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Abstract: The ever increasing geophysical data streams pouring from earth observation satellite
missions and numerical simulations along with the development of dedicated big data infrastructure
advocate for truly exploiting the potential of these datasets, through novel data-driven strategies,
to deliver enhanced satellite-derived gapfilled geophysical products from partial satellite observations.
We here demonstrate the relevance of the analog data assimilation (AnDA) for an application to
the reconstruction of cloud-free level-4 gridded Sea Surface Temperature (SST). We propose novel
AnDA models which exploit auxiliary variables such as sea surface currents and significantly reduce
the computational complexity of AnDA. Numerical experiments benchmark the proposed models
with respect to state-of-the-art interpolation techniques such as optimal interpolation and EOF-based
schemes. We report relative improvement up to 40%/50% in terms of RMSE and also show a good
parallelization performance, which supports the feasibility of an upscaling on a global scale.

Keywords: ocean remote sensing data; data assimilation; optimal interpolation; analog models;
multi-scale decomposition; patch-based representation

1. Introduction

Long records of high-resolution Sea Surface Temperature (SST) are of high importance for a wide
range of applications including among others weather and climate forecasting, ocean-atmosphere
exchanges, the monitoring of tropical cyclones [1]. SST is an example of essential variables derived from
remote sensing data [2–6], which play a critical role in climate models as well as numerical weather
forecasts. SST field time series are for instance among the key satellite-derived data assimilated in
ocean-atmosphere models [7,8] and hurricane dynamics [9]. Spaceborne sensors provide invaluable
data to reconstruct satellite-derived high-resolution SST fields (typically, up to a few kilometers) on a
global scale. Such SST fields may however comprise high rates of missing data. Optical sensors [10]
may depict the highest missing data rates, as they cannot sense the ocean surface through clouds.
Though less sensitive to atmospheric conditions [11], radiometers are also affected by thick clouds and
heavy rain conditions.

The reconstruction of gap-free high-resolution SST fields from satellite-derived SST measurement
has long been a critical issue [12–18]. Operational products typically rely on the Optimal Interpolation
(OI). Amon others, cloud-free OSTIA [12], ODYSSEA [19], AMSR-E [17] products are examples of
operational products which rely on OI. It produces the Best Linear Unbiased Estimator (BLUE) of
the field given irregularly sampled observations. This model-driven approach requires selecting a
covariance prior of the SST fields, most often exponential and Gaussian covariance models [12,18].
The parameterization of this covariance prior involves a trade-off between the size of the gaps to be
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filled and the fine-scale variability of the SST fields. Physically-driven data assimilation models [20]
may outperform OI if relevant dynamical priors can be defined [21]. The trade-off to be considered
between the complexity and genericity of this physical prior remains however complex, especially
when considering the assimilation of a single sea surface tracer as SST.

Besides model-driven schemes, the ever increasing availability of satellite-derived data and
of simulation data from high-resolution ocean models has paved the way for the development of
data-driven methods. EOF-based models were among the early and perhaps most popular data-driven
methods applied to the reconstruction of SST fields from cloudy SST data [14,15,22] as well of other
sea surface tracers such as ocean colour [22]. EOF-based approaches are particularly appealing for
ocean remote sensing as they relate to a model of the covariance structure of the considered fields and
may adapt to any type of geometry of missing data and interpolation grid. Their use is also motivated
by their ability to decompose the spatiotemporal variability of the sea surface fields according to
different modes, which may be interpreted geophysically. A renewed interest can also be noticed
for analog schemes and applications to forecasting and assimilation issues [23,24]. Analog schemes,
proposed a long time ago in geoscience [25], rely on the idea that the dynamics of a given system
may repeat to some extent. Given a set of previously observed or analysed data, one may retrieve
examples similar to a current state in this set, such that the future of this current state may be forecasted
from the known evolution of these similar situations. The lack of large-scale dataset along with
the computational complexity of analog methods has long limited their applicability. In this context,
we recently introduced the analog data assimilation (AnDA) and demonstrated its relevance for
the reconstruction of complex dynamical systems for partial observations, including sea surface
dynamics [26,27]. Here, as stated in the next section, we further explore and evaluate AnDA schemes
for the reconstruction of cloud-free SST fields from satellite-derived measurements.

The remainder of the paper is organized as follows. Section 2 briefly reviews the related work on
data assimilation and introduces the main contributions of this work. Section 3 presents the considered
data and case-study region. Section 4 describes the proposed AnDA methods for the reconstruction
of cloud-free SST fields. Section 5 presents experimental results. Section 6 further discusses our key
contributions and future work.

