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Abstract: The increasing availability of highly detailed three-dimensional remotely-sensed data
depicting forests, including airborne laser scanning (ALS) and digital aerial photogrammetric (DAP)
approaches, provides a means for improving stand dynamics information. The availability of data
from ALS and DAP has stimulated attempts to link these datasets with conventional forestry growth
and yield models. In this study, we demonstrated an approach whereby two three-dimensional point
cloud datasets (one from ALS and one from DAP), acquired over the same forest stands, at two
points in time (circa 2008 and 2015), were used to derive forest inventory information. The area-based
approach (ABA) was used to predict top height (H), basal area (BA), total volume (V), and stem
density (N) for Time 1 and Time 2 (T1, T2). We assigned individual yield curves to 20 × 20 m grid
cells for two scenarios. The first scenario used T1 estimates only (approach 1, single date), while the
second scenario combined T1 and T2 estimates (approach 2, multi-date). Yield curves were matched
by comparing the predicted cell-level attributes with a yield curve template database generated using
an existing growth simulator. Results indicated that the yield curves using the multi-date data of
approach 2 were matched with slightly higher accuracy; however, projections derived using approach
1 and 2 were not significantly different. The accuracy of curve matching was dependent on the ABA
prediction error. The relative root mean squared error of curve matching in approach 2 for H, BA,
V, and N, was 18.4, 11.5, 25.6, and 27.53% for observed (plot) data, and 13.2, 44.6, 50.4 and 112.3%
for predicted data, respectively. The approach presented in this study provides additional detail
on sub-stand level growth projections that enhances the information available to inform long-term,
sustainable forest planning and management.
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1. Introduction

Sustainable forest management requires accurate information on both current and projected stand
conditions. While the current information on stand composition, structure, and age is collected during
forest inventories, long-term planning relies on models that describe forest stand dynamics [1]. We
refer to these models as growth simulators throughout this paper.

Growth simulators project forest stand attributes over time and depend on a set of input attributes
describing individual trees or a stand [2]. The type and number of input attributes into the models
depend on the growth simulator’s level of abstraction with the whole-stand growth models requiring
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less detailed information than single-tree or size-class models [2]. The choice of growth simulator
depends on its availability for the area of interest—e.g., in Canada growth simulators have been
developed for each province separately, with whole-stand models being popular in British Columbia
and Alberta. In the majority of cases, the core set of input attributes for stand-level growth simulators
includes species composition, stand age, and top height or alternatively site index. Additional inputs
can improve model accuracy and can include information on stand density, basal area, stocking, canopy
cover, information on insect damage, and silvicultural practices such as thinning or fertilization [3,4].
Simulator output typically consists of a list of predicted stand attributes for a specified age sequence
(e.g., 10, 20, 30 years in the future), stratified by species. Stand attributes include top height, basal area,
merchantable and total volume, and stand density.

Airborne laser scanning (ALS) has demonstrated capacity for characterizing a number of
important forest stand attributes [5,6]. Three-dimensional point clouds acquired with ALS precisely
characterize the distribution of vegetation and allow for accurate estimation of forest stand attributes,
including height, canopy cover, basal area, biomass, and volume [6,7]. Because of the high positional
accuracy of the acquired point clouds and the ability of a laser pulse to pass through small openings
in forest canopy, some attributes, such as tree height and canopy cover, are estimated directly. Other
attributes, such as basal area or volume, require development of models that utilize ALS metrics as
predictor variables. A multitude of studies have proven the suitability of ALS-derived forest stand
attributes in variety of forest environments e.g., [8–11].

The area-based approach (ABA) and the individual tree detection (ITD) approach are the two most
common approaches for ALS-based predictions of forest-related attributes. ITD requires individual tree
tops to be located and tree crowns to be delineated [11,12]. Individual tree attributes are then derived
from the properties of the point cloud inside each delineated crown. This method depends on the
accuracy of the tree identification and is prone to errors that result from over- or under-segmentation
of tree crowns. In the ABA, forest stand attributes are estimated for a grid cell (typically 20–30 m
on a side), based on metrics that summarize the distribution of the point cloud within the cell [5,13].
The grid cell is therefore a fundamental unit of the ABA, offering more spatial detail than a traditional
polygon-based inventory, while avoiding the bias often introduced by the ITD approach.

Digital aerial photogrammetry (DAP) approaches have been found to be a good alternative data
source to ALS for stand characteristics. In some studies, DAP-based point clouds have provided
similar accuracies for ABA-derived forest stand attributes like height, basal area or volume [14–18],
while the cost of acquiring these data is markedly lower than ALS data. However, the DAP point
cloud primarily represents the top of the canopy and the ground surface is often not sufficiently
represented, which limits the application of DAP data in moderate to dense forest stands [19,20]. This
limitation may be overcome by integrating ALS and DAP data sources; stand heights may be then
characterized by normalizing the DAP point cloud elevations with an ALS-based terrain model. Due
to lower acquisition costs, DAP data has been proposed as an alternative to ALS data for updating
forest inventories, provided an initial ALS acquisition is available to provide the requisite ground
elevations under canopy [19].

