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Abstract: Pine forests (Pinus tabulaeformis) have been in danger of defoliation by a caterpillar in
the west Liaoning province of China for more than thirty years. This paper aims to assess and predict
the degree of damage to pine forests by using remote sensing and ancillary data. Through regression
analysis of the pine foliage remaining ratios of field plots with several vegetation indexes of Landsat
data, a feasible inversion model was obtained to detect the degree of damage using the Normalized
Difference Infrared Index of 5th band (NDII5). After comparing the inversion result of the degree
of damage to the pine in 29 years and the historical damage record, quantized results of damage
assessment in a long time-series were accurately obtained. Based on the correlation analysis between
meteorological variables and the degree of damage from 1984 to 2015, the average degree of damage
was predicted in temporal scale. By adding topographic and other variables, a linear prediction model
in spatiotemporal scale was constructed. The spatiotemporal model was based on 5015 public pine
points for 24 years and reached 0.6169 in the correlation coefficient. This paper provided a feasible
and quantitative method in the spatiotemporal prediction of forest pest occurrence by remote sensing.

Keywords: pine defoliation; long time-series; assessing; meteorology; topography; spatiotemporal analysis;
damage prediction; remote sensing

1. Introduction

Forests occupy approximately 31% of the total land on Earth [1]. Forests have tangible and
intangible benefits that include biological resources, water conservation, climate regulation, and carbon
dioxide reserves [2]. These vital functions depend on forest health, which has been threatened by
forest pests and diseases. It is very important to protect forest health from damage.

The Chinese 8th National Forest Inventory showed that China had 208 million hectares of forest:
equal to 21.63% of the total country land area [3]. The forest area ranks 5th worldwide, but the forest
coverage rate and per capita area is small [4]. Meanwhile, China is a country with a high rate of
forest diseases and insect pests, with more than 200 kinds of pests and diseases seriously endangering
the forests [5]. One of the most serious forest pests is the pine caterpillar due to its wide occurrence [6].
There are more than 30 species of pine caterpillars (Dendrolimus spp.) worldwide and 27 of them can
be found in China. Pine caterpillars mainly harm pine, cypress, and fir trees, and have caused great
damage to forests in China [7]. When pine caterpillars erupt in a large forest, they are hard to control
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and eliminate. They cause stunted trees and even tree death, and seriously endanger forest health [7,8].
Based on this, pine caterpillars have always been the key target of forest protection in China.

It is quite difficult to monitor and prevent forest diseases and insect pests, especially using
traditional surveys, which are time consuming and cannot cover large areas. As manual surveys are
hard to apply in thick forests, they often miss the best opportunities to control plagues [9]. Fortunately,
remote sensing can solve these problems. Through the development of remote sensing, it becomes
possible to monitor forest plague rapidly in a big area [10–14]. It is a unique technique to obtain
the space and spectral information of forests and retrieve parameters. With remote sensing images, it
has become quicker and cheaper to identify forest health situations when compared to traditional field
surveys [15–17]. Landsat data is advantageous for large areas of forest and for long-term monitoring.
On one hand, Landsat has been obtaining images with seven bands since 1984, which makes it possible
to study in a long time-series. On the other hand, Landsat data has a spatial resolution of 30 m, which
is compatible with forest monitoring on a regional scale [18–20].

Lots of researchers have studied forest diseases and insect pests through the remote
sensing technique. In the early days, hard wood damage caused by pear thrip could be identified
efficiently in a special Landsat image display, where RGB channels were inputted with the TM5/TM4
band ratio, the TM5 band, and the TM3 band individually [21]. The SWIR/NIR (Short Wave
Infrared/Near Infrared) ratio of Landsat was found suitable for monitoring deciduous and coniferous
forests, while the broadleaf forest was monitored by the NDVI (Normalized Difference Vegetation
Index) from the Landsat data [22]. For the Landsat data, the ratio of the TM4 and TM3 bands was
found in negative correlation with a canopy cover of a damaged pine tree in the study of blight
damage to a Japanese red pine forest [23]. The TM5/TM4 band ratio was found appropriate for
monitoring low-density forests while the TM4/TM3 band ratio was suitable for high-density forests in
a study of Chinese masson pine damaged by pine caterpillars [24,25]. Recently, the spatiotemporal
patterns of the mountain pine beetle and western budworm were successful in mapping tree mortality
with Landsat data in a long time-series from 1984 to 2012, aerial detection survey (ADS) data from
1970 to 2012, and multi-data forest inventory data across the Pacific Northwest Region, USA [26].
For constructing a general continuous model to assess broadleaf forest defoliation by gypsy moth, it
proved feasible to apply a logistic regression model with a sensitive vegetation index, the normalized
difference infrared index (NDII) [27].

Nowadays, with the progress of remote sensing technology and the availability of satellite sources,
higher spatial and spectral data can be applied. This has promoted deep research into image texture,
and finer spectral features [28–32]. As a result, monitoring and estimating forest damage by diseases
and insect pests are becoming more precise and timely. However, most researchers have concentrated
on the identification, classification, and assessment for forest damage with finer vegetation indexes
and models [33–37]. There is still little research on the prediction of damage with the change of climate
and other factors. In the context of global warming, studying the effects of climate on insect pests and
predicting the occurrence of forest pests in future would be helpful for forest management and defense
against forest plagues [38].

This paper aims to assess and predict the damage of large man-made pine forests
(Pinus tabulaeformis) by pine caterpillar (D. tabulaeformis) using Landsat data in a long time-series
based on vegetation index in West Liaoning Province, China. The mechanisms of meteorological and
topographical effects on the damage were studied. Furthermore, prediction models were constructed
to forecast yearly plague situations temporally for the whole study region, and spatially for special
pine positions. This paper attempts to establish the quantitative relationship between the degree
of damage to pine trees and the influence factors of the pine caterpillar. This will provide forestry
managers with evidence of how the pine caterpillar outbreak occurs and where could it outbreak
severely, which could prevent the damage and reduce forest loss.



Remote Sens. 2018, 10, 360 3 of 24

2. Materials and Methods

2.1. Study Area and Pine Caterpillar

This study was carried out in Jianping county and the northern part of Lingyuan city, Western
Liaoning Province, China (41◦3′–42◦22′N, 119◦4′–120◦4′E), as shown in Figure 1. The altitude is around
300 to 1000 m. The terrain is flat and the slope is mainly under 30 degrees. Its climate zone transitions
from a warm temperate semi-humid to semi-arid temperate zone, average precipitation ranges from
400 to 700 mm per year, and the average annual air temperature ranges from 6 to 10 degrees Celsius.
In the study region, large man-made pine forests (P. tabulaeformis) of about 686 km2 are grown [39].
The pine forests have been damaged by pine caterpillar (D. tabulaeformis). The local forest protection
station has been surveying, monitoring, and controlling the insect pest from 1983, as recorded.
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Figure 1. Study region and locations of 19 field plots. (a) The Landsat TM image of the study
region displayed with 7/4/3 RGB channels on 3 September 1984, the pentagram was the position of
the 19 plots; (b) The position of study region in Liaoning Province; and (c) The distribution of 19 plots
on GF-2 image displayed with 4/3/2 RGB channels on 7 September 2015.