2. Problem Statement and Related Work

Data assimilation is the classic framework for the reconstruction of sea surface geophysical fields
from partial satellite observation series [20,28]. Two main categories of data assimilation methods
may be distinguished: variational and statistical data assimilation. Variational methods rely on a
continuous setting and states data assimilation as the minimization of a variational cost. Statistical
methods involve state-space models [20,28]. They formulate data assimilation as the maximization or
estimation of the posterior likelihood of the state series given an observation series. The state refers to
the geophysical parameter of interest, here a cloud-free SST field at a given time. In this work, we focus
on statistical data assimilation methods, which provides a greater flexibility to model state dynamics
as well as the relationship between the state series and the observation series [20]. They also avoid
determining the adjoint of the dynamic operator, which may be complex while reaching state-of-the-art
reconstruction performance [29].

The state-space model typically comprises two key components:

• A dynamical model which states the time evolution of the state. Within a discrete statistical
framework, it comes to define the likelihood of the state at a given time given the state at the
previous time;

• An observation model which relates the state to the observation, here the cloud-free SST field to
the SST observation with missing data.

Among the variety of algorithms proposed to solve for statistical data assimilation issues,
Ensemble Kalman filters and smoothers (EnKF and EnKS) are particularly popular. They demonstrate



Remote Sens.2018, 10, 310 3 of 14

both good assimilation performance and a high modeling flexibility [20]. It may also be noted that the
optimal interpolation can be regarded as a statistical assimilation model, where the dynamical prior
involves a Gaussian distribution, such that an analytical and numerical solution can be derived [12,20].
EnKS and EnKF may provide relevant solutions to implement optimal interpolation schemes for
high-dimensional fields. The definition of the dynamical prior is a critical aspect of such model-driven
assimilation scheme. Regarding ocean dynamics, the balance between modeling complexity and
uncertainty is particularly complex. Especially, simplified models such as advection-diffusion or QG
(Quasi-Geostrophic) priors [21] may only be valid approximations for specific space-time regions.

These issues have motivated the development of data-driven frameworks as an alternative to
the definition of model-driven dynamical priors. We may for instance cite EOF-based (Empirical
Orthogonal Function) interpolation techniques [14,15], which state interpolation issues as a matrix
completion problem and iterates successive projections onto an EOF basis under the constraint of the
observed data. Such techniques have been proven relevant for the reconstruction of large-scale SST
fields. They may however lack some mathematically-sound interpretation in terms of data assimilation
issue. Interestingly, the combination of analog forecasting operators and classic statistical assimilation
schemes has led to the introduction of novel data-driven schemes for data assimilation, referred to as
Analog Data Assimilation (AnDA) [24,26]. Especially, our previous work [26] presents an application
of AnDA to the space-time interpolation of SST fields using patch-based and EOF decompositions.
(We use in this paper the term patch to refer to a subset of K× K pixels centered on given pixel. K is
the width of the patch. The term patch is widely used in image processing with the emergence of
patch-based image representations [30,31]. Patch-based representations [30–33] provide means to
encode the spatial structure of the images while providing a simple and computationally-efficient
framework.

Here, we further extend AnDA for the spatiotemporal interpolation of SST fields to improve both
reconstruction performance and computational efficiency. This work involves three main contributions:

• the introduction of conditional analog forecasting operators with a view to explicitly accounting
for dependencies between the state to be reconstructed and auxiliary variables. In [24,26],
the considered analog forecasting operators implicitly assumed the high-resolution component
dX to be independent on the low-resolution component X̄. Both theoretical and statistical
studies [34,35] advocate for considering inter-scale dependencies, which relate to the multi-scale
characteristics of ocean turbulence [35,36]. We show here that analog strategies are highly flexible
to consider such conditioning;

• the introduction of an analog forecasting operator embedding physically-sound priors.
We further benefit from the flexibility of analog operators to exploit the synergy between SSH
(Sea Surface Height) [35,37] and SST. We investigate locally-linear analog forecasting operators
where SSH is used as a complementary regressor;

• the reduction of the computational complexity of AnDA using a clustering-based analog
forecasting operator. To improve the scalability of the proposed methodology, we show that
we can significantly reduce the computational complexity of the analog data assimilation with no
impact on reconstruction performance.

We demonstrate the relevance of these contributions through numerical experiments for real
cloudy SST patterns and evaluate the computational complexity of the proposed models and their
parallelization performance for future large-scale case-studies.