The capacity of the ALS and DAP data to characterize stand conditions offers new possibilities for
analyzing stand dynamics over large areas when the datasets are acquired at different points in time.
ABA-derived layers informing stand attributes at different times should allow forest managers to track
stand dynamics between the two acquisition times. Having the cell-level information extended from a
single, or two points in time, to the desired length of forest management and planning periods is of
great importance and could provide critical information supporting sustainable forest management.
However, the development of methodologies to integrate growth simulators with ABA-derived forest
inventory layers is in its infancy. First and foremost, there is a discrepancy between the inputs
required to parameterize growth simulators and outputs from ABA. Growth simulators typically
require information on stand age, species, and top height, at a minimum, with top height being the
only variable well demonstrated to be accurately predicted from ALS or DAP and therefore available



Remote Sens. 2018, 10, 347 3 of 21

at cell level. Second, most growth simulators are applied at the stand-level, whereas ABA outputs
are provided at the individual grid-cell level; generalizing ABA outputs to the stand-level results
in a loss of within-stand information [19,21]. Third, the influence of ABA prediction accuracy on
subsequent growth and yield projections is not yet known. Lastly, it is unclear how multi-temporal
ABA predictions could be used to increase the accuracy of cell-level growth projections.

Using 3D point clouds to analyze forest dynamics has significant potential for providing detailed
and accurate characteristics of forest stand changes through time. Examples rely either on multiple
ALS or DAP acquisitions, or combined data from ALS and DAP, and in most cases focus on
stand height, as this attribute can be assessed directly with highest accuracy [22–25]. For example,
Stepper et al. [26] derived periodic annual increment (PAI) of forest height from two DAP datasets
acquired at two different times. Similarly, Véga & St-Onge [27] analyzed forest stand height growth
based on historical aerial photographs and ALS data. Historical analog photographs were used to
create digital canopy height models (CHMs) to observe changes in dominant tree height. Cao et al. [28]
used multi-temporal ALS data to assess forest biomass dynamics in a mixed subtropical forest in China.
Similar to Goodbody et al. [29], the change in forest stand attributes was either modeled directly, or was
calculated as a difference between two separate predictions. Recently Socha et al. [30] used repeated
laser scanning data to model height growth and site index. They used two point cloud datasets with
the second one acquired 5 years after the first, and successfully developed site-specific trajectories of
top height.

Studies that demonstrate how multi-temporal ALS or DAP data can be linked to a growth
simulator for forest attribute projection are more limited. Falkowski et al. [31] used ALS-based
individual tree attributes as input parameters for the Forest Vegetation Simulator (FVS) [32]. FVS is
an individual-tree growth and yield simulator that relies on species and diameter at breast height
(DBH) for input. The authors compared inventory- and ALS-based projections, which followed the
same trends, and showed a correlation coefficient for projected basal area values above 0.91 and root
mean square differences (RMSD) of 1.97 m2 ha−1 on average. Recently Lamb et al. [33] proposed an
approach to linking individual tree growth simulators with ALS data. Instead of using ALS-derived
attributes as direct inputs, they used the estimated attributes to assign a tree list to each 20 × 20 m cell
using k-nearest neighbor imputation. The tree lists were then used as input to the growth simulator to
project stand attributes over time.

Tompalski et al. [21] demonstrated how single-date ALS data and ABA outputs can be integrated
into stand-level growth simulators to provide improved cell-level growth projections. Yield curves
can be assigned to each ABA cell based on stand age and species information from existing forest
inventory data at the stand level, and ABA attributes that correspond to the output of the growth
simulator employed. This approach utilizes the existing inventory information to generate a database
of yield curves representing all possible stand conditions in the area. Next, candidate yield curves are
selected from the database based on each of the ABA attributes and the stand age indicated in the forest
inventory. Final yield curves are then assigned to each of the ABA cells based on a weighted mean of
the candidate curves, with the weight being the measure of prediction accuracy of the ABA models.
Although not statistical in nature, this approach was found to be suitable for large area cell-level
growth and yield analysis as it takes advantage of all available attributes estimated with ABA, not
only top height. Moreover, the discrepancy between the candidate curves can be used to characterize
the uncertainty related to the final assigned yield curve.

In this paper, we build upon the approach presented in Tompalski et al. [21] and focus on applying
it to enhance forest growth projections when multiple ABA outputs, derived at different points in
time are available. The unique contributions of this study are: (i) an analysis of how the accuracy of
cell-level yield projections change depending on whether a single or multiple ABA outputs are used
during curve assignment, and (ii) determination of the main drivers of the yield curve matching error.
We use ALS and DAP point clouds acquired at two points in time (ALS at T1—circa 2008 and DAP
at T2—2015) in an ABA. Four key stand attributes were first modelled (top height, basal area, total
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volume, and number of trees per hectare) for both the T1 and T2 datasets, and were then used to assign
a yield curve to each 20 × 20 m grid cell. The differences in the accuracy of the curve assignments were
compared by calculating bias and root mean square error (RMSE) between the projected and reference
data. The comparison was performed for two different scenarios, depending on whether only the
data acquired at T1 were used, or whether a combination of data acquired from T1 and T2 were used.
We also considered how the ALS and DAP point clouds could be integrated to analyze forest growth
and how the prediction errors associated with the ALS- and DAP-derived models influenced the yield
curve assignment.