To predict the defoliation damage, knowledge of the life cycle and effective factors of the pest
is necessary. The caterpillar is the main leaf-feeding pest to P. tabulaeformis and its appetite for pine
needles is enormous. This insect produces only one generation annually in the study area. Figure 2
shows the life history of the insect. From March to May, this insect climbs back to the tree and
eats needles after hibernation. From June to July, it eats the needles most heavily—about 70% of all
needles eaten at its larval stage [40]. From July to August, the big larvae turn to pupae and adults,
and the insect stops damaging pine trees temporarily. Post adulthood, new eggs of the insect hatch
larvae of a new generation from August to September. Then, before November, new larvae eat some
of the pine needles—about 4.4% of all eating at its larval stage [40]. Many environmental factors
can affect the insect and the degree of damage such as forest terrain (slope and aspect), weather
(sunshine duration, temperature, and rainfall), tree age, branch number, crown width, and density of
the forest [40].
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Figure 2. Life history of the pine caterpillar, D. tabulaeformis.

2.2. Field Data

Nineteen field sample plots in pine forests were built from 2013 to 2016, and their defoliations
were investigated in August 2016. Their degrees of damage were different. Four plots (blue rectangles
in Figure 1) were almost all healthy trees, others (yellow rectangles) were injured moderately and
seriously by the caterpillar. The caterpillar was just propagating to the healthy plots from the injured
in 2016. Each plot was in a 30 × 30 m2 rectangular shape with about 100 pine trees distributed within.
The defoliation ratio for each plot was calculated with sample trees distributed in four corners and
the center of each plot. The defoliations of over 10 trees were estimated by the technicians of the local
forest protection station for each plot, and the plot defoliation ratio was weighted by every tree’s DBH
(Diameter at Breast Height) to obtain the plot average defoliation.

2.3. Landsat Data

Landsat data is suitable for the study of large forests as it provides a medium spatial resolution of
30 m, and six channels ranging from the visual band to the short wave infrared band. Furthermore,
it has kept good time continuity since 1984, which was fitting for the long time-series study.
The summer time, August and September, is the best period to monitor the damage [41];
Landsat images with low cloud cover from August and September were downloaded as the study
data from 1984 to 2016, covering the study area (WRS PATH = 121, WRS ROW = 31). There was a lack
of images without cloud in August and September of 1987, 1988, 2005, and 2013, so in total, 29 years
were studied from 1984 to 2016. Spring images with good quality were also downloaded at intervals
of 3–5 years to update the range of pine forests. As the data spanned 32 years from 1984 to 2016,
the region and age change of the pine trees was considered. All Landsat images used are shown in
Table 1 and were downloaded from the USGS Global Visualization Viewer (glovis.usgs.gov). To obtain
accurate reflectance value on the image, radiometric calibration and FLAASH (Fast Line-of-sight
Atmospheric Analysis of Spectral Hypercubes) atmospheric correction were progressed for each
image [42]. Additionally, geometric correction was progressed for a good consistency of image
space position. The Landsat ETM+ images suffering a failure of Scan Line Correction (SLC-off) were
corrected with SLC Gap-Filled Products Phase One Methodology [43,44]. Considering the terrain of
the study region was flat, topographic correction was not carried out for the data.
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Table 1. List of Landsat images used.

No. Summer Images-Sensor Images to Extract Trees-Sensor NDVI Threshold

1 1984/9/3-TM

1989/4/10-TM >0.25

2 1985/9/6-TM
3 1986/9/25-TM
4 1989/7/31-TM
5 1990/8/19-TM
6 1991/9/23-TM

7 1992/8/24-TM
1993/3/20-TM >0.218 1993/8/27-TM

9 1994/9/15-TM

10 1995/9/18-TM

1996/4/13-TM >0.3
11 1996/9/20-TM
12 1997/9/23-TM
13 1998/9/26-TM

14 1999/9/5-ETM+

2001/4/3-ETM+ >0.36
15 2000/9/7-ETM+
16 2001/8/9-ETM+
17 2002/9/13-ETM+

18 2003/9/8-TM
2004/3/18-TM >0.3619 2004/9/2-ETM+

20 2006/9/16-TM

21 2007/9/3-TM
2008/3/13-TM >0.3622 2008/9/21-TM

23 2009/8/23-TM

24 2010/9/27-TM
2011/3/22-TM >0.3125 2011/9/22-ETM+

26 2012/8/23-ETM+

27 2014/9/6-OLI
2014/3/14-OLI >0.3928 2015/9/25-OLI

29 2016/8/26-OLI

After preprocessing, regions of evergreen forest were extracted with the spring image using
the Normalized Difference Vegetation Index (NDVI) threshold (Table 1). The NDVI threshold was
determined by searching evergreen forests all over the colored spring image and finding the minimal
NDVI value around the evergreen forests. This progress was requested to avoid mixing pixels on
the forest boundary. The forest extracted was pure without mixing other objects.

More than 90% of evergreen forests belonged to P. tabulaeformis in the study area according to local
forest survey data [41]. However, it was difficult to recognize P. tabulaeformis from other local evergreen
trees such as cypress and P. sylvestris. Therefore, the evergreen forests extracted were assumed to be
the pine forest (P. tabulaeformis) and the range respected the pine range in the study. Then, the summer
images were clipped with the pine range to obtain pine images of each year to study.

2.4. Meteorological and Other Data

Meteorological data was downloaded from China Meteorological Data Sharing Service System
(data.cma.cn). Daily mean temperature, monthly rainfall, and monthly sunshine duration from 1979 to
2015 from four ground meteorological stations (Chifeng, Qinglong, Jianping, and Chaoyang) around
the study area were downloaded specifically. The locations of the four meteorological stations are
shown in Figure 3. The time period from 1 August to 31 July of the next year was chosen as the effective
duration for one generation of the caterpillar as every August is the beginning of a new generation
according to the life cycle. The three meteorological parameters mentioned before were studied as
the pine caterpillar is affected by temperature, rainfall, and sunshine duration [40]. Second order
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inverse distance weighting interpolation (IDW) was applied to obtain the meteorological raster data
of the study area by the four stations. The resolution of the interpolation raster equaled 30 m in
accordance with the Landsat spatial resolution.

Remote Sens. 2018, 10, x FOR PEER REVIEW  6 of 24 

 

data of the study area by the four stations. The resolution of the interpolation raster equaled 30 m in 
accordance with the Landsat spatial resolution. 

 
Figure 3. Locations of four meteorological stations and 5015 plots of public random points. 