3. Data and Study Area

With a view to evaluating the proposed analog assimilation methodology detailed in the next
section, we use reference gap-free L4 SST time series from which we create SST datasets with missing
data using real missing data masks. We consider two gap-free L4 SST products:
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• OSTIA SST: the OSTIA product delivered daily by the UK Met Office [12] with a 0.05◦ × 0.05◦

spatial resolution (approx. 5 km). The OSTIA analysis combines satellite data provided by infrared
sensors (AVHRR, AATSR, SEVIRI), microwave sensors (AMSR-E, TMI) and in situ data from
drifting and moored buoys.

• MW SST: the microwave optimally-interpolated product distributed by REMSS (http://www.
remss.com/measurements/sea-surface-temperature/oisst-description/). This product combines
daily microwave satellite measurements (TMI, AMSR-E, AMSR2, WindSat sensors) for a
0.25◦ × 0.25◦ resolution.

From a spectral analysis of the SST fields, it may be noted that the MW SST dataset involves
greater energy level for scales below 100km than OSTIA SST dataset. For both datasets, we consider
SST time series from January 2007 to December 2015 (January 2008 to December 2015) in a region off
South Africa (150× 300 pixels) from 0◦E to 7◦E and 22.5◦S to 60◦S. This region comprises the Aghulas
current and combines highly-dynamic areas and periods off South Africa and not as active areas in
the northern part of the case-study region which is characterized by warmer waters. This region is
also characterized by a significant variability of the cloud cover up to very high missing data rates
(e.g., above 70%). These characteristics make this region a relevant and representative testbed for SST
interpolation issues.

As real cloud masking time series, we consider the cloud masks associated with the
METOP-AVHRR SST time series (Ocean and Sea Ice Satellite Application Facility (OSI SAF) (2016).
GHRSST L3C global sub-skin Sea Surface Temperature from the Advanced Very High Resolution
Radiometer (AVHRR) on Metop satellites (currently Metop-B) (GDS V2) produced by OSI SAF
(GDS version 2). NOAA National Centers for Environmental Information. Dataset) METOP-AVHRR
product is a high-resolution infrared sensor, which may involve very high missing data rates in the
case-study area (see Figure 1 for an example of cloud mask pattern).

As detailed in the next section, the proposed analog data assimilation models may benefit from
multi-source data. More particularly, in the considered case-study, we explore the extent to which SSH
data may be useful to improve the interpolation of the SST. As gridded and interpolated SSH field,
we consider daily SSH data with a 0.25◦ × 0.25◦ resolution distributed by the CMEMS (Copernicus
Marine Environment Monitoring Service, marine.copernicus.eu).

Figure 1. Reconstructed SST fields using OI, DINEOF, G-AnDA, PB-AnDA-LROI + dX + Z,
PB-AnDA-LRM + dX + Z on day 150th for MW SST case-study: the first row depicts the reference SST
field, the cloudy observation and the gradient magnitude; the second and third rows depict respectively
the SST fields and their gradient magnitude for OI, DINEOF, G-AnDA, PB-AnDA-LROI + dX + Z,
PB-AnDA-LRM + dX + Z. It may be noticed that PB-AnDA-LROI + dX + Z and PB-AnDA-LRM + dX +
Z better reconstructs fine-scale structures for instance along the Aghulas return current as well as south
of Madagascar island.

http://www.remss.com/measurements/sea-surface-temperature/oisst-description/
http://www.remss.com/measurements/sea-surface-temperature/oisst-description/
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4. Method

4.1. Patch-Based Analog Data Assimilation

We consider the following scale-based decomposition of the SST fields:

X = X̄ + dX + ξ (1)

X̄ refers to a background field. It may be a given as a mean field as well as optimally-interpolated
fields. dX refers to high-resolution component to be estimated.

Following [26], we consider an analog data assimilation for the high-resolution component dX.
It involves a patch-based state-dependent dynamical operator. Let us denote by Ps the patch centered
on grid site s and X(Ps, t) the patch-level state for field X on Ps at time t. The considered dynamical
operator for Ps at time t is stated as

dX (Ps, t) =MX(Ps ,t−1)
(
X(Pps, t− 1), η(Ps, t− 1)

)
(2)

whereMX(Ps ,t−1) is the state-dependent operator at time t for grid site s. η is a random perturbation.
We further constrain this patch-based model through an EOF-based decomposition of each patch-level
state dX (Ps, t).

dX (Ps, t) =
N

∑
n=1

αn(s, t)Bn (3)

With Bn the nth principal component of the EOF and αn(s, t) the associated EOF expansion
coefficient for patch Ps at time t. NEOF refers to the number of vectors of the EOF basis. B will denote
the matrix formed by all principal components.