2. Materials

2.1. Study Area

The study area was approximately 700,000 ha in size, located near the community of Slave Lake,
Alberta, Canada (Figure 1). The area is situated in the Central Mixedwood, Lower Foothills, and Upper
Foothills natural subregions [34]. The mean summer and winter temperatures are 20 ◦C and −21 ◦C,
respectively, while the annual precipitation is 600 mm [34]. Forests in the study area are actively
managed for lumber and pulpwood and the area is also subject to extensive oil and gas exploration.
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Figure 1. Location and outline of the study area.

2.2. Forest Inventory Data

Alberta Vegetation Inventory (AVI) [35] data were used to provide auxiliary information on
stand attributes. AVI data is generated using aerial photo interpretation to delineate homogeneous
forest stands (polygons) at least 2 ha in size, supported with field plots and field visits to assign
characteristics for the delineated polygons. Polygon attributes include species composition, crown
closure class, height, year of origin, structure, condition, and productivity class (Good, Medium,
Fair, and Unproductive) [35]. We used the polygon level AVI information on stand age and species
composition for yield curve assignment.
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The forest inventory on the study area contained 46,913 unique polygons or stands and
represented a total area of 587,875 ha. Stands were aggregated into four groups depending on
the dominant species: SB—black spruce group, SW—white spruce group, PL—lodgepole pine group,
and AW—trembling aspen group (Table 1).

Table 1. Forest stand characteristics in the study area based on the Alberta Vegetation Inventory.

Species Group
and Code

Included Dominant
Species

Number of Stands Total Area Mean
Area Stand Age

# % ha % ha Mean σ

Aspen
group—AW

balsam poplar
(Populus balsamifera)
trembling aspen
(Populus tremuloides)

17,134 36.52 250886.20 42.68 14.64 81 38

Pine group—PL

jack pine
(Pinus banksiana)
lodgepole pine
(Pinus contorta v. latifolia)
tamarack/larch
(Larix laricina)

11,830 25.22 162834.58 27.70 13.76 112 55

Black spruce
group—SB

black spruce
(Picea mariana) 9947 21.20 90498.25 15.39 9.10 117 47

White spruce
group—SW

alpine fir
(Abies lasiocarpa)
balsam fir
(Abies balsamea)
Douglas fir
(Pseudotsuga menziesii)
Engelmann spruce
(Picea englemannii)
white spruce
(Picea glauca)

8002 17.06 83656.40 14.23 10.45 120 44

Total 46,913 100.00 587875.43 100.00 12.53 103 49

2.3. Plot Data

Permanent sample plot (PSP) data were used to create ABA models that predict forest stand
attributes of interest, as well as to evaluate the growth and yield projections based on the remote
sensing data. The PSPs were originally established in the study area between 2004 and 2007 (121 plots
in total at T1), and then re-visited in 2015 (45 plots at T2, Figure 1). Tree measurements on each plot
consisted of species, DBH, height, height to living crown, crown position, tree condition, and stem
location. All trees within the boundary of a plot exceeding 7 cm DBH were measured. Plot radius was
11.2 m (400 m2), with centers recorded with a GPS receiver of sub-meter accuracy.

Individual tree measurements were aggregated to plot level summaries that consisted of top
height (H), basal area (BA), total volume (V), and number of trees per hectare (N). Plot summaries for
all PSPs measured at T1 and T2 were used as reference data. However, due to the time lag between
field and remote sensing data collection, which ranged from 1 to 4 years, a number of anthropogenic
and non-anthropogenic disturbances occurred. The AVI information was used to flag plots that had
recorded disturbances between the two time steps and these plots were then removed from the dataset,
reducing the number of plots available to 98 and 35 for T1 and T2, respectively (Table 2).
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Table 2. Characteristics of permanent sample plots (PSPs) used to generate area-based models of forest
stand attributes.

Time
Species

Group Code N
H BA V N

Mean SD Mean SD Mean SD Mean SD

T1 AW 39 19.6 5.3 32.3 15.7 269.3 179.6 1169.5 629.9
T1 PL 17 12.9 5.9 22.8 19.1 162.5 183.4 1166.4 1193.8
T1 SB 26 15.4 5.2 30.6 17.5 190.4 140.1 1438.5 1058.3
T1 SW 16 21.8 7.1 36.1 18.1 304.4 193.3 873.4 697.0
T1 Total 98 17.7 6.4 30.8 17.4 235.6 178.2 1192.0 887.5
T2 AW 10 21.9 4.2 37.3 10.7 326.1 124.1 1102.0 454.4
T2 PL 9 13.8 5.7 25.6 24.0 202.1 257.4 1122.9 1061.3
T2 SB 11 16.2 4.0 37.5 16.8 230.2 123.7 1846.8 1171.7
T2 SW 5 18.7 5.7 33.7 18.5 232.2 132.7 955.7 714.5
T2 Total 35 17.6 5.5 33.9 17.8 250.6 169.5 1320.6 957.6

2.4. ALS Data

ALS data were acquired for the study area between 2006 and 2008, with the majority acquired
in 2008. Optech ALTM 3100 was used in all three data acquisitions, with very similar flight and
acquisition parameters (Table 3). The average point density for all point clouds was 1.63 points/m2.

