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Abstract: Land subsidence is the disaster phenomenon of environmental geology with regionally
surface altitude lowering caused by the natural or man-made factors. Beijing, the capital city of China,
has suffered from land subsidence since the 1950s, and extreme groundwater extraction has led to
subsidence rates of more than 100 mm/year. In this study, we employ two SAR datasets acquired
by Envisat and TerraSAR-X satellites to investigate the surface deformation in Beijing Plain from
2003 to 2013 based on the multi-temporal InSAR technique. Furthermore, we also use observation
wells to provide in situ hydraulic head levels to perform the evolution of land subsidence and
spatial-temporal changes of groundwater level. Then, we analyze the accumulated displacement
and hydraulic head level time series using continuous wavelet transform to separate periodic signal
components. Finally, cross wavelet transform (XWT) and wavelet transform coherence (WTC) are
implemented to analyze the relationship between the accumulated displacement and hydraulic
head level time series. The results show that the subsidence centers in the northern Beijing Plain
is spatially consistent with the groundwater drop funnels. According to the analysis of well based
results located in different areas, the long-term groundwater exploitation in the northern subsidence
area has led to the continuous decline of the water level, resulting in the inelastic and permanent
compaction, while for the monitoring wells located outside the subsidence area, the subsidence time
series show obvious elastic deformation characteristics (seasonal characteristics) as the groundwater
level changes. Moreover, according to the wavelet transformation, the land subsidence time series at
monitoring well site lags several months behind the groundwater level change.

Keywords: land subsidence; InSAR; hydraulic head; continuous wavelet transform

1. Introduction

Land subsidence in metropolitan area has been observed as series of disastrous phenomena over
decades worldwide [1]. For example, more than 60 countries [2] as well as more than 45 cities in
China [3] have suffered from land subsidence. The spatial variety of land subsidence in urban areas
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often leads to damage to urban infrastructures including buildings, airports, railways, highways,
subways, and other underground facilities. Land subsidence in urban areas is mainly caused by
human activities, including over-exploitation of groundwater [4] or oil/gas [5], underground works,
and massive construction of high buildings. As reported, Beijing is plagued by a serious shortage of
water resources, and 2/3 of water demand is supplied by groundwater [6]. Nevertheless, 87.6% of the
whole plain area is suffering from excessive groundwater withdrawal. The long-term and high-intensity
groundwater consumption has resulted in water level falling and local city sinking [7].

Land subsidence, excessive groundwater withdrawal and thick haze are the new unbearable pains
of Beijing. Beijing has suffered from land subsidence for decades [8]. The first record of subsidence in
Beijing was discovered by the survey and mapping departments in 1935, near Xidan. The measured
maximum accumulative displacement was only 58 mm until 1952. Nevertheless, since the 1950s,
with the rapid development of the light industry in eastern Beijing, many wells were drilled and
lots of water was unboundedly pumped from underground for industrial consumption. The local
land subsidence area has gradually formed since. As reported by the China Geological Survey (CGS),
the groundwater level in Beijing has dropped rapidly and has exceeded natural recharge [9] since
the 1970s, due to industrial development and the demands of a growing population. Especially since
1999, groundwater overdraft due to drought has resulted in rapid development of the land subsidence
in Beijing.

A necessary step to perform a proper analysis of the land subsidence is to obtain accurate
measurements of the actual amount of subsidence at certain intervals. Compared with the traditional
leveling and global positioning system (GPS) measurement methods, the interferometric synthetic
aperture radar (InSAR) technique can obtain a wide spatial range of surface deformation information
with millimeter-scale precision [10]. In this case, InSAR has been developed as a new geodetic
technique over the past few decades. InSAR has been used for the measurement of topography
and surface deformation, such as seismic deformation [11], volcanic–tectonic deformation [12],
glacial kinematics [13], landslide [14], delta sinking [15], and land subsidence [16–19]. However,
conventional InSAR can only extract the phase shifts between SAR image acquisition dates, rather
than the time-series deformation rates, because it relies only on two SAR images with a short time
span [20], and not on a stack. In addition, the application of conventional InSAR is mainly limited by
temporal decorrelation, spatial decorrelation, and atmospheric delay, which are caused by different
satellite observation positions, long image-acquisition intervals, and atmospheric fluctuations [21],
respectively. All these issues can be addressed using time-series InSAR analysis methods. Temporal
InSAR techniques such as persistent scatterer interferometry (PSI) [22,23] and Small BAseline Subset
(SBAS) [24,25] have been successfully used to detect, map and analyze long-term and slow land
subsidence [26–30]. Previous study showed that the land subsidence in Beijing was comprehensively
affected by over-exploitation of groundwater [31–34], urban construction [35], and geological fault
structures, and that the mechanisms of land subsidence are complex in different areas.