The state-dependent dynamical operatorMX(Ps ,t−1) is stated as a locally-linear analog forecasting
operator [24,26]. We assume that we are provided with a reference dataset, referred to as catalog C
which comprises pairs of states {X(Psi , ti − 1), X(Psi , ti)}i at two consecutive time steps, referred
to respectively as analogs and successors. For a given kernel denoted by K, let us denote by
ak (s, t)) the kth analog (i.e., nearest-neighbor) of state X(Ps, t) in catalog C and sk (s, t)) its successor.
The locally-linear analog operator is stated as a multivariate linear regression in the EOF space
between the analogs {ak (s, t))}k and their successors {sk (s, t))}k with a zero-mean Gaussian
perturbation. The linear regression is fitted using a weighted least-square estimate with weights
{K(ak (s, t), X(Ps, t− 1))}k. The covariance of the Gaussian perturbation is estimated from the residual
of the linear regression for the K pairs of analogs and successors. In [24,26], the regression variables
are directly the states projected onto the EOF space. Here, as detailed in the next section, we consider
different parameterization of the regression variables as well as of the kernel K to explore the potential
conditioning of the dynamics of state dX by other variables (e.g., the low-resolution component X̄ or a
velocity field).

Given the observation model associated with the considered cloudy SST observations

Y(t, s) = X(t, s) + ε(t, s), ∀s ∈ Ωt (4)

With Ωt the cloud-free region at time t, the reconstruction of high-resolution component dX
given observation time series Y relies on the ensemble Kalman smoother (EnKS) associated with
the considered analog dynamical operators. The EnKS is a forward-backward sequential algorithm.
It represents the state at each time step from the mean and covariance of a set of members, which are
evolved in time based on the analog forecasting operator and updated at each time step from the
available observations using a Kalman-based recursion. We refer the reader to [24] for the details of
the analog EnKS. Here, the analog EnKS is applied independently to overlapping patch locations. We
then reconstruct field dX as a mean over overlapping patches. An additional postprocessing step is
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applied to remove possible patch-related blocky artifacts using a patch-based and global EOF filtering.
The resulting workflow is sketched in Figure 2.

Figure 2. Workflow of the proposed framework for the reconstruction of gap-free SST time series
from cloudy SST data: given a cloudy SST field time series, it first applies an optimal interpolation
to reconstruct the large-scale component X̂ and second the analog data assimilation (AnDA) of the
anomaly dX (cf. (Equation (1))). This second step exploits a reference SST catalog and is constrained
by the reconstructed large-scale component. The resulting gap-free SST time series is the sum of the
large-scale component X̂ and of the anomaly dX. We also sketch the main steps involved in the AnDA
scheme.

4.2. Conditional and Physically-Derived Analog Forecasting Operators

Let us denote by U a co-variable with the same space-time resolution as field X. The Conditioning
of analog forecasting operatorMX(Ps ,t−1) at time t and patch Ps may be issued:

• from the selection of analogs based on both variables dX and U, and not solely based on dX
as in [24,26]. This comes to take into account variable Z in kernel K. We typically consider a
parameterization of kernel K as KdX · KU using kernels applied respectively to fields dX and Z.
Here, we will consider a Gaussian kernel for KdX and a correlation-based kernel for kernel KU . It
may be noted that the considered kernels only exploit the spatial dimensions;

• from the fit of a multivariate linear regression using both dX and U, or transformed version of U,
as regression variables and not solely based on dX as in [24,26]. For instance, following previous
studies [34,38], one may consider the low-resolution field X̄ as a potentially-relevant information
to improve the forecasting of the high-resolution field dX.

It may be emphasized that a given co-variable may be used only for one of these two types of
conditioning.

