorithms.
This phenomenon reveals that reverse residual order is an efficient scheme to evaluate the probability
of two feature pair come from the same structure.

(a) Original Images (b) RANSAC

(c) Multi-GS (d) Relaxation Window

(e) Sliding Window (f) Residual Reverse Order

Figure 6. The five-homographic matrices extracted from HQU , where green triangles, blue squares, red
circles, indigo diamonds, and yellow parallelograms represent the extracted inliers (correct matched
features) that located on the side of high rise building, the roof of high rise building, the side of low
rise building, the ground, and the roof of low rise building, respectively.

6.2.3. Experiment 3: Six Structures in Low-Altitude Aerial Images with Severe Viewpoint Change

In this experiment, a pair of high resolution aerial images (Library) with six structures has been
acquired from distinctive different viewpoints, which suffering severe deformation compared to the
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previous scenarios. Figure 7a shows that there exists multi-planes and repetitive patterns/features
in the scene, since the camera is much closer to the roof of the building than the street level.
From Figure 7b–f, one can see the sampling results for RANSAC, Multi-GS, relaxation window, sliding
model, and reverse residual order, respectively. Where the six structures are represented as green
triangle, blue square, red circle, yellow diamond, light blue diamond, and red triangle, respectively.
As for RANSAC, we can draw the same conclusions as we did in experiment 5, since RANSAC doesn’t
extract all transformations due to the high percentage of wrong matches and pseudo outlier. One can
see that even guided sampling methods such as Multi-GS, relaxation window and sliding model
miss the structure of red circle, where the features are distributed around the roof of the high-rise
building. In this case, reverse order of residuals approach was the only one to find out all homographic
transformations. This fact clearly underlines the advantage of the proposed method, which is robust to
all kinds of scenes including large viewpoint change and repetitive patterns that may induce complex
multi-structure problem.

(a) Original Images (b) RANSAC

(c) Multi-GS (d) Relaxation Window

(e) Sliding Window (f) Residual Reverse Order

Figure 7. The six-homographic matrices extracted from Library, where green triangles, blue squares,
red circles, indigo diamonds, yellow parallelograms, and red triangles respectively represent inliers
(correct matched features) that located on different planes in the scene.

6.2.4. Experiment 4: Comparisons of Sampling Structures and Running Time on Low-Altitude
Aerial Images

Figure 8 shows the average number of sampling structures, the average number of valid structures,
and the run time (seconds) of hitting all structures on our UAV remote sensing dataset including
Apartments 1, HQU, Library, Apartments 2, Campus 3, and Square, respectively with 3, 5, 6, 3, 4,
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4 structures. Specially, each image pair has different outliers/false matched feature rate. Overall,
the reverse residual order scheme needs analyzing the number of reverse order within a specific
window, which results in increasing the time complexity in the early stage of sampling process.
However, the feature similarity prevents high overlap structures with high reverse order in the late
stage of the algorithm. It might be objective to say that the similarity of reverse residual order reflects
the probability of whether two features are come from same structure. In most case, reverse residual
order-based guide sampling algorithm is the fastest as for extracting all valid structures.

(a) The average number of sampling structures

(b) The average number of valid structures

(c) The average run time of hitting all structures

Figure 8. The average sampling structures, the average number of valid structures, and the run time of
hitting all structures.
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6.3. Experiment 5: Accuracy of Fundamental Matrix

In this section,we show that the fundamental matrix generated via our algorithms are globally
more accurate than that of the RANSAC and Multi-GS. We do so by calculating the average alignment
error for each method according to its fundamental matrix F. A fundamental matrix is a 4× 4 matrix
which converts a point p in one image into an epipolar line Lp in the second image. Since the matching
point q in the second image should always lies on that epipolar line, the distance between q and Lp

should be zero. Therefore, the validation procedure goes as follows:

1. Manually select 30 match points for each aerial image. These matches are called “ground truth
matches” (GT-M).

2. For each image pair and each method, get inter-image matches and compute the fundamental
matrix accordingly.

3. Given the GT-M of an image pair, compute the average Euclidian error for each method.
For example, given 2 GT-M points p and q and the fundamental matrix Fi of method i, compute
the epipolar line Lp of p and get the Euclidian error between Lp and q. In that case, a good
evaluating method should have a small error.

As shown in Figure 9, we select 8 image pairs from our aerial dataset, respectively in the category
of “Scale Change”, “Slight Viewpoint Change”, and “Severe Viewpoint Change” , to evaluate the
efficiency of the proposed schemes. Note that Apartment 1 is also included in category of “Slight
Viewpoint Change”. Table 1 contains the average error for 9 aerial images. As can be seen in the
table, for each method, complex scenes with severe perspective distortion induce larger average
error. Also the reader shall notice that guide sampling based methods achieved higher accuracy
than RANSAC except Square. Specifically, In the set of severe viewpoint change, the guide sampling
methods outperform significantly than RANSAC, since the depth of filed is also complex than scale
change and slight viewpoint change dataset. This fact reveals that guide sampling strategy is suitable
for complex scene, which may increase the accuracy of camera pose. Moreover, one can see that the
four guide sampling methods have not much differences in the dataset of scale change. While in the
viewpoint change datasets, the reverse residual order method achieved the best performance than
other methods, which means that more feature matching pairs result in more probability of generating
good transformation.