In urban areas, land subsidence is a serious threat to urban infrastructure, high-speed railway and
the utilization of underground space, thus restricting the sustainable development of society. Therefore,
the study of the regional subsidence evolution in Beijing Plain is of great significance. As mentioned
above, previous studies focused on time series InSAR technology to obtain deformation measurement
combined with groundwater level changes to analyze the statistical correlation between them. In this
study, a newly proposed InSAR time series analysis approach is implemented on 47 Envisat ASAR
images and 33 TerraSAR-X images to estimate the time-series deformation of the east Beijing Plain
(Figure 1a). Extra leveling data are used to calibrate the InSAR based measurements to ensure the
reliability of the observation. Then, wavelet multi-scale analysis is applied to seize the responses of
the time-varying surface deformation to hydraulic head levels changes in Beijing Plain. This paper is
organized as follows. We introduce the history of land subsidence in Beijing, and summarize the study
area (Section 2). Then, the InSAR time series technique and the wavelet transform used in this study
are presented in Section 3. We detail the subsidence rate and time series analysis from InSAR results,
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compare these with hydraulic head levels, and then present the results of the wavelet transform for
both the land subsidence and hydraulic head level (HHL) time series (Section 4). Finally, discussions
from this study are given in Section 5, and our concluding remarks are presented in Section 6.
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Figure 1. (a) The location of Beijing Plain and the coverage of the SAR sensors. The light gray
dashed lines are the main faults published by CGS, and the labels indicate the name of the active
faults mentioned in this study. The red circle with cross is the reference point. The red circle is the
location of Houshayu, while the black bold plane represents the Beijing Capital International Airport.
(b) Temporal–spatial baseline distributions of Envisat ASAR and TerraSAR-X image stacks in this study.
TSX/TDM is the abbreviation of TanDEM-X/TerraSAR-X.
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2. Study Area and Data Preparation

2.1. Study Area

Behind Yanshan Mountains to the north and Taihang Mountains to the southwest and facing
the sea to the east, Beijing Plain lies on the northern edge of the North China Plain and covers
an area of over 6300 km2 (Figure 1a). The climate is temperate semi-humid continental monsoon type:
the annual average temperature is approximately 10–12 ◦C, and the mean annual precipitation is
510 mm. The Beijing Plain is a typical piedmont alluvial diluvial plain formed from sediment carried
by the Yongding, Chaobai, and Wenyu Rivers. The Quaternary sediments from the piedmont to the
plain areas are generally divided into three parts: alluvial–pluvial fan in the top, alluvial–pluvial fan
in the middle, and fringe part of alluvial–luvial fan and alluvial plain area [36]. In the middle part are
2–3 layers of sand gravel strata, and, in the fringe and alluvial plain area, it transfers gradually into
the multi-layer structure of the coarse sand, medium sand, and fine sand [37]. The soft sediment in
the pluvial–alluvial plain contains several aquifers that are compressible in natural. It is confirmed
that extraction of groundwater results in the compaction of alluvial aquifer systems and generates
surface deformation [10,38]. Previous study showed that the spatial distribution of land subsidence
in Beijing Plain was consistent with that of the quaternary compressible layers [39]. The thickness
of the quaternary alluvial fan of the Yongding River is more than 340 m. One of the subsidence
centers, Houshayu (marked by red circle in Figure 1a), is located in the Wenyu River alluvial fan with
a thickness of compressible sediments over 150 m.

Since 1999, as shown in Figure 1a, six sinking bowls have gradually formed in the eastern Beijing
Plain. Several active faults (Liangxiang–qianmen–shuyi fault, Nankou–Sunhe fault, Nanyuan–tongxian
fault and Huangzhuang–Gaoliying fault) cross throughout the whole sinking area. Nevertheless,
the Changping bowl, the Chaoyang bowl, and the Tongzhou bowl are connected to each other, and the
sinking rate shows an accelerating tendency. By late 2011, an area of more than 3900 km2, which is
about 60% of the Beijing Plain, has been affected by land subsidence, with a cumulative subsidence
over 100 mm, while the maximum accumulative displacement in this area reached 1302 mm [40].