We also explore the potential relationship between locally-linear analog forecasting operator and
physical operator. As a sea surface geophysical tracer, advection-diffusion priors may be regarded as
relevant first-order approximations [21]. The advection-diffusion prior is given by

∂tX + 〈ω,∇X〉 = κ∆X (5)

With ω the sea surface velocity field and κ the diffusion coefficient. Given that satellite-derived
altimeter fields, denoted here by Z, provide a low-resolution estimate of the sea surface velocity fields,
field ω may be written as∇⊥Z+ δω with δω the unresolved velocity component. Using decomposition
Equation (1), advection-diffusion prior Equation (5) suggests considering a locally-linear patch-based
analog forecasting operator Equation (2) where both variables dX, X̄ and Z are considered as regression
variables. Similarly to EOF decomposition Equation (3) for field dX, we also consider patch-based EOF
decompositions for fields X̄ and Z to constrain the estimation of the analog locally-linear operator.
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It may be noted that this inference of such multi-modal analog forecasting operators relate to the
approximation of the underlying unresolved velocities from local analogs.

4.3. Computationally-Efficient Analog Assimilation Strategies

An important goal of this study is to evaluate the computational complexity of the proposed
analog assimilation strategies and their parallelization properties. By construction, the considered
patch-level decomposition relies on the independent processing of each patch location for the
considered grid. This ensures the computational complexity to evolve linearly with the number of
grid points. The considered EnKS procedure involves two main steps: the forecasting and the analysis
step. Given the relatively low-dimensional EOF-based representation of each patch, the computational
complexity of the analog EnKS mainly relates to the ananlog forecasting step. In the standard version
used in [24], the computational complexity may be decomposed as NM · (Csearch + C f it + C f orecasting)

with NM the number of members used to represent the state at each time step, Csearch the computational
cost of the search for analogs, C f it the computational cost of the fit of the analog forecasting operator
and C f orecasting the computational cost of the application of the fitted forecasting operator. The first
two ones are obviously the most important ones.

To speed up the search for local analogs, we can benefit from large research effort dedicated to
nearest-neighbor search, especially approximate nearest-neighbor search [39,40]. Here, we consider
FLANN (Fast Library for Approximate Nearest Neighbors) frameworkavailable at http://www.cs.ubc.
ca/research/flannforadditionaldetails), which is among the state-of-the-art schemes for approximate
nearest-neighbor search. It relies on an offline computation of a tree-based indexing structure. We let
the reader [40,41] and FLANN (Fast Library for Approximate Nearest Neighbors) library.

Importantly, it may be noted that at a given time step many members can be expected to share
similar dynamics. Therefore, fitting a local analog forecasting operator for each member as in [24,26] is
expected to be computationally-redundant. To reduce this computational redundancy, we introduce a
clustering-based strategy. For a given time step, we constrain the computational complexity to a given
number of analog forecasting operator fit, denoted by NFit. We first clusterized the members into NFit
using a K-means procedure [42]. We then fit an analog forecasting model for each cluster using the
analogs and successors to the center of the cluster. For the forecasting step, we apply to each member
the analog forecasting operator of the cluster it is assigned to. Overall, this clustering-based strategy
leads to cost NFit · C f it to compare to the original NM · C f it. Here, we typically set NFit to 3 whereas
NM = 100.

4.4. Experimental Setting

Computational setting: The considered experiments, especially regarding the evaluation of the
computational complexity of the proposed methods, have been implemented onto Teralab platform
(https://www.teralab-datascience.fr/fr/) using a virtual machine with the following setting: 30 CPUs
with a 64 G RAM (24 CPUs are used for processing tasks and others as backup or for background
tasks). All experiments were run using Python and PB-AnDA Python library available at https:
//github.com/rfablet/PB_ANDA. We used Multiprocessing Python module to implement AnDA
onto the considered multi-core platform.

Benchmarked models and algorithms: We consider different patch-based analog assimilation
models, referred to as PB-AnDA, corresponding to different parameterizations of the analog
forecasting operators:

• for the low-resolution component X̄, we consider two options: (i) optimally-interpolated fields
projected onto a region-level EOF decomposition with 20 components which resolve spatial scales
up to approximately 100 km, (ii) the mean field. The first one is referred to LROI and second one
to LRM;

• for the search for analogs, we explored both a simple kernel with no conditioning by the
low-resolution component, such that K = KdX and a kernel K = KdX ∗ KZ with Z = ‖∇X̄‖ to

http://www.cs.ubc.ca/research/flann for additional details
http://www.cs.ubc.ca/research/flann for additional details
https://www.teralab-datascience.fr/fr/
https://github.com/rfablet/PB_ANDA
https://github.com/rfablet/PB_ANDA
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introduce a conditioning of the analog forecasting operators by the low-resolution gradient
magnitude as suggested in [34]. As both settings resulted in very similar interpolation
performance (e.g., RMSE of 0.24 for MW SST dataset for both settings), we only report results for
the simplest kernel choice (i.e., K = KdX) in the subsequent analysis.