Table 3. Airborne laser scanning (ALS) data acquisition parameters.

Year of Acquisition 2006 2007 and 2008

Sensor Optech ALTM 3100 Optech ALTM 3100
Flying height 1250 m AGL 1400 m AGL
Flight speed 160 kts 160 kts

Pulse repeatition rate 50 kHz 70 kHz
Scanning frequency 30 Hz 33 Hz

Scan angle 50 deg 50 deg
Beam divergence 0.3 mrad 0.3 mrad

Average point density 1.53 1.52 (2007)/1.68 (2008)

2.5. DAP Data

The digital image data were acquired on 26 April, 9 May and 13 May 2015 with a Z/I DMC II 230
camera, and consisted of 1527 images. Images included blue, green, red, and near-infrared spectral
bands. The ground sample distance (GSD) was 0.3 m. The along track and across track overlap were
60% and 30%, respectively. Images were processed following the standard routines for DAP that
included block alignment, and dense cloud building, using Agisoft Photoscan. A total of 134 ground
control points (GCPs) were used to ensure accurate registration of the data. The dense point clouds
were built using the “high” setting, which resulted in an average density of 0.82 points/m2.

2.6. Point Cloud Data Processing

The ALS point clouds were processed following standard processing routines, which included
tiling, ground classification, and height normalization. Processing was performed using the LAStools
software package [36], with a tile size of 1000 × 1000 m and a 20 m buffer. Ground classification was
based on adaptive TIN models [37]. Points classified as ground were then used to normalize the ALS
point cloud elevations relative to the ground surface.

DAP point clouds were processed using routines similar to the routines used to process the
ALS data. Data were tiled using a similar tile size and tile overlap. However, because the DAP data
primarily characterize the top of the canopy, height normalization for each tile was performed by
incorporating the ALS-based points classified as ground. After normalization the ALS ground points
were removed.

Point cloud metrics were calculated using both the ALS and the DAP data. Metrics included
measures of central tendency (mean, median, mode), measures of dispersion (variance, standard
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deviation, interquartile range), percentiles, proportions, and densities of point heights above ground.
All metrics were calculated using all returns above 2 m and were calculated at both the plot- and grid
cell-level using the FUSION software package. A complete list of point cloud metrics generated by
FUSION can be found in McGaughey [38].

3. Methods

The overall design of the study is shown on Figure 2. Using ground plot data and point cloud
metrics, we first developed predictive models for four selected stand attributes, for the T1 and T2
datasets. We then generated plot-level and wall-to-wall estimates of the selected attributes and used
them to match a yield curve at both the plot- and wall-to-wall level, using two different approaches. In
approach 1 only T1 data was used, while approach 2 utilized both T1 and T2 data. At the plot level,
both curve matching approaches were then validated by comparing the projected values with the
values observed in the field. We demonstrated a result of the curve matching technique on a 2 × 2 km
subset of the study area.
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3.1. ABA Modeling

Multiple linear regression was used to estimate H, BA, V, and N from ALS data at T1 and DAP
data at T2. Eight separate regression models were created using a stepwise variable selection approach.
Models for H were based on a single ALS- or DAP-based metric describing canopy height. Modeling
of BA, V, and N used a maximum of four variables following the approach of Bouvier et al. [39]. These
variables should characterize stand height, heterogeneity of stand height, canopy cover, and stand
vertical complexity. We tested different combinations of variables from each of these groups, as well
as different variable transformations, selecting final models based on the AIC coefficient. A log-log
transformation was required to achieve linearity for models predicting BA, V, and N. The modeling
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results were assessed using leave-one-out cross validation. We calculated the R2 coefficient, bias
and RMSE (absolute and relative) and used a paired Wilcoxon signed rank test to evaluate the null
hypothesis that the median difference between the compared observed and predicted values was zero
at α = 0.05. In case of models that required data transformation, model statistics were calculated using
the back-transformed variables with bias correction factors [40].

3.2. The Growth and Yield Projection System (GYPSY)

GYPSY (Growth and Yield Projection System) is a forest stand-based growth simulator developed
by the Alberta Agriculture and Forestry Ministry of the Government of Alberta, Canada [4] for
projecting the growth of the four main species groups found in Alberta. GYPSY consists of several
sub-models that predict top height, density, basal area increment, and gross total and merchantable
volume, with an optional model for percent stocking used for young, post-harvest stands. Detailed
information on the models and accuracies can be found in [41]. The sub-models utilize stand-level
input variables to project forest stand attributes. The required input data includes species group, site
index (or alternatively top height and total age), stem density, and basal area. Outputs consist of
estimated top height, basal area, volume, stem density, site index, and increments in these attributes,
at specified times intervals over a specified period. We assumed that errors introduced by GYPSY’s
internal sub-models are equal for each projection and consequently we did not account for them in
our study.

Following the approach of Tompalski et al. [21], we used the simulator to create a database of yield
curve templates based on all possible input combinations (e.g., every combination of species groups,
top height, total age, density, and basal area). The database represented all possible stand conditions in
the study area and was based on the range of stand attributes in the existing forest inventory. The yield
curves were generated for the four specified species groups, from 1 to 200 years, by 1 year increments.
An individual yield curve template consisted of four sequences of values representing top height, basal
area, volume, and stem density, between 1 and 200 years, and being estimated by the simulator based
on species group, top height, total age, and basal area.