The Digital Elevation Model (DEM) data of the study was downloaded from Geospatial Data 
Cloud (gscloud.cn). The data were the product of ASTER GDEM V2 and offered a spatial resolution 
of 30 m. The slope and aspect raster data of the study region were calculated by the DEM given that 
the slope and aspect can affect the pine caterpillar [45]. 

Furthermore, local survey records were offered by the Forest Protection Station of Jianping 
country including the caterpillar occurrence schedule, density, and average degree of damage 
investigated by manual evaluation from 1985 to 2013. 

2.5. Inversion of Pine Foliage Remaining Ratio through Vegetation Index 

Lots of research in forest health and defoliation detection have proved the validity of the 
Vegetation Index (VI). Different VIs perform different from site to site [46]. To distinguish the light 
and severe conifer damage, the SWIR/NIR ratio was better than the NDVI, and for the broadleaf 
forest, NDVI was more suitable for monitoring with Landsat data [22]. For detecting gypsy moth 
defoliation in the oak-dominated forest, the NDVI from the MODIS time-series was well applied [29]. 
Recently, the NDII was proved fitted for inverting the broadleaf defoliation in a continuous way with 
Landsat data [27].  

To accurately indicate the damage of pine forests, several VIs were tested to find the best option. 
VIs were regressed with the foliage remaining ratio instead of the defoliation ratio because the forest 
on the image showed the spectral information of the foliage remaining directly. According to our 
summer field survey from 2013 to 2016, the caterpillar made the remaining needles turn brown and 
dry for damaged pine trees, in addition to a lot of defoliation. Obvious differences in color and water 
content existed between the healthy trees and the damaged ones. Although previous research [41] 
showed that the NIR/Red Ratio Vegetation Index (RVI) had the ability to identify the degree of pine 

Figure 3. Locations of four meteorological stations and 5015 plots of public random points.

The Digital Elevation Model (DEM) data of the study was downloaded from Geospatial Data
Cloud (gscloud.cn). The data were the product of ASTER GDEM V2 and offered a spatial resolution
of 30 m. The slope and aspect raster data of the study region were calculated by the DEM given that
the slope and aspect can affect the pine caterpillar [45].

Furthermore, local survey records were offered by the Forest Protection Station of Jianping country
including the caterpillar occurrence schedule, density, and average degree of damage investigated by
manual evaluation from 1985 to 2013.

2.5. Inversion of Pine Foliage Remaining Ratio through Vegetation Index

Lots of research in forest health and defoliation detection have proved the validity of
the Vegetation Index (VI). Different VIs perform different from site to site [46]. To distinguish the light
and severe conifer damage, the SWIR/NIR ratio was better than the NDVI, and for the broadleaf forest,
NDVI was more suitable for monitoring with Landsat data [22]. For detecting gypsy moth defoliation
in the oak-dominated forest, the NDVI from the MODIS time-series was well applied [29]. Recently,
the NDII was proved fitted for inverting the broadleaf defoliation in a continuous way with Landsat
data [27].

To accurately indicate the damage of pine forests, several VIs were tested to find the best option.
VIs were regressed with the foliage remaining ratio instead of the defoliation ratio because the forest on
the image showed the spectral information of the foliage remaining directly. According to our summer
field survey from 2013 to 2016, the caterpillar made the remaining needles turn brown and dry for
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damaged pine trees, in addition to a lot of defoliation. Obvious differences in color and water content
existed between the healthy trees and the damaged ones. Although previous research [41] showed
that the NIR/Red Ratio Vegetation Index (RVI) had the ability to identify the degree of pine damage
by the caterpillar, only NIR and Red channels are involved in the RVI. The RVI had not taken full
advantage of the Landsat data as its SWIR channels were sensitive to plant water content. Therefore,
in this paper, SWIR bands were added to construct VIs and their identity effects compared.

Five vegetation indexes, RVI, NDVI, NDII5 (Normalized Difference Infrared Index of 5th band,
TM4−TM5
TM4+TM5 ), RA (Reflectance Absorption Index, TM4

TM3+TM4 ), and MSI (Moisture Stress Index, TM5/TM7)
were tested. Their relevance with foliage remaining ratio of pine trees were calculated to select
the best one. The detailed process was as followed.

First, five VI raster images were calculated from the Landsat 8 OLI image of 26 August 2016.
The image range covered all 19 field plots. Their locations are shown in Figure 1. These 19 plots
included different statues of foliage remaining and could represent different degrees of damage by
the pine caterpillar in the study region.

Second, the VI raster images were resampled from 30 m to 1 m in spatial resolution. Then, for
each VI, the average value for each plot was obtained by averaging the VI values of all pixels inside
each plot as the pixel size of the Landsat image was the same as the size of the plot. One pixel on
the image could not fit one sample plot perfectly well. Averaging the VI value by the area ratio was a
compromise method we used.

Third, the foliage remaining ratio of each plot was inverted by the plot average defoliation ratios.
Fourth, for each VI, a scatter diagram of the average VI and foliage remaining ratio for each plot was
drawn and regressed with a special proper regression function.

Fifth, according to the distribution of points on the scatter diagram, the correlation of regression
function, the dynamic range and saturation effect for each VI [47], the best VI could be selected.
Furthermore, it inverted the foliage remaining ratio by the best-fitted function. The foliage remaining
ratios of all pine forests could be calculated in a long time-series.

As a result, the distribution maps of the pine foliage remaining ratio for the study region across
the whole 29 years could be obtained and the damage changes could be quantified year by year.
By comparing the results to historical survey records from the Forest Protection Station, the reliability
of the inverted results could be evaluated.

2.6. Choosing the Best Meteorological Factors

Under the constant condition of forest characters, insect pests are mainly affected by weather
and climate. There are three main meteorological factors: temperature, rainfall, and sunshine
duration [40]. The key to selecting the best meteorological factors is to determine the periods
of meteorological factors. Therefore, candidate meteorological factors in different periods were
first enumerated as variables. Then, the correlation analysis of the converted foliage remaining
ratio (from Section 2.5) and meteorological variables was done for all years to select the best
meteorological variables.

In this paper, two prediction models were constructed in a temporal scale and in spatial-temporal
scale, respectively, so different meteorological variables were chosen for each.

According to the life history of the caterpillar (Figure 2), it is in hibernation from November to
next March. Therefore, one generation could be divided into two hazard phases. One phase is from
August to October when the insect grows into a moth and gives birth to a new generation and the new
larvae appear before hibernation. In this period, the moth has migratory capacity and the new larvae
eat few needles, accounting for about 30% of total capacity [40]. The second phase is from the following
April to July when the insect larvae climb back to the pine tree and eat the needles after hibernation.
During this period, the larvae cannot migrate, but focus on eating, so about 70% of needles of total
capacity eaten by larvae are consumed.
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As insect characters are different between these two phases, it is necessary to consider
meteorological factors at each period respectively. Therefore, the rainfall and sunshine in the two
periods and their sum were taken as candidate variables. Furthermore, the rainfall in October was
also taken as a candidate variable as it affects whether the caterpillar can find dry soil to hibernate
safely [48]. Significant rainfall in October made the soil too wet for the caterpillar to hibernate.