• three types of regression variables were evaluated: locally-linear operators using only dX as
regression variables (dX), using dX and X̄ as regression variables (dX + X̄) and using dX
and Z as regression variables (dX + Z). A fully-developed locally-linear approximation of an
advection-diffusion prior would consist in considering both dX, X̄ and Z as regression variables.
It resulted in the same performance as considering only dX and Z (see Table 1) and was not
included in the reported results. We might recall that all locally-linear models are fitted within
EOF subspaces.

Table 1. Interpolation performance of PB-AnDA models for the MW SST case-study for three zones of
interest in the case-study region: we refer the reader to the main text for the description of the different
PB-AnDA parameterizations.

PB-AnDA
LROI LRM

dX dX + Z dX + X̄ dX dX + Z dX + X̄

Zone 1 0.35 ± 0.06 0.34 ± 0.05 0.35 ± 0.06 0.34 ± 0.06 0.33 ± 0.05 0.34 ± 0.06
Zone 2 0.33 ± 0.09 0.32 ± 0.08 0.33 ± 0.09 0.32 ± 0.08 0.30 ± 0.07 0.32 ± 0.08
Zone 3 0.18 ± 0.04 0.18 ± 0.04 0.18 ± 0.04 0.19 ± 0.04 0.19 ± 0.04 0.19 ± 0.04

Overall, we refer to a specific model as follows. For instance, model PB-AnDA + LROI + dX +

X̄ + Z implements the patch-based analog assimilation with: (i) optimally-interpolated fields as
low-resolution component and (ii) locally-linear analog forecasting operators with auxiliary variables
X̄ and Z. All patch-based analog assimilation models involve similar parameter setting regarding
the number of members, NM = 100, and the patch-based EOF decomposition with NEOF = 50,
which account for 96% of the total variance of the SST datasets.

For benchmarking purposes, we considered two state-of-the-art interpolation techniques and a
global AnDA model:

• a classic optimal interpolation with a Gaussian space-time covariance structure: the spatial and
time correlation lengths were tuned from cross-validation experiments for the considered SST
datasets to respectively 3 days and 100 km. This interpolation is referred to as OI and implemented
using [43];

• a DINEOF interpolation [14]: the EOF-based interpolation comes to iteratively project the
reconstructed field onto the EOF basis while modifying only SST values for missing data areas.
We use 40 EOF components to account for about 95% of the total variance. This interpolation
referred to as DINOEF is applied globally onto the entire case-study region.

• a direct application of AnDA over the entire region: this interpolation referred to as
G-AnDA exploits the same EOF decomposition as DINEOF and NM = 100 members in the
implemented AnDA.

5. Results

5.1. Interpolation Performance

We first compare interpolation performance of the considered methods, namely OI, DINEOF,
G-AnDA and PB-AnDA + LROI + dX for the both OSTIA and MW case-studies (Tables 2 and 3).
Similar conclusions can be drawn from these experiments with a significant gain of the proposed
patch-based AnDA model compared to the three other approaches. For instance, We report a relative
gain up to 50% in RMSE w.r.t. OI and of 40% w.r.t. DINEOF. Though the direct application of AnDA
to the entire region lead to a slight improvement (e.g., mean RMSE of 0.38 for G-AnDA w.r.t. 0.40
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for DINEOF and 0.43 for OI on MW SST dataset), the additional relative gain greater than 35% in
RMSE of the patch-based version PB-AnDA + LROI + dX emphasizes the relevance of the proposed
multi-scale and patch-based decomposition to account for fine-scale structures. The analysis of the
mean correlation coefficients between the interpolated fields and the reference fields for scales below
100 km leads to the same conclusion.

Table 2. Interpolation performance for the MW SST case-study: mean root mean square error (RMSE)
and correlation coefficients with the MW SST for OI, DINEOF, G-AnDA and PB-AnDA methods. We
refer the reader to the main text for the details on the considered parameterizations.

Criterion RMSE Correlation

OI 0.48 ± 0.05 0.69 ± 0.07
DINEOF 0.40 ± 0.04 0.79 ± 0.04
G-AnDA 0.38 ± 0.04 0.81 ± 0.03

PB-AnDA + LROI + dX 0.24 ± 0.03 0.93 ± 0.02

Table 3. Interpolation performance for the OSTIA SST case-study: mean root mean square error (RMSE)
and correlation coefficients with the OSTIA SST for OI, DINEOF, G-AnDA and PS-MS-AnDA methods.
We refer the reader to the main text for the details on the considered parameterizations.