3.3. Yield Curve Matching

A yield curve from the database was assigned to each of the ground plots and to each of the 20 m
cells corresponding to the wall-to-wall ABA raster data outputs for H, BA, V, and N (Figure 3). The
selection process to assign the best possible yield curve that matched stand attributes was based either
on observations recorded at T1 (approach 1), or based on the combination of observations at both T1
and T2 (approach 2). First, candidate curves were selected from the database, based on stand age,
species group and the minimal difference between the stand attribute and a value of a yield curve.
This resulted in four candidate curves for approach 1, and eight candidate curves for approach 2
(four from T1 plus four from T2). The final yield curve was derived by calculating a weighted mean
of the candidate curves, with the percent of explained variance in the ABA model used as a weight.
This allowed assigning more weight to the attributes that were modeled with greater accuracy and
increased the reliability of the final curve. When T1 and T2 data were used (approach 2), the weighted
means were calculated separately for each data set, and then averaged. The range of attribute values
projected to 80 years on each of the candidate curves was used as a measure of uncertainty for the
curve assignment. The uncertainty of each attribute x was calculated as the absolute value of the
relative difference between a value of attribute x on a matched curve with a value of an attribute on
the curve with the largest difference (xmax):

∆x =

∣∣∣∣ xmax − xC
xC

∣∣∣∣ ∗ 100 (1)
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The curve assignment procedure resulted in a yield curve and uncertainty value assigned to each
of the plots or each of the grid cells. This allowed us to project the stand attributes to a chosen age
of interest.Remote Sens. 2018, 10, x FOR PEER REVIEW  9 of 20 
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3.4. Validation of the Yield Curve Assignment

To compare the curve matching accuracy based on the different sets of input data, the curve
matching procedure was applied to four scenarios. Each scenario was based either on observed or
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predicted plot attributes, following either approach 1 or approach 2. In each of the four cases, the
matched yield curve was used to project the stand attributes from T1 to T2, and then compared to the
values observed at T2. We calculated absolute and relative bias, and absolute and relative RMSE, and
determined whether the differences between the two compared plot attributes were significant with
the paired Wilcoxon test (α = 0.05) under each scenario.

We performed an exploratory data analysis of the ABA modeling error, the error in curve
assignment, and the uncertainty of the yield curve assignment to better understand how these errors
were related to one another. Spearman correlation coefficients were calculated for each variable pair
(e.g., curve matching error of H and prediction error of H, or curve matching error of V and uncertainty
of curve assignment of V), and relationships between variable pairs assessed using scatterplots.
Multiple linear regression was used to determine the drivers of the curve matching error, which
involved initially identifying a set of factors that could potentially influence the accuracy of curve
matching. These factors were the prediction error, uncertainty of the yield curve assignment, stand
age, and species. The absolute value of the curve matching error was regressed against the uncertainty
of curve assignment, absolute prediction error of the ABA models, age, and species group, for each
stand attribute and for both approaches.

3.5. Wall-to-Wall Growth and Yield Projections

The wall-to-wall raster data predicted by ABA, together with auxiliary inventory information
on stand age and species group, were used to assign a yield curve to each 20 × 20 m ABA cell. The
auxiliary forest inventory data were first converted to raster layers representing stand age and species
code, with a cell size and extent that matched the ABA raster layers. Yield curve matching was done
using the ABAT1 predictions only (approach 1) and a combination of ABAT1 and ABAT2 (approach 2).
Yield curves for each of the attributes (H, BA, V, N) were stored as a separate raster stack, with layers
representing attributes at stand ages between 1 and 200 years.

4. Results

4.1. ABA Modeling Results

The proportion of explained variance (R2) for the ABA models derived from the ALS (T1) and
DAP (T2) data was similar, with the lowest values for ABA models predicting N (0.275 and 0.246, for
T1 and T2, respectively) (Table 4, Figure 4). A power regression approach was used for modeling BA, V,
and N, and the predicted values were back-transformed incorporating a bias correction factor to correct
for the systematic bias introduced by the log transformation. Model statistics (bias, RMSE, R2) were
calculated using the back-transformed values in case of models that required variable transformation
Models for H, BA, and V, for T1 and T2, had R2 values over 0.7, with the highest for HT2 (0.827). The
lowest R2 value among these three variables was for BAT2 (0.596). The correlation coefficients between
independent variables were always lower than 0.7 for models with more than one independent variable.
All independent variables remaining in each of the models were significant (α = 0.05).

There were similar prediction accuracies for the T1 and T2 models (Figure 4). In both cases, the
predictions of H had the lowest absolute and relative RMSE and no bias, while predictions of N had
the poorest accuracy (RMSE% > 65%). Predictions of BA and V showed small bias and had a relative
RMSE of around 40%. Results of the paired Wilcoxon test (p-values reported in Figure 3) indicated that
the null hypothesis that the median value of the difference between field-measured and predicted plot
volume was 0 could not be rejected in all but one case (for VT1 p-value = 0.044).
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Table 4. Predictive models for top height (H), basal area (BA), total plot volume (V), and stem density
(N). Dependent variables denoted with T1 were modeled using ALS data acquired at T1 (2008), while
T2 variables were modeled using DAP data from T2 (2015).