For the temperature factor, the accumulated temperature of the daily temperature above 6 ◦C
in one generation from August to the following July was taken as a candidate variable as the lowest
temperature is about 6 ◦C for the pine caterpillar to live. Insect development requires a certain
amount of cumulated daily temperature which affects the occurrence of the caterpillar [49]. According
to the daily temperature records from weather stations, the annual date when daily temperature
was less than 6 ◦C was from the end of October to the beginning of April of the next year, which
coincided with the hibernation date of the pine caterpillar. Therefore, the accumulated temperature of
daily temperature above 6 ◦C was taken as a candidate variable, which was the active accumulated
temperature for the pine caterpillar in meteorology.

Aside from spatial scale, the weak migratory ability of the caterpillar needs to be considered.
The distribution of the pine caterpillar in the study region is the result of the long-time climate.
Therefore, the average values of the last five years were added for the three kinds of meteorological
factors as candidate variables. For example, for 2000, its average of the last five years was counted
from 1986 to 2000. Five years could represent a long-time climate according to previous research [41].

On a temporal scale, the occurrence of plague in a single year is only related to the weather
condition of that year, so we did not apply the five years’ average in the temporal prediction model.

2.7. Prediction in Temporal Scale

Based on the inverted result of pine foliage remaining ratios for 29 years, a regular change of
pine damage was found. This paper attempted to achieve a temporal prediction model for the whole
study area. The occurrence of the caterpillar was affected by the meteorological change. Therefore,
a correlation analysis was made between the meteorological factors and average plague degree
(the foliage remaining ratio) for the whole region in corresponding years. Then, the regression function
of the average foliage remaining ratio could be obtained to predict the annual plague degree in future.

Specifically, annual weather data was first counted from one meteorological site (Jianping) as
the general weather data for the whole study area as the other three sites were out of the study region
and only the Jianping site could represent the study area. The weather data counted included three
factors:

1. Temperature. Only the active accumulated temperature in every generation of the caterpillar was
considered as a variable (last August to July, >6 ◦C).

2. Sunshine duration. Three periods were taken as the candidate variables. These were the durations
before the hibernation (last August to last October), after the hibernation (April to July), and
the sum of both (last August to last October and April to July).

3. Rainfall. Four periods were taken as the candidate variables. Three of them were the same as
the Sunshine duration, the fourth was one month of last October.

For each kind of meteorological factor, the variable with the highest correlation with the average
foliage remaining ratio was taken as the best. The average foliage remaining ratio for the whole study
area was weighted by the area of pine. After choosing the best variables, a linear regression function
was constructed with them in the method of least squares to convert the foliage remaining. Its specific
equation was as followed:

Foliage Remaining = a + b× Temp + c× Rain + d× Sun (1)
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where the parameters a, b, c, and d are the constant coefficients; Temp means the active accumulated
temperature; Rain means the best variable in four candidate variables of rainfall; and Sun means
the best variable in three candidate variables of Sunshine duration.

Before this paper was finished, the weather data of 2016 year had not yet been updated on
the China Meteorological Data Sharing System. Therefore, 2016 could not put into the analysis, so only
28 years were analyzed. For a single temporal scale, it was hard to construct an accurate model to
predict the occurrence of the caterpillar due to four reasons:

1. The sample size was limited as there were only 28 samples for 28 years in the temporal scale.
2. The occurrence of forest pest had spatial characteristics as the insect could migrate with the change

in climate.
3. For a big study area, the weather was multivariate and complicated. Different spatial locations

had different meteorological conditions. It was not accurate to use the meteorological data of one
meteorological site (Jianping) to represent the average of the whole study region.

4. Topographical and other factors could also affect the occurrence of the caterpillar except for
the meteorology; however, they could not participate in the temporal prediction of damage.

2.8. Prediction in Spatiotemporal Scale

To predict the occurrence of the caterpillar in the whole study area accurately, it was necessary to
extend from a temporal scale to a spatiotemporal scale as it was needed to study how the caterpillar
occurrence changed with meteorology, topography, and other factors on a spatial scale. Therefore,
an analysis based on spatial random samples was applied in this paper as the study of a large number
of spatial sample pixels can construct a prediction model with better accuracy.

In this part, the study data included the raster images of the best vegetation index (VI),
the meteorological factors interpolated, and the slope and aspect data calculated from the DEM.
First, random points were generated with a spacing greater than 60 m within the public range of pine
trees for all years. Every two random points were surely not in the same pixel of 30× 30 m2 in this way.
There was a total of 5015 random points generated as samples, their positions are shown in Figure 3.

In this part, the best VI was taken to represent the degree of damage to the pine forest and
the occurrence of the caterpillar directly. The value of the VI was taken as the dependent variable.
As there were errors existing when the foliage remaining ratio was calculated by the VI for the pixels
of pine (Section 2.5), it was better to use VI to represent the degree of damage, instead of the foliage
remaining ratio.

To select independent variables for meteorological factors, the best factors of three kinds were
chosen as independent variables by relevance analysis with the dependent variable (the VI) for the 5015
random points. For topographic factors, it was already reported that slope and aspect could affect
the occurrence of plague [45], and the effects were not linear. Therefore, it needed to transform
via a nonlinear function for topographic factors to be linear and regressed with the VI. Specifically,
we obtained the correction function for the slope and aspect based on the result of our previous
paper [41], and obtained the linear variables to fit the VI. Furthermore, the VI value of last year was
also taken as a variable as the pine trees recovered slowly from the damage and the migration ability
of the caterpillar was weak. As the last variable, the distance between the sample points and the pine
forests severely damaged last year was taken, as the shorter distance made the samples of pine more
likely to get damaged.

In summary, based on seven variables in total, the VI value of every random point was regressed,
and the linear regression model was constructed for prediction. The seven variables were the best
temperature, rainfall, and sunshine duration as meteorological variables, the corrected values of slope
and aspect as topographic variables, the VI of last year, and the distance to the severely damaged
pine forests.
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3. Results

3.1. The Best VI and Damage Inversion for 29 Years

Figure 4 shows the scatter diagrams of five VIs and the foliage remaining ratios for 19 field plots.
Logistic Regression function was obviously appropriate to fit the scatters. Among all the VIs,
the NDII5 and the MSI owned the best regressing results for the foliage remaining ratios. For the RA,
the regressing effect was normal, the scatter points were not concentrated, and trended obviously.
For the NDVI, it seemed to be saturated when the VI value reached 0.7 and was not good at
differentiating middle and light damage. For the RVI, its trend appeared like that of the NDVI
and was also not good at differentiating middle and light damage. However, for the RA, the NDVI,
and the RVI, it was feasible to distinguish the severe damage. In essence, the NDII5 and the MSI were
coincident as they both involved the same bands (SWIR1 and NIR) of Landsat. Thus, we selected
the NDII5 as the best here considering its characteristic of normalization.
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Figure 4. Scatter diagram and fitted curve of foliage remaining ratio and five VIs for 19 sample plots.
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The regression function of the NDII5 was followed as Equation (2). Its determination coefficient
R2 equaled 0.913.