Criterion RMSE Correlation

OI 0.42 ± 0.11 0.83 ± 0.07
DINEOF 0.40 ± 0.10 0.86 ± 0.06
G-AnDA 0.38 ± 0.08 0.87 ± 0.04

PB-AnDA + LROI + dX 0.22 ± 0.04 0.90 ±0.03

Based on the above results, we further compared the performance of the different parameterization
of the proposed Pb-AnDA models. The higher energy level of MW SST fields for scales below 100 km
made the MW SST case-study more appropriate for this analysis. We evaluate the interpolation
performance for PB-AnDA modes using respectively dX, dX + Z and dX + X̄ variables using both
the optimally-interpolated field (LROI) and the yearly mean (LRM) as low-resolution background.
We report in Table 1 the RMSE for three specific zones: a first zone from (10◦E, 36.25◦S) to (56.25◦E,
45◦S), a second zone from (55◦E, 38.75◦S) to (75◦E, 47.5◦S) and a third zone from (35◦E, 26.25◦S) to
(55◦E, 35◦S). The first two zones depict highly-dynamical patterns, whereas the dynamics on the third
one are not as intense. Whereas auxiliary variables do not bring any improvement for Zone 3 for
both LROI and LRM settings, a slight mean improvement is reported when considering Z for the two
other zones (i.e., the EOF-based decomposition of the SSH field) as auxiliary variable (e.g., RMSE
values of 0.32 vs. 0.30 for PB-AnDA-LRM-dX and PB-AnDA-LRM-dX + Z in Zone 2). Surprisingly,
the exploitation of the optimally-interpolated background (LROI setting) may be outperformed by
LRM setting (e.g., RMSE of 0.32 for PB-AnDA-LROI-dX and 0.3 for PB-AnDA-LRM-dX in Zone 2).
This may suggest that the space-time smoothing of the optimal interpolation for highly-dynamical
situations may result in local biases. To check for this hypothesis, we run a complementary experiment
using 5-daily SST field in order to simulate even higher-dynamical situations. As reported in Table 4,
these experiments further pinpoint the relevance of PB-AnDA-LRM-dX + Z setting to deal with
highly-dynamical situations. Example reported in Figures 1 and 3 illustrates these conclusions.
Visually, the use of the SSH as auxiliary variable (Z) leads to a better reconstruction of the fine-scale
structures. This is further illustrated in Figure 4 for Zone 2.

As a synthesis, we report in Figure 5 the time series of the mean RMSE and correlation for the
MW SST case-study for OI (blue), DINEOF, G-AnDA, PB-AnDA-LROI-dX + Z, PB-AnDA-LRM-dX + Z.
These results clearly emphasize the relevance of PB-AnDA models. Besides lower RMSE values and
higher correlation coefficients, PB-AnDA models also depict a much lower variability. Similarly to
the zone-specific results discussed above, LRM and LROI settings lead to a very similar performance
(mean RMSE of 0.239 for PB-AnDA-LRM-dX + Z and of 0.241 for PB-AnDA-LROI-dX + Z). Though this
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may not appear significant when considering a spatiotemporal mean, this is the case when considering
specific dates and zones corresponding to highly-dynamical situations. I may be noted that the overall
computational complexity of PB-AnDA-LRM-dX + Z is significantly lower as it did not require the
computation of the OI field as low-resolution background.

Figure 3. Reconstructed SST fields using OI, DINEOF, G-AnDA, PB-AnDA-LROI + dX + Z,
PB-AnDA-LRM + dX + Z on day 150 for MW SST case-study: refer to Figure 1. It may be noticed that
only PB-AnDA-LROI + dX + Z and PB-AnDA-LRM + dX + Z retrieves the fine-scale eddy-like structure
off South Africa on this particular date.

Table 4. Interpolation performance of PB-AnDA models for a 5-daily MW SST case-study for three
zones of interest in the case-study region: we refer the reader to the main text for the description of the
different PB-AnDA parameterizations.