2.2. InSAR Datasets

Envisat is an Earth observation satellite launched by ESA (European Space Agency) on 1 March
2002, with a revisit frequency of 35 days and orbit altitude of 800 km. ASAR is one of the sensors carried
on Envisat and measures the radar backscatter of the Earth’s surface at C-band. In this study, a stack of
47 Envisat ASAR images acquired between June 2003 and August 2010 from descending track was
provided by the ESA. The maximum temporal baseline is 1960 days, and the perpendicular baseline
ranges from 39.8 m to 1011.8 m (Figure 1b). The SAR image stack covers an area of approximately
10,000 km2 (green box in Figure 1a), including most of the Beijing Plain except the Daxing County.

Another stack of 33 TSX/TDX SAR images recorded at 100–200 MHz was acquired between April
2010 and November 2013 from ascending track and was provided by the German Aerospace Center
(German: Deutsches Zentrum für Luft- und Raumfahrt e.V., abbreviated as DLR). The maximum
temporal baseline is 682 days, and the perpendicular baseline ranges from 3.1 m to 509.0 m (Figure 1b).
The stack covers an area of approximately 1500 km2 (red box in Figure 1a), part of the eastern
Beijing Plain. The stacks were single-polarization HH mode images recorded in stripmap mode with
a resolution of up to 3 m.

TerraSAR-X, launched on 15 June 2007, is the first in the world to provide services using X-band
microwave sensors with a revisit frequency of 11 days and orbit altitude of 514 km. As a 1-m
resolution class SAR satellite, TerraSAR-X delivers Earth observation data for scientific, institutional
and commercial users worldwide. TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement)
is the name of the twin satellite of TerraSAR-X. It is a second, almost identical spacecraft to TerraSAR-X.
The new mission is to generate a global digital elevation model (DEM) with 12 m resolution and
a vertical accuracy better than 2 m.
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2.3. Hydraulic Head Level Data

Hydraulic head levels from observation wells provide direct measurements of the fluid pressure
at depth [17]. The groundwater database maintained by CGS provides observation well locations,
measurements, and other information on well status. Annual Beijing Water Resources Bulletin
published by Beijing Water Authority (BWA) also provides auxiliary information about phreatic
water. In this study, more than 30 wells selected for time series analysis are scattered around the plain
and not necessarily located near zones of maximum subsidence or uplift. In Section 4.3, we examine the
head level data in conjunction with vertical surface deformation data obtained from InSAR time series.

3. Methodology

3.1. InSAR Time Series Analysis

To measure the time series surface deformation in Beijing Plain, we implement the Wavelet
Based InSAR (WabInSAR) approach [41]. WabInSAR uses multiple-master interferograms within
a certain perpendicular baseline, similar to SBAS approach [24]. We firstly coregister the SAR images
to the same master image within each stack. Then two sets of interferograms are generated with
respect to the pre-defined perpendicular and temporal baseline thresholds (Figure 2c,d). The 90 m
Shuttle Radar Topography Mission (SRTM) DEM is used to remove the flat earth effect and the phase
due to topography. WabInSAR implements a statistical approach to identify elite (i.e., less noisy)
pixels by examining complex interferometric phase noise of the dataset. Then, the algorithm performs
a variety of wavelet-based filters to reduce the effects of topography and the orbit errors and correlated
atmospheric delay [42]. An iterative approach, incorporating a minimum cost flow approach used
for phase unwrapping followed by Legendre polynomial wavelets filter used for estimating the
high-frequency nuisances, is used for phase unwrapping. Following the inversion of the unwrapped
interferograms and the generation of the time series of the surface deformation, the effect of temporally
uncorrelated atmospheric delay is then removed by using a continuous wavelet transform. Through
a reweighted least square approach, WabInSAR inverts the interferometric dataset and generates
a uniform time series of the line of sight (LOS) surface deformation and uses these values to fit
a linear velocity.

In this study, we apply WabInSAR technique to process the two stacks of the Envisat and
TSX/TDX satellites for InSAR time series generation. The vertical displacement is considered to
be more appropriate for comparison with ground leveling measurements. Thus, the measurements
in line of sight (LOS) are directly projected into the vertical direction assuming that the detected
movements are mostly in vertical direction during the period spanned by SAR image acquisition in
this study. The assumption is also supported by previous works, in which GPS [43] and leveling [44]
investigations show that this area presents a low relative horizontal movement (1.57–1.93 mm/year).
Then, the InSAR time series estimates are validated by independent ground leveling data.