Foliage Remaining =
90

1 + 6882× e−43.77×NDII5 + 7.307 (2)

where the Foliage Remaining is the foliage remaining ratio (%); and the NDII5 is the VI value (−1,1).
Next, the foliage remaining ratios for all pine pixels in the whole study area in the 29 years were

calculated. Figure 5 shows the area proportion changes of the foliage remaining ratios at different
ranges by year. The area proportion was the ratio of pine area (in special foliage remaining ratio
range) in the total pine area. Four foliage remaining ratio (%) ranges of (0,10], (0,30], (0,90], (0,100]
were analyzed.

Figure 6 shows the historical degrees of damage by the pine caterpillar in the study area supplied
by the local forest protection station. Comparing Figures 5 and 6, it was found that severely damaged
years (e.g., 1985, 1986, 1991, 2009) owned low foliage remaining ratios of pine forest (the proportions
of (0,10) were big), and in contrast, lightly damaged years (e.g., 1990, 2001, 2007, 2012) owned high
foliage remaining ratios of pine forest (the proportions of (0,10) were small). The comparison proved
the reliability of the inversion results.

Compared with the traditional forest pest investigation which only divided the light, medium,
and severe into three grades, the inversion method by remote sensing could supply quantitative results
to assess the damage more accurately. Furthermore, the inversion results included the location of
the damage, which could save a lot of costs in field investigation and supply the basis for forest workers.
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3.2. Prediction in Temporal Scale

First, the best variables of the three meteorological factors needed to be determined.
The correlation coefficients between the candidate meteorological variables and average foliage
remaining ratios of 28 years are shown in Table 2.

Table 2. Correlations between average foliage remaining ratio of 28 years and meteorology.

Meteorology
Factors Different Periods of Variables Correlation Coefficient with

Foliage Remaining Ratio p

Temperature
Annual active accumulated
temperature (last August to July,
>6 ◦C)

0.5120 0.0053

Sunshine Duration

Before the hibernation
(last August–last October) −0.2082 0.2878

After the hibernation (April–July) −0.1810 0.3568
Annual (sum of above two) −0.2814 0.1469

Rainfall

Before the hibernation (last
August–last October) −0.2636 0.1753

After the hibernation (April–July) 0.1705 0.3858
Annual (sum of above two) −0.0020 0.9918
Rainfall of last October 0.4091 0.0128

For the sunshine duration and rainfall, the best variables to select should have the strongest
relevance (biggest correlation coefficients) with the foliage remaining ratios. Therefore, the annual
duration (August–October and next April–July) and the rainfall of the last October were the two
best variables. For the temperature, only one candidate variable was considered and its correlation
coefficient was 0.512, which was sufficiently strong. Therefore, the active accumulated temperature in
one life cycle was the third variable.

The average foliage remaining ratios of 28 years were regressed with the three variables and
the form of regression function was:

Foliage Remaining = −58.39 + 0.0538× Temp + 0.2273× Rain− 0.0634× Sun (3)

where the Foliage Remaining is the average foliage remaining ratio; the Temp is the active accumulated
temperature; the Rain is the rainfall of the last October; and the Sun is the annual sunshine duration
(last August–last October and April–July).

The determination coefficient of this linear function (R2) was 0.4614. The scatter diagram of
the predicted ratios and true ratios are shown in Figure 7. The red line represents the standard line
of 1:1.
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Figure 7. Predicted and real values of average foliage remaining ratios for 28 years.
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Of the three kinds of meteorological factors, the temperature most strongly affected the occurrence
of pine caterpillart, the rainfall affected it less, and the sunshine duration affected the caterpillar least.
According to Equation (3), the increase in active accumulated temperature, the increase in rainfall,
or the decrease in sunshine duration would raise the average foliage remaining ratio of pine trees in
the study area. It also proved three results:

1. High active accumulated temperature is good at suppressing the occurrence of the caterpillar
and is good for the recovery of trees.

2. Heavy rainfall is also good at suppressing the plague, especially rainfall in October.
3. Long sunshine can promote plague and activate the insect. These conformed to the biological

characteristics of the caterpillar and proved the reliability of the prediction model.

The results were in agreement with our previous research [41]. However, the determination
coefficient (R2 = 0.4614) was not so large. In general, despite the model for prediction in a temporal
scale not being accurate, it still had some reference meaning for predicting the plague occurrence.
The model could predict the severity of the plague in the study area preliminarily on the basis of
the meteorological condition.

3.3. Prediction in Spatiotemporal Scale

The degree of damage to thepine forest is usually represented by the foliage loss ratio (or foliage
remaining ratio) directly. However, in this part, the VI NDII5 was selected to indicate the severity of
the caterpillar and construct the prediction model instead of the foliage remaining ratio. According to
Equation (2), when the NDII5 increased, the foliage remaining ratio increased and the pine forest
was healthier. Though the equation was not linear, it proved feasible to use NDII5 to represent
the degree of damage to the pine trees by the following results.

3.3.1. The Best Meteorological Factors

Data across 28 years were also analyzed as the 2016 weather data was not available at the time of
writing. The correlations between the candidate meteorological variables and NDII5 of random points
are shown in Table 3. A total of 5015 points were used as samples to analyze for each year, so in total,
140,420 (= 5015 × 28) sample points were counted.

Table 3. Correlations between NDII5 of 5015 samples in 28 years and meteorological variables.

Meteorology Different Periods of Variables Correlation Coefficient with NDII5 (p < 0.01)

Temperature
Annual active accumulated temperature (last
August to July, >6 ◦C) 0.2746

Average of five years (Last five years) 0.2990

Sunshine Duration

Before the hibernation (last August–last October) −0.0972
After the hibernation (April–July) −0.1473
Annual Sunshine Duration (sum of above two) −0.1965
Average of five years (last five years) −0.3729

Rainfall

Before the hibernation (last August–last October) −0.1288
After the hibernation (April–July) 0.0095
Annual Rainfall (sum of above two) −0.0656
Average of five years (last five years) −0.0117
Rainfall of last October 0.2705
Average of five October (last five October) 0.5239

According to the correlation coefficients of the three meteorological factors and NDII5, the best
three variables were selected. These were the average active accumulated temperature of five years,
the average sunshine duration (before and after the hibernation) of five years, and the average
October rainfall of five years. The biggest correlation coefficient in temperature kind was 0.299, which
meant higher active accumulated temperature would make the pine healthier and the plague lighter.