Dependent Variable Predictive Model R2

HT1 3.344 + 0.814 ∗ P99 0.76
BAT1 100.96+0.81∗SD+0.15∗STRATA_10_20 0.71
VT1 101.47+1.24∗SD+0.13∗STRATA_10_20 0.78
NT1 103.37−0.91∗P99+0.34 ∗ perc_above_2+0.22∗STRATA_10_20 0.26
HT2 5.22 + 0.81 ∗ P99 0.83

BAT2 100.26+1.30∗P90−0.13∗perc_above_2 0.60
VT2 100.46+1.88∗P95−0.17∗perc_above_2 0.72
NT2 102.23+0.86∗P90−0.08∗perc_above_2 0.25

R2—adjusted coefficient of determination; P90, P95, P99—90th, 95th, and 99th percentile of normalized point heights,
respectively; SD—standard deviation of point heights; STRATA_10_20—proportion of points between 10 and 20 m
above ground; perc_above_2—percentage of points above 2 m above ground.
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Figure 4. Observed versus predicted values for top height (H), basal area (BA), total volume (V), and
stem density (N). Variables denoted with T1 were modeled using ALS data acquired at T1 (2008), while
T2 variables were modeled using DAP data from T2 (2015).

4.2. Yield Curve Matching

The four approaches to yield curve matching resulted in four different curves being assigned
to each plot. Yield curves are shown, together with the T1 and T2 values used during the weighting
process for three representative plots, in Figure 5. The three selected plots demonstrate cases when the
error in curve matching was low or medium (plots 80 and 88), and when there was a larger discrepancy
between the curves matched based on observed and predicted data (plot 58).
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predicted) and using data acquired at T1 only or at T1 and T2.

The greatest agreement between plot-level stand attributes and matched yield curves was achieved
when the observed ground plot data were used as the input information for the matching (Figure 6A,C).
The accuracy decreased when predicted attributes were used instead, with the relative RMSE increasing
in some cases by more than 25% (Figure 6B,D). The accuracy was higher when both T1 and T2 data
were used; however, the differences in bias or RMSE values were not as large as that between scenarios
that differ by data type. The relative RMSE values for the scenario that used predicted data at T1
and T2 were lower by 7.28%, 0.11%, 1.55%, for H, BA, and V, respectively, and higher by 8.21% for
N, when compared to relative RMSE for the scenario that used predicted data at T1 only. The largest
discrepancies were observed for N in scenarios that used predicted values during curve matching,
while the smallest discrepancies were found for H when T1 and T2 data were used.
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4.3. Uncertainty in the Yield Curve Matching

There was a strong correlation between the model prediction errors and the error in curve
matching, with Spearman correlation coefficient values exceeding 0.6 for the majority of the stand
attributes and data types (Figure 7). Conversely, there were no strong relationships between prediction
error and uncertainty, and between curve matching error and uncertainty (R < 0.3 for the majority of
stand attributes).



Remote Sens. 2018, 10, 347 14 of 21

Remote Sens. 2018, 10, x FOR PEER REVIEW  14 of 20 

 

 
Figure 7. Relationship between prediction error, curve matching error, and uncertainty for the four 
plot-level attributes. H—top height, BA—basal area, V—total volume, N—stem density. 

The relationship between each variable pair (i.e., each variable projected to T2 with approach 1 
and with approach 2) was strong, with the correlation coefficient between 0.89 for N and 0.95 for V 
(Table 6). The mean differences indicated that the values of BA, V, and N projected with approach 2 
were lower. The relative RMSD was highest for V (20.75%). For all comparisons, the results of the 
Wilcoxon test indicated that the difference between the medians of the compared variables (e.g., H 
projected to T2 based on T1 data only, and based on T1 and T2 data) was not significant. 

Table 6. Comparison of stand attributes projected to T2 based on approach 1 and approach 2. 

Variable R MD RMSD RMSD% p-Value 
H [m] 0.93 0.02 2.45 14.49 0.93 

BA [m2/ha] 0.91 −1.01 3.98 13.99 0.98 
V [m3/ha] 0.95 −11.50 44.36 20.75 0.57 

N [stems/ha] 0.89 −30.72 151.96 17.67 0.31 
H—top height; BA—basal area; V—total volume; N—stem density; R—Spearman’s correlation 
coefficient; MD—mean difference; MD%—relative MD, RMSD—root mean squared difference; 
RMSD%—relative RMSD; paired Wilcoxon test used to calculate the p-value; n = 35 for each variable. 

  

Figure 7. Relationship between prediction error, curve matching error, and uncertainty for the four
plot-level attributes. H—top height, BA—basal area, V—total volume, N—stem density.