3.2. Wavelet Transform for Time-Series Analysis

Signal decomposition algorithms, such as principal component analysis (PCA), the Fourier
transform (FT), have been used to separate temporal component from geodetic time series [11,45–47].
Rudolf et al. [48] used PCA to extract the dominant temporal behavior from InSAR time series,
while Chaussard et al. [49] performed PCA to extract the spatiotemporal variability of deformation
and to investigate the seasonal deformation and water level changes. Despite its advantages for
signal decomposition, as previous study shows, PCA is not suitable for dealing with signals with
low amplitude [50]. The FT can identify different frequencies through decomposing a sequence of
deformation data in the time domain, but it gives no information regarding where those components
appear in timeline [51].

To overcome these limitations, we apply complex continuous wavelet transform (CWT) which
provides the time-frequency representation in different scale. Wavelet analysis has been widely used
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in geophysical time series analysis, in particular for SAR interferometry and further processing [52].
This includes SAR filters, orbital error removal, topography-correlated atmospheric delay reduction,
interferogram inversion and time series generation, a new approach for InSAR time series analysis [41],
and analyzing the spatiotemporal characterization of land subsidence and the correlation between
vertical displacement and hydraulic head level time series in Phoenix [17].

In this study, the complex Morlet wavelet is chosen to serve as mother wavelet in the
procedure. The wavelet transform analysis is performed by using the free Matlab package created
by Grinsted et al. [49] (refer to: [53]). In mathematics, the Morlet wavelet is a wavelet composed of
a complex exponential multiplied by a Gaussian window, which is closely related to human perception.
In this case, The Morlet wavelet transform analysis is widely used in signal analysis, heart disease
diagnosis, and so on. For a more detailed description of the Morlet wavelet, refer to: [54]. Before
performing CWT, preparatory work should be done to ensure the InSAR time series has the same
interval. Besides, the hydraulic head levels are also interpolated in this study to consistent with the
dense InSAR time series. Then, we generate the wavelet power spectrum of the interpolated InSAR
and the synchronous hydraulic head level time series. Finally, we perform cross wavelet transform
(XWT) and wavelet transform coherence (WTC) to investigate the relationship between InSAR and
hydraulic head level time series. Nevertheless, XWT and WTC will expose their common power and
relative phase in time-frequency space [47].
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Figure 2. Line of sight velocity maps and connections from two satellite tracks: (a) Envisat ASAR
descending track (June 2003–August 2010) with maximum subsidence of 10.06 cm/year and maximum
uplift of 0.64 cm/year. (b) TSX/TDM ascending track (April 2010–November 2013) with maximum
subsidence of 12.86 cm/year and maximum uplift of 0.92 cm/year. InSAR time series profiles for two
periods are marked by red dashed line and are detailed in Figures 3 and 4, respectively. (c) Connection
graph generation from Envisat ASAR interferogram pairs. (d) Connection graph generation from
TSX/TDM interferogram pairs.



Remote Sens. 2018, 10, 365 7 of 17

4. Results

4.1. InSAR Measurements in Two Time Periods

We generate time series for the Envisat ASAR (June 2003–August 2010) stack and TerraSAR-X
(April 2010–November 2013) stack using the method described in Section 3.1. Interferogram pairs with
perpendicular, temporal, and Doppler separations less than the threshold values were selected for
processing (Figure 2c,d). For Envisat ASAR dataset (Figure 2c), the maximum perpendicular absolute
baseline difference (500 m), maximum absolute temporal difference (400 days), and coherence threshold
(0.5) were applied according to the data availability and the environmental settings in the study site.
For TSX/TDM dataset (Figure 2d), the threshold values were 500 m, 300 days, and 0.5, respectively.

Interferograms of TerraSAR-X SAR stack cannot cover the entire study area but provide
good coverage of the sinking area in Beijing Plain. Figure 2a,b shows the linear land subsidence
velocities (cm/year) from two different time periods. Negative values indicate downward movement
(subsidence, while positive values indicate uplift. The black circle with label indicates the location for
each ground leveling benchmark used in this study. The black dashed circles in Figure 2b highlights
areas with significant unwrapping errors due to sparse elite points. Overall, displacement rate ranges
from −12.86 cm/year subsidence to 0.92 cm/year uplift with a standard variance of 69.8 mm/year
relative to the reference point (Figure 1a), between June 2003 and November 2013.