Remote Sens. 2018, 10, 360 14 of 24

The best correlation coefficient in the sunshine was −0.3729, which meant longer sunshine would
make the caterpillar more active with more serious damage. The biggest correlation coefficient in
rainfall kind was 0.5239, which meant that big rainfall could restrain the activity of the caterpillar
and was good for pine health. These three results were in accordance with the results in the temporal
prediction and the biological characteristics of the caterpillar.

3.3.2. The Transformation of Slope and Aspect

According to previous research [41], the effect of the slope to the caterpillar was unified and
the quantification relation is shown in Figure 8. Every point on it was the area ratio of severely
damaged pine forest (RVI < 4, with more caterpillars) to all pine forests in a specific slope value
in 2000. Based on Section 3.1 in this paper, RVI was feasible to distinguish severely damaged pines.
Furthermore, a condition of RVI less than 4 was proved fitted in the previous research. Therefore,
a threshold of RVI less than 4 was used to divide out the damaged pine. It is obvious in Figure 8 that
the ratio of damaged pine decreased as the slope increased.Remote Sens. 2018, 10, x FOR PEER REVIEW  14 of 24 
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Figure 8. Regression graph of the damaged pine distribution ratios in different slope values.
The abscissa was slope value and the ordinate was the ratio of severely damaged pine forest (RVI < 4,
with more caterpillars) to all pine forests in a specific slope value in 2000. Points were counted.

A logistic function was applied to regress the points as the solid red line in Figure 8.
Its determination coefficient (R2) was 0.9528, and the equation was:

Ratio =
0.336

1 + 0.0318× e0.129×Slope (4)

The function could be normalized to the range 0 to 1 and obtained the dashed blue line in Figure 8.
Its equation was:

T_Slope =
1

1 + 0.0318× e0.129×Slope (5)

where the T_Slope is the transformed slope value, as the influence strength of slope to the pine
caterpillar; and the Slope is the slope value of every pine pixel. The pine forest in the place with
the biggest T_Slope was easier to damage by the caterpillar.

Similarly, according to previous research [41], the effect of slope aspect to the caterpillar was
unified and the quantification relation is shown in Figure 9. Every point on it was the area ratio of
severely damaged pine trees (with RVI < 4) in a specific aspect value to all pine trees in the same aspect
value in the middle damaged year (2000). It was obvious from Figure 9 that the ratio of damaged pine
decreased as the aspect changed from south (180◦) to north (360◦).
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A logistic function was used to regress the points as per the solid red line in Figure 9.
Its determination coefficient (R2) was 0.8562, and the equation was:

Ratio = 0.3075 + 0.0964× sin
(Aspect− 90)·π

180
(6)

The function could be normalized to the range 0 to 1 and obtained the dashed blue line in Figure 9,
its equation was:

T_Aspect =
1
2
+

1
2

sin
(Aspect− 90)·π

180
(7)

where the T_Aspect is the transformed aspect value, as the influence strength of aspect to the pine
caterpillar; and the Aspect is the aspect value of every pine pixel. It is known that the pine forest in
the place with a large T_Aspect was easier for the caterpillar to damage.Remote Sens. 2018, 10, x FOR PEER REVIEW  15 of 24 
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pine forests damaged relatively more seriously to all points. 
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Figure 9. Graph of the damaged pine distribution ratios in different aspect values. The abscissa was
slope value and the ordinate was the ratio of severely damaged pine trees (with RVI < 4) in a specific
aspect value to all pine trees in the same aspect value in the middle damaged year (2000). A total of
360 points were counted.

3.3.3. The Impact of the Distance with Severely Damaged Pine Forests

The pine caterpillar is limited in its migration capability. Furthermore, the pine trees close to
the severely damaged pine forests are easier for the caterpillar to infect, and are more likely to be
damaged in the next year. Therefore, the distance (horizontal distance) was added as a variable into
the prediction model. The effect of distance to the damage of pine was not linear and was needed to
transform and make the effect of distance linear.

The relation of the distance and the damage was obtained as follows. The shortest distances of
the 5015 sample points in five years (1985, 1999, 2000, and 2001) to the pine forests severely damaged
(NDII5 < 0.1) in their last years (1984, 1998, 1999, 2000) were counted first. Then, the ratios of the points
(1500 points with less NDII5 in all 5015 sample points) on the pine forests damaged relatively more
seriously to all points were counted in special distance classes. Each distance class was divided with
50 m spacing. The ratios are shown in the scatter plot (Figure 10).
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Figure 10. Ratio distribution of the pine forests injured relatively seriously in different distance class
with the pine forests severely damaged (NDII5 < 0.1) in last year. The abscissa was the distance class
and the ordinate was the ratio of points (1500 points with less NDII5 in all 5015 sample points) on
the pine forests damaged relatively more seriously to all points.

From Figure 10, the ratios tended to be steady as the distance increased, as the caterpillar only has
migration ability at the moth stage and the migration distance is usually limited to a certain range.
Therefore, logistic function was chosen to fit the ratios. The regression result is shown as the line in
Figure 10. Its determination coefficient (R2) was 0.7058, and its equation was:

T_Distance = 0.1998 +
1

1 + 0.4973× e0.0133×Distance (8)

where the T_Distance is the influence strength of the distance to the occurrence possibility of
the caterpillar; and the Distance is the horizontal distance from every pine sample point to the pine
forests severely damaged in the last year.

The pine forests with larger T_Distances were easier to damage as they were near the pest source
and easier to infect by the migration. According to the regression line in Figure 10, it could be
speculated that the migration limitation of the caterpillar was about 500 m in the horizontal distance
as the ratio tended to the minimum when the distance was bigger than 500 m.

3.3.4. Regression Result in Spatiotemporal Model

The NDII5 values of the 5015 sample points were regressed with the least square method to
construct the spatiotemporal model based on seven variables as follows:

1. The average annual active accumulated temperature of the last five years (Temp)
2. The average sunshine duration before and after the hibernation of the last five years (Sun)
3. The average October rainfall of the last five years (Rain)
4. The transformed value of the slope (T_Slope)
5. The transformed value of the aspect (T_Aspect)
6. The transformed value of the distance with the severely damaged pine last year (T_Distance)
7. The NDII5 value of last year (NDII5_Last).

The regression used the NDII5 of the last year as a variable. There were some disconnections in
the 28 years from 1984 to 2015 as shown in Table 1. Therefore, only 24 pairs of adjacent years could
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participate in the regression from all data. The sample number was 120360 (= 5015× 24) and the final
equation was:

NDII5 = 0.3229 +0.7297×NDII5_Last + (203× TDistance − 187× TSlope
−118× TAspect − 0.4455× Temp + 38× Rain
−0.8847× Sun)× 10−4

(9)

Its determination coefficient (R2) was 0.6169, the correlation coefficients of the NDII5 and each
independent variable are shown in Table 4.

Table 4. The correlation coefficients of seven independent variables with the NDII5.