Moreover, we evaluate the efficiency of RRO+SO and RRO+SW in fundamental matrix extraction.
Table 1 shows that the performance of RRO+SO and RRO+SW are worse than RRO, SO, or SW in the
case of easy tasks such as scale change. The main reason is that the number of sampled hypothesis per
second may decreased, since RRO should performed after SO or SW, which increase the time complexity
of updating similarity matrix. However, in complex scenes such as severe viewpoint change, RRO+SO
and RRO+SW achieved comparable or even better results than RRO. This phenomenon reveals that
the combinations of RRO+SO and RRO+SW are suitable to high outlier or pseudo outlier rate scenes.

Table 1. The accuracy of fundamental matrix with seven methods.

Image Category Image RANSAC Multi-GS RO SW RRO RRO+RO RRO+SW

Scale Change Park 0.7 0.5 0.5 0.5 0.6 0.6 0.7
Roundabout 0.8 0.7 1 0.9 0.5 0.8 0.9

Slight Viewpoint
Change

Lecture Hall 2.6 1.9 1.6 1.7 1.5 1.6 1.5
Apartments 1 2.3 1.8 1.8 1.6 1.3 1.5 1.4

Bridge 2.5 1.5 1.5 1.3 1.1 1.3 1.4

Severe Viewpoint
Change

Hotel 1.5 1.2 1.1 1.2 0.9 1.1 1.2
Campus 1 3.2 2.1 1.9 2.5 1.7 2.0 1.7
Campus 2 2.1 1.3 1.3 1.1 1.1 1.1 1.1
Campus 4 2.7 2.0 1.9 1.8 1.4 1.3 1.6
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(a) Park (b) Roundabout

(c) Lecture hall (d) Bridge

(e) Hotel (f) Campus 1

(g) Campus 2 (h) Campus 4

Figure 9. Low-altitude UAV ariel high resolution image dataset.

6.4. Algorithm Discussion

Based on the five experimental results mentioned above, here we make a detailed analysis and
comparisons on the advantages and the disadvantages of Relational Window (RW), Sliding Window
(SW), Reverse Residual Order (RRO).

RW employs a relaxation interval to evaluate the similarity between matched feature pairs in
order to handle the boundary effect in fixed-size window scheme. Experimental results show that
relaxation window scheme achieved better performance than fixed-size window under the same time
complexity. Disadvantages of RW are: (1) The size of relaxation window is a hyper-parameter, which is
determined empirically; (2) The residual order was not taken into account.

SW fixes the number of overlap structure/hypothesis while varying the window length to
compute the similarity. SW can find out the number of overlap structures in spanning windows, which
provides more flexible scheme of the window size selection. Disadvantages of SW are: (1) The time
complexity may increase when dealing with low similarity feature pair; (2) The residual order was not
taken into account.

RRO provides a probability framework to determine whether two feature pair come from a
same structure by analyzing the difference of residual order among each feature pair. Experimental
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results showed that RRO achieved best performance in complex scene with five or six structures.
Disadvantages of RRO are (1) The computation of reverse number is time-consuming; (2) It may not
work well on easy tasks, such as there are only one structure or two structures in the scene.

7. Conclusions

Evaluating the transformation between two UAV aerial images acquired from the same scene is
a fundamental step of camera pose estimation and UAV image-based applications, such as stitching
and 3D reconstruction. In this paper, we presented three schemes for estimating the transformation
between different viewpoint of UAV remote sensing images. Specifically, we analyzed the drawback of
RANSAC with brutal sampling. Moreover, state-of-the-art method such as Multi-GS suffers from fixed
residual window size and unable to deal with the order of structures within a window. To this end,
we proposed three strategies for evaluating transformation between UAV images. Firstly, a relaxation
window size is employed for evaluating the similarity between feature pairs. The basic idea is to
acquire the highest similarity within a relaxation model length, which has been proved to be unsensitive
to the window size. Secondly, we fixed the number of overlap structures, while the window size can
be flexible to evaluate the similarity. Thirdly, we found that Multi-GS only consider the number of
overlap structures within a window, while neglecting the fact that residual order for feature similarity
evaluation. Therefore, we propose a similarity metric that is based on the permutation of residual
values. The metric not only includes the number of overlap structures, but also gives punishment to
number of reverse order within the overlap structures. The experimental results conducted on UAV
remote sensing images show that the proposed three schemes and Multi-GS perform equally well on
images with scale change, while the proposed sample scheme performs better in the presence of severe
perspective distortion and multi-structures, respectively due to viewpoint change and complex depth
of field. Future research will aim at reducing the complexity of reverse residual order.
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