Multiple regression analysis of the curve matching error confirmed that the prediction error of
the ABA models was the main predictor of the matching accuracy (Table 5). The prediction error was
significant for all but one model, with regression coefficients between 0.47 and 0.88. The coefficient
value for these models indicated the relationship between curve matching error and prediction error.
For example, a value of 0.5 indicated that an increment of 1 unit in prediction error results in 0.5 unit
increment of the curve matching error. Other explanatory variables were not significant in most cases,
with uncertainty and age being significant only in the case of BA (T1 and T2 approach). The species
variable showed significance in only two cases (V in approach 2, and N in approach 1). The coefficient
of determination was high for BA, V, and N, with highest value of 0.83 for N (approach 1).
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Table 5. Multiple regression analysis of the curve matching error.

H BA V N

Approach 1 2 1 2 1 2 1 2

R2 0.29 0.12 0.66 0.72 0.64 0.81 0.83 0.81
model term:

prediction error 0.21 0.47 * 0.79 *** 0.72 *** 0.88 *** 0.81 *** 0.85 *** 0.85 ***
uncertainty 0 0 −0.01 −0.03 * −0.01 −0.02 −0.06 0.19

age −0.02 −0.01 0.03 0.04 * 0.26 0.11 0.3 1.7
species-PL 1.27 0.09 1.62 7.96 ** 32.56 25.38 19.14 153.8
species-SB −0.37 −0.19 2.95 5.66 * 17.33 35.91 * −168.11 −42.93
species-SW −0.51 0.24 1.61 5.69 * 12.35 16.84 −320.85* −196.21

H—top height; BA—basal area; V—total volume; N—stem density; R2—adjusted coefficient of determination,
* p < 0.05; ** p < 0.01; *** p < 0.001.

The relationship between each variable pair (i.e., each variable projected to T2 with approach 1
and with approach 2) was strong, with the correlation coefficient between 0.89 for N and 0.95 for V
(Table 6). The mean differences indicated that the values of BA, V, and N projected with approach 2
were lower. The relative RMSD was highest for V (20.75%). For all comparisons, the results of the
Wilcoxon test indicated that the difference between the medians of the compared variables (e.g., H
projected to T2 based on T1 data only, and based on T1 and T2 data) was not significant.

Table 6. Comparison of stand attributes projected to T2 based on approach 1 and approach 2.

Variable R MD RMSD RMSD% p-Value

H [m] 0.93 0.02 2.45 14.49 0.93
BA [m2/ha] 0.91 −1.01 3.98 13.99 0.98
V [m3/ha] 0.95 −11.50 44.36 20.75 0.57

N [stems/ha] 0.89 −30.72 151.96 17.67 0.31

H—top height; BA—basal area; V—total volume; N—stem density; R—Spearman’s correlation coefficient;
MD—mean difference; MD%—relative MD, RMSD—root mean squared difference; RMSD%—relative RMSD;
paired Wilcoxon test used to calculate the p-value; n = 35 for each variable.

4.4. Analysis of the Wall-to-Wall Projections

The results of the cell-based, wall-to-wall attribute projections derived with both approaches were
saved as raster stacks. A representative 2 × 2 km subset for approach 2 is shown in Figure 8. To further
illustrate the growth information assigned to each cell, four exemplar cells were selected and their
corresponding yield curves shown.
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Figure 8. A 2 × 2 km subset of the wall-to-wall yield curve projection result, based on approach 2.
Each row of graphs demonstrates a progression of a cell-level attribute (H—top height, BA—basal area,
V—total volume, N—stem density) through time. Attributes are projected to 25, 50, 100, and 150 years
(columns). Yield curves are shown for four representative cells.

5. Discussion

ALS and DAP point cloud data were used to derive forest stand attributes with ABA, and then
used to assign yield curves at the plot- and cell-level. It was found that the yield curve matching
approach based on the combined T1 and T2 data resulted in more accurate projections of forest
attributes and that the main driver of the curve matching error was the prediction error of the ABA
models. The differences between the two approaches to curve matching were more pronounced
when the observed ground plot data was used and less when the matching relied on predicted data.
However, the relative RMSE was virtually the same in both approaches for BA and V. We did not find
significant relationships between stand age, dominant species, or the uncertainty in curve assignment
with the curve matching accuracy. These results indicate that the accuracy of ABA models was the most
important factor in determining the accuracy of curve matching. This result confirms that there were
only modest gains in accuracy from the use of ABA outputs from two time periods in this environment.

The characteristics of the GYPSY simulator, used to create the yield curve template database,
dictated the choice of the ABA variables to be modelled at T1 and T2. The accuracy of the models
differed, with more accurate estimates for H, and less accurate for N, which is typical for ABA.
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Importantly, when used as input data during curve matching, model predictions were not treated
equally, but rather weighted by the amount of explained variance. This allowed the influence of
potential outliers to be limited and more weight to be assigned to predictions for which there was
greater confidence.

There were similar levels of accuracy for both ALS- and DAP-based ABA predictions. In both
cases, the three-dimensional point data was of low density (1.5 and 0.82 points m−2 for ALS and
DAP point clouds, respectively). Perhaps as a consequence of the data density, combined with the
complexity of forest environment, the accuracy of the attribute predictions based on both sources of
point cloud data were comparable or slightly lower than reported in other studies e.g., [15,16,39]. Thus,
it appears that future enhanced forest inventories can rely on DAP data, with the digital terrain model
required for point cloud normalization provided by ALS [42–45].