Seven Variables Correlation Coefficient with NDII5 (p < 0.01)

Temp 0.2923
Rain 0.4887
Sun −0.3221

T_Slope −0.1418
T_Aspect −0.1210

T_Distance −0.4827
NDII5_Last 0.7606

Considering the sample size was huge, the determination coefficient, 0.6169 was large, and
the linear regression was reliable. Among the seven independent variables, the NDII5 of the last year
had the strongest correlation as the migration ability of the caterpillar was weak and the recovery
of the damaged pine tree was also slow. The correlation coefficient of T_Distance was negative
which meant more damage happened in the pine forests near the previous year’s severe places.
The correlation coefficients of T_Slope and T_Aspect were both negative and in accordance with
our previous research. For the three kinds of meteorological factors, the correlation of Rain was
the strongest.

In Equation (9), the coefficient of the NDII5 and Temp was negative, but its correlation with
NDII5 was positive according to Table 4. The opposite result was caused by the complex relationship
between the three meteorological factors. When all three were involved into the same function,
this negative coefficient of Temp was possible; however, the correlation of the NDII5 and Temp should
still be positive.

3.3.5. Model Test

To test the precision of the model, every two adjacent years were inputted and tested separately.
The NDII5 of the predicted year was calculated by the real NDII5 in the last year. Then, the predicted
NDII5 was compared with the real NDII5 in the same year. Their correlation coefficient and error
are shown in Table 5. Furthermore, the correlation coefficient and error between the real NDII5 and
the last year of NDII5 of the samples are also shown. Every statistic result was based on the 5015
sample points.

Table 5 shows that the correlation coefficient between the predicted NDII5 and the real NDII5
ranged from 0.6421–0.8725. For each year, the predicted NDII5 obtained a bigger correlation coefficient
and smaller Root Mean Square Error (RMSE) than the NDII5 of the last year. This meant that
the predicted NDII5 was close to the real NDII5 based on the NDII5 in the last year. The prediction
ability of the model was feasible by the correction of other factors based on NDII5 in the last year.

Of the 24 predicted years, 2012 obtained the best prediction result as the error (RMSE) decreased
the largest when compared to the NDII5 in the last year. There were also some years without obvious
RMSE improvement such as 2002 and 2003. Their prediction results were close to the NDII5 value of
the last year. The difference between the predicted NDII5 and the NDII5 in the last year was the effect
of the other variables (mainly the three meteorological factors) in the model. When the effect of
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promoting or inhibiting the caterpillar by the other variables was not strong, the predicted NDII5 was
similar to the last year’s NDII5.

Table 5. The correlation coefficient (R) and error comparison between the predicted NDII5 and the last
year NDII5 with the real NDII5.

Predicted
Year

R of Predicted
NDII5

RMSE of
Predicted NDII5

R of NDII5
Last Year

RMSE of NDII5
Last Year

RMSE Improvement from NDII5
Last Year to Predicted NDII5

1985 0.6655 0.0687 0.6143 0.0813 0.0126
1986 0.6421 0.0666 0.6056 0.0796 0.0130
1990 0.7336 0.0559 0.7255 0.0628 0.0069
1991 0.7149 0.0806 0.6815 0.0845 0.0038
1992 0.7516 0.0635 0.7477 0.0772 0.0137
1993 0.6512 0.0702 0.6233 0.0820 0.0118
1994 0.8001 0.0567 0.7587 0.0650 0.0083
1995 0.7967 0.0575 0.7874 0.0619 0.0043
1996 0.7592 0.0679 0.7460 0.0716 0.0037
1997 0.8174 0.0522 0.8014 0.0628 0.0106
1998 0.8227 0.0529 0.8148 0.0560 0.0031
1999 0.8041 0.0547 0.7933 0.0595 0.0048
2000 0.7918 0.0516 0.7830 0.0586 0.0069
2001 0.7700 0.0458 0.7403 0.0576 0.0118
2002 0.7316 0.0608 0.7136 0.0630 0.0022
2003 0.8708 0.0438 0.8684 0.0457 0.0019
2004 0.8302 0.0483 0.8239 0.0522 0.0039
2007 0.7697 0.0522 0.7626 0.0574 0.0053
2008 0.7193 0.0857 0.6415 0.0947 0.0090
2009 0.8725 0.0565 0.8600 0.0637 0.0071
2010 0.8254 0.0600 0.8147 0.0682 0.0082
2011 0.7768 0.0679 0.7719 0.0723 0.0044
2012 0.7314 0.0552 0.6895 0.0784 0.0232
2015 0.8261 0.0562 0.8100 0.0585 0.0023

To demonstrate the prediction process more clearly, the model was tested for the whole study area
in the best prediction year, 2012. The result was compared with the real damage degree as an example.
The raster maps of seven variables are shown in Figure 11.
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Figure 11. The raster maps of seven variables in the prediction process for the year 2012. (a) NDII5 of
year 2011; (b) Distance with the pine forests severely damaged in the 2011, unit was meter; (c) Slope,
unit was degree; (d) Aspect, unit was degree; (e) Average active accumulated temperature of years
2008–2012 (Last August–July, >6 ◦C), unit was ◦C; (f) Average Sunshine Duration of years 2008–2012
(Last August–Last October and April–July), unit was hour; (g) Average October Rainfall of years
2008–2012, unit was.
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The predicted NDII5 result map and the real NDII5 map are shown in Figure 12. The regions A
and B on the map were zoomed in respectively.

Between the prediction and the reality of NDII5 in Figure 12, the positions of relatively small
and big NDII5 were consistent in general. Furthermore, the distributions of health and damaged pine
trees were almost coincident. At region A, the blue area (healthy pine) in the prediction was smaller
than the blue area in reality. At region B, the blue area in the prediction was bigger than the reality.
However, at both A and B, the position relation between the blue (health) and the red (damaged) was
the same between the prediction and the reality. This result showed that the model could effectively
forecast the position of the damaged pine trees by the caterpillar, and could provide the basis for
prediction of the forest pest occurrence.

Furthermore, for validating the prediction result of the year 2012 quantitatively, another
8692 random points (with the horizontal spacing greater than 60 m) were generated at the pine
forests in 2012. Their NDII5 values of the prediction were compared with the reality. Figure 13 is
the scatter plot of the compared result.

Remote Sens. 2018, 10, x FOR PEER REVIEW  19 of 24 

 

2012. Their NDII5 values of the prediction were compared with the reality. Figure 13 is the scatter 
plot of the compared result.  

 
Figure 12. The comparison of the predicted NDII5 and the real NDII5 maps of the study area in the 
year 2012. Places A and B are the two same regions zoomed in. 

 
Figure 13. Comparison of the predicted NDII5 and the real NDII5 of 8692 tested points in 2012. The 
dashed line was the standard line of 1:1, and the solid line was the regressed line of the sample points 
with the least square regression method. 