PB-AnDA
LROI LRM

dX dX + Z dX + X̄ dX dX + Z dX + X̄

Zone 1 0.49 ± 0.10 0.47 ± 0.10 0.49 ± 0.10 0.51 ± 0.12 0.45 ± 0.09 0.51 ± 0.12
Zone 2 0.48 ± 0.14 0.43 ± 0.12 0.48 ± 0.14 0.49 ± 0.17 0.38 ± 0.10 0.48 ± 0.17
Zone 3 0.23 ± 0.06 0.22 ± 0.06 0.23 ± 0.06 0.23 ± 0.06 0.22 ± 0.06 0.23 ± 0.06

(a) (b)

Figure 4. Comparison of assimilation results for Zone 2 and case-study MW SST for different
parameterization of the PB-AnDA models: we report the example for two dates, respectively the
104th and 309th of the MW SST time series, in panels (a,b). For each panel, the first row depicts the
MW SST field (MW SST), the cloudy SST observation (Obs) and the gradient field (MW SST Gradient).
The second and third displays respectively the reconstructed SST fields and their gradient magnitude
for Pb-AnDA using LROI + dX, dX + Z, LROI + LRM + dX, LRM + dX + Z parameterizations.
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Figure 5. Mean RMSE and correlation time series for MW SST case-study: OI (blue), DINEOF (orange),
G-AnDA (green), PB-MS-AnDA-LROI (red), PB-MS-AnDA-LRM (purple) methods.

5.2. Computational Complexity and Scalability

Regarding computational complexity issues, we evaluate the computational time of the PB-AnDA
models with respect to the number processing cores. Figure 6 emphasizes the scalability of PB-AnDA
models with good parallelization performance, as the computational time almost reaches the optimal
linear decrease w.r.t. the number of cores in logarithmic scale. This parallelization performance directly
relates to the proposed patch-based setting which leads to the independent sequential assimilation of
the considered patches.

These experiments also stress the significant reduction of the computational complexity resulting
from the clustering-based analog forecasting operators. When considering a 12-core architecture,
the computational time is for instance reduced by a factor of about 4 between the proposed
clustering-based scheme compared with the original one [24].

Overall, for the considered case-study region with 194 patches and the considered multi-core
architecture, the overall computation time required by PB-AnDA is significantly less than that of
G-AnDA (23 min vs. 82 min), though higher than that of DINEOF (23 min vs. 4 min). These results
support an operational application of the proposed AnDA models on a global scale for high-resolution
SST fields using state-of-the-art multi-core architecture.

1 3 6 12 24
Number of processing nodes

5640

2016

680
444

156

Ti
m
e 
(s
)

NFit=3
NM=100

Figure 6. Parallelization performance of the proposed PB-AnDA setting: we report in logarithmic scale
the computational time of the assimilation of 24 patches using the standard PB-AnDA with NM = 100
members (orange,-) and using the clustering-based version with NFit = 3 clusters (blue,-). The dashed
lines indicate the computational time of a theoretically-optimal multi-core parallelization.

6. Conclusions

We presented an application of the analog data assimilation [24] to the interpolation of SST fields.
Using patch-based and EOF-based decompositions as in [26], the main contributions of this study
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are three-fold: (i) the introduction of conditional and physically-driven analog forecasting operators,
(ii) the reduction of the computational complexity of PB-AnDA models with clustering-based analog
forecasting operators, (iii) the demonstration of the scalability of PB-AnDA models to scale up to
large scale-datasets. Overall, this study supports the investigation of the operational application of
PB-AnDA models for an improved spatio-temporal interpolation of SST fields compared with optimal
interpolation [12] and EOF-based schemes [14]. Among the issues to be delt with, the size and nature of
the SST catalogs to be archived is certainly a critical question. Future work should further explore the
extent to which purely-observation-based catalog may be self-sufficient or appropriately complemented
by numerical simulation datasets. Preliminary results suggest that purely-observation-based catalogs
might be a relevant option. Future should also investigate how AnDA may also provide a flexible
framework to combine multi-source and multi-scale SST data through adapted observation models [10].

Beyond the reconstruction of gapfilled SST fields, we believe that the reported experiments
illustrate the potential of PB-AnDA models for the reconstruction of geophysical products from
remote sensing data, especially other sea surface tracers such as SSH (Sea Surface Height), SSS (Sea
Surface Salinity) and ocean colour, as well as atmospheric variables. It might be noted that our recent
application on the interpolation of altimeter-derived SSH fields further supports this potential [27].
For such applications, the relevance of PB-AnDA models is expected to strongly depend on one hand on
the availability of large-scale simulation or observation-driven datasets to build representative catalogs
of exemplars of the range of space-time scales of interests, and, on the other hand, on the validity of
the assumption that state dynamics are locally-linear with respect to the considered regressors.
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