Projections based on the two approaches were not statistically different when validated at the
plot level. Accurate estimates of the ABA-predicted stand attributes were more important for curve
matching than the use of two separate datasets representing stand conditions at T1 and T2. This
finding is based on the much larger discrepancies between attribute projections based on observed and
predicted data, than between projections based on observed or predicted data only. As demonstrated,
there was a high correlation between the ABA prediction error and the error of curve matching, and
this error was the main component driving the accuracy of the yield projections. This demonstrates
that accurate wall-to-wall growth and yield analysis at the cell level can be performed based on ABA
predictions representing only a single point in time, as long as the accuracy of the ABA predictions
is high. Therefore, the initial investment in field data collection and ALS acquisition (e.g., higher
density) is beneficial not only for the developed ABA predictions at T1 but also for growth and yield
analysis based on those predictions. Including additional predictions of stand attributes at T2 during
curve matching may provide more confidence in the projections as any discrepancies between stand
attributes at T1 and T2 can be easily identified; however, the accuracy of projected stand attributes will
increase only slightly. We suspect that the small improvement in the yield curve matching accuracy
for scenarios based on combining T1 and T2 data was related, in part, to the relatively short time
period (for this forest environment) between the ALS and DAP data acquisitions. Improvement in
the accuracy of projected attributes relative to what is reported herein may be greater in forests with
more rapid growth rates. In the mixedwood boreal, improvements in the accuracy of projected stand
attributes should increase when either the time between two acquisitions is longer, or when additional
datasets that extend the time series of point cloud data are incorporated.

The flexibility of the yield curve matching approach allows for the use of multiple ABA-predicted
forest inventory layers representing several points in time of stand development. The results presented
herein suggest that a longer chronosequence of cell-level stand attributes estimated with the ABA
would likely result in a higher accuracy of matched yield curves. Initial ALS acquisition at T1 and
multiple DAP datasets collected every 3–5 years would not just update the inventory; it would also
provide more information on stand dynamics and therefore improve growth and yield projections by
increasing the accuracy of yield curve assignment. In addition, a data assimilation approach could be
used to increase the accuracy of forest attributes at each step by combing the previous and new field
observations [46,47]. However, this would require a growth model to be developed that in addition to
projecting forest stand attribute would also inform on the accuracy of that projection. When longer time
series of point cloud-based inventories are available, cells located in undisturbed and healthy stands
may be used to improve existing growth and yield projections or to describe response to thinning,
fertilization, disease, or insect infestation, by characterizing discrepancies from the matched curves.
Most importantly, the yield curve matching approach allows the same level of spatial detail provided
in the ABA to be maintained. The cell-level information on the growth patterns of the key stand
characteristics provides opportunities to analyze dynamics at a sub-stand level and can be valuable
information for sustainable forest management and planning.
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Finally, it is important to recognize that there are more factors to be taken into consideration
when using forest growth simulators and utilizing the derived projections in forest management
and planning. This includes information related to forestry (e.g., fertilization, diseases, thinning)
but also related to socio-economic values (e.g., value of wood products, job growth, harvest rates).
Characterization of these additional pieces of information is beyond the capacity of ALS or remotely
sensed data in general. However, the accurate, timely, and detailed forest inventory information that
can be generated from ALS data, when used in growth simulators, can provide improved projections of
forests in the future, which has value for forest planning and management. The approach demonstrated
herein is a step towards an improved integration of ALS-derived forest inventory attributes with
growth simulators. The cell-level enhanced growth and yield projections can be used to generate
dynamic treatment units using spatial optimization methods to aggregate cells into larger cutting
areas more suitable for forest planning than individual cells [48]. The increased level of spatial detail
in the generated projections allows for the optimization of the size and shape of the treatment units
depending on the desired forest planning outcome and management objectives.

6. Conclusions

Detailed information on stand dynamics is of high importance for forest resource management.
Given the increasing availability of pre-existing ALS data to complement lower cost acquisitions of
DAP data, integrating the two datasets to enhance forest growth and yield modeling becomes possible.
This study explored the use of point cloud-derived forest inventory information, representing two
points in time, to find the best matching yield curve at a 20 by 20 m cell level to support growth
simulation modelling. ALS- and DAP-based point clouds were used to represent stand conditions at
T1 and T2, respectively. ABA was then used to predict H, BA, V, and N, for both datasets. The yield
curve assignment relied on GYPSY; however, the yield-curve matching was based on all predicted
forest stand attributes, not just top height, age, and species. We analyzed how the error in curve
matching changed, depending on whether T1 only, or both T1 and T2 ABA-derived stand attributes
were used. The results showed that when the two datasets were used, the yield curves were matched
with higher accuracy; however, because the accuracy of curve matching depended on ABA prediction
error, accurate estimates of cell-level stand attributes were critical. Projections based on yield curves
matched with the multi-date approach 2 were lower than those using a single date of ALS data
exclusively (approach 1). Enhanced growth and yield analyses based on combined sources of point
cloud data allow forest managers to benefit from additional detail and greater confidence in yield
projections. Sub-stand analysis of forest dynamics provides opportunities to improve forest operations,
specify more accurately areas that require management interventions, characterize uncertainty, and
improve long-term planning.
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