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6

20
12

 R
ea

l N
D

II
5

2012 NDII5 Predicted

Figure 12. The comparison of the predicted NDII5 and the real NDII5 maps of the study area in
the year 2012. Places A and B are the two same regions zoomed in.



Remote Sens. 2018, 10, 360 20 of 24

Remote Sens. 2018, 10, x FOR PEER REVIEW  19 of 24 

 

2012. Their NDII5 values of the prediction were compared with the reality. Figure 13 is the scatter 
plot of the compared result.  

 
Figure 12. The comparison of the predicted NDII5 and the real NDII5 maps of the study area in the 
year 2012. Places A and B are the two same regions zoomed in. 

 
Figure 13. Comparison of the predicted NDII5 and the real NDII5 of 8692 tested points in 2012. The 
dashed line was the standard line of 1:1, and the solid line was the regressed line of the sample points 
with the least square regression method. 

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6

20
12

 R
ea

l N
D

II
5

2012 NDII5 Predicted

Figure 13. Comparison of the predicted NDII5 and the real NDII5 of 8692 tested points in 2012.
The dashed line was the standard line of 1:1, and the solid line was the regressed line of the sample
points with the least square regression method.

The correlation coefficient was 0.7623 between the predicted NDII5 and the real NDII5 according
to the 8692 tested points. The regressed line was close to the standard line in Figure 13. This meant
that the prediction result was close to reality and the model had certain practical value.

4. Discussion

In the inversion of defoliation, NDII5 could be the optimum VI as the band involved (SWIR)
was sensitive to the water content of the plant. When the pine forest was damaged by the caterpillar,
its canopy lost a lot of needles. Therefore, more soil information on the image was obtained by
the satellite. The needles also turned dry; as a result, the reflectance of the band (like the SWIR)
sensitive to water content on the spectrum changed a lot at the pixel of damaged pine. The decrease in
water content in the damaged pine was a biological reaction mechanism of self-protection for the pine
tree; it could depress the larvae development and reduce further harm, given that the caterpillar larvae
have poor migration. Thus, it is reliable and feasible to apply NDII5 to assess the forest damage
involved with water content change.

This paper mainly took advantage of Landsat images in a long time-series and spatial public
random points of pine forests. The relations of defoliation and environmental factors were obvious as
the sample number used was huge. Such huge samples are difficult to obtain by traditional survey
and field investigation. On the fundamental relations between the NDII5 and the seven variables,
a spatiotemporal prediction model with good accuracy was obtained, which made it possible to
forecast the occurrence degree and position of the caterpillar.

According to the biological characters of the caterpillar, the insect preferred dry and warm
places [40]. These were in accordance with the effects of sunshine duration and rainfall on
the caterpillar, but opposite to the reaction to temperature. As the correlation coefficient of
the NDII5 and the temperature showed, high active accumulated temperature caused a light
plague occurrence. The reasons for this were stated as follows. In the study area, only one generation
of the caterpillar occurred annually. The increase in active accumulated temperature caused the insect
to grow and develop faster and led to changes in the relationships between the caterpillar and
the seasons—which are natural enemies—that would break the balance of their natural relationship.
Therefore, the accelerated development of the insect increased its mortality. In contrast, low active
accumulated temperature caused heavy plague occurrence as lower temperatures meant the need
to consume more energy for insect development, and more needles were eaten by the caterpillar to
supply its growth.
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There were still five deficiencies in this paper and they are stated as follows.
First, in the inversion of the foliage remaining ratio by VI, there were only 19 sample plots involved.

To obtain an applicable and accurate inversion model, more field surveys and plots are needed.
Furthermore, for field plots, it is better to extend the boundary length and make sure that at least
one pixel of the Landsat image is in the plot completely [27]. In this paper, the regressed result of
the foliage remaining ratio by VI was distinct and acceptable. The result was not affected by the small
plot boundary length (30 m) because the field plots were chosen from a big pure pine forest with a
similar situation.

Second, the foliage loss for the whole study region was not only caused by the caterpillar.
Other factors, like drought stress and human disturbance, could have also caused foliage loss as
we investigated and brought an error to the prediction model. Especially, in mild damage years,
other factors of defoliation could increase the error and reduce the inversion accuracy of
the caterpillar damage. The inversion accuracy of defoliation was better in the severe damage years
than in the mild damage years.

Third, the pine forests grew and the VI will change even without the caterpillar or other
disturbances over thirty years [50]. It would be better to eliminate the effect of the time change. For this
aim, it is necessary to study the regular VI change of totally healthy pines at the same place over all
years, and then correct the VI for each year to get rid of the influence of time. Considering the growth
of the pine was relatively slow and the effect of the caterpillar was much greater than pine growth,
the inversion of the defoliation ratio was still in accordance with the historical survey records.

Fourth, in the spatiotemporal prediction model, the two topographic variables in Equation (9), did
not change by time. One sample point obtained the stationary value of the slope and aspect. This led
to their low correlation coefficient with the NDII5. However, the topographic factors were obviously
effective for the caterpillar [41,45]. Study is still needed on how to add the appropriate topographic
variables into the model to increase its accuracy.

Fifth, in the spatiotemporal prediction model, it was good to forecast only for the next one year or
few years, as the result would be worth less if forecasting too many years. Furthermore, as the data
assimilation model was very suitable for long time-series prediction [51], future study could optimize
the damage prediction results by the data assimilation model. In the interpolation of meteorological
factors, the interpolation result was determined by the number of ground meteorological stations,
the interpolation method, and the parameters [52]. Appropriate ground stations, methodology, and
parameters could make the meteorological interpolation raster more realistic.

5. Conclusions

There were mainly three results concluded in this paper. First, the Normalized Difference Infrared
Index of the 5th band (NDII5) of Landsat data, was the best VI to monitor the foliage remaining ratio
and degree of damage to the pine trees. According to Equation (1), it was accessible to assess the plague
of pine caterpillar efficiently and rapidly. Second, based on Equation (3), we could roughly estimate
the average foliage remaining ratio of the pine and degree of occurrence of the caterpillar for the whole
study region by three meteorological factors. Third, based on Equation (9), the NDII5 value could be
estimated accurately at every pine forest location (30× 30 m2 region at the Landsat pixel) in the study
area in any given year. Equation (9) obtained a good determination coefficient through the regression
data of 120,360 samples. This meant that this model was reliable for supplying the basis for assessing
the position and degree of caterpillar occurrence in advance.

In summary, the NDII5 was strongly proved appropriate for the defoliation assessment and
prediction based on three lines. First, the logistic regression at the 19 plots; second, the comparison of
the degree of damage to the pine in 29 years (Figure 5) with the historical damage record (Figure 6);
and third, the relationship of the NDII5 with seven environmental factors. This relationship was in
accordance with the caterpillar phenology.
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These conclusions were helpful for assessing and predicting the defoliation damage done by
the caterpillar and with providing forest managers with the basis to protect pine forests from plague.
This prediction method could save a lot of field survey expenses for forest management.
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