During June 2003–August 2010, as can be seen from Figure 2a, significant land subsidence occurs
in the eastern Beijing Plain, especially in Changping, Chaoyang, Tongzhou, Shunyi and Pinggu County.
Regarding to the displacement rate during April 2010–November 2013, both of sinking rate and range
increase are observed near Tongzhou and Chaoyang County. As a result, the maximum subsidence
rate of 12.86 cm/year is observed in Chaoyang funnel.

We plot the deformation profiles through time for every red dashed line feature in two different
periods (Figures 3 and 4). As can be seen in the figures, profiles across Pinggu funnel, Chaoyang
funnel and Changping funnel, labeled PG, CY-1, CY-2 and CP, respectively, are characterized by
steady subsidence. Nevertheless, the CY-1 profile indicates a small zone of uplift to the north
and east, while TZ-1/2 profiles crossing Tongzhou funnel feature more cumulative subsidence,
and indicate the Tongzhou funnel is made up of independent subsidence bowls. The SY profile
crossing Shunyi funnel has significant difference in two different time periods. As mentioned in
Section 3.1, for individual interferograms, we identify pixels by examining phase noise to find elite
pixels, and then use an iterative MCF approach to estimate phase value of the network of every pixel.
This strategy would miscalculate cycles of phase unwrapping, such as, if an isolated elite point is
too far away from its neighbor. Unfortunately, we note that, in Shunyi funnel, there are several areas
with significant unwrapping errors due to sparse elite points during the SAR acquisitions period
(2010–2013).

4.2. Comparison with Leveling Measurements

Interpolation in the time domain was used for quantitative comparison of the cumulative
displacement time-series measured from both datasets. The SBAS-measured displacements were
interpolated to the dates of the ground leveling surveys. To make the results from two measurements
are comparable, we choose benchmark No. 139 (marked by filled orange circle with black border)
close to the InSAR reference point as the leveling reference point. Then, the average displacement
of pixels lying <300 m from each benchmark (marked by black circles in Figure 2b) was obtained as
the corresponding InSAR measurement, assuming that the surface does not change significantly over
this distance.

Then, a scatter plot generated from interpolated InSAR-measured time-series and ground leveling
surveys at the 40 benchmarks is shown in Figure 5a. The differences between the two measurements
vary from −10.8 mm/year to 7.6 mm/year, and the standard deviation (SD) is less than 6 mm/year,
with a correlation coefficient (R2) of 0.82.
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Figure 5b shows that the time-series measurements from both techniques match reasonably well;
however, the temporal sampling rate of the leveling surveys (annual) is much lower than that of the
SAR acquisitions (almost monthly). Nevertheless, there are strong fluctuations detected by InSAR
between 2004 and 2009 at benchmark BJ046 and BJ163. Similar subsidence trends are observed at
the benchmark BJ014, BJ064, BJ111, and BJ167, all of which are located at the edges of the sinking
funnels (Figure 2). While the points located in the center of the funnels, such as the benchmark BJ094,
shows continually sinking trend. These features are not obvious in ground leveling surveying due to
the poor temporal sampling.
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Figure 5. Comparison of InSAR and ground leveling-derived velocities during 2003–2013: (a) the black
line represents the one-to-one function; and (b) comparison between the time series subsidence
measured by InSAR and by ground leveling surveys at the benchmarks “BJ046”, “BJ163”, and “BJ094”.

4.3. Temporal Evolution of Land Subsidence and Groundwater

As mentioned in Section 2.1, a large sinking bowl (orange-red areas in Figure 6a) with accumulated
subsidence of more than 50 cm (from 2003 to 2010) were formed since the Changping funnel,
the Chaoyang funnel, and the Tongzhou funnel have connected each other. A case study in the
northern Beijing Plain showed that the subsidence in Beijing is mainly caused by intense groundwater
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extraction, apart from the hydrogeological conditions; however, the uneven distribution of the land
subsidence has been strongly affected by the presence of compressible deposits [31]. As illustrated in
Figure 6a, the distribution of subsidence matches that of the sinking groundwater table; areas with
high subsidence rates are always located in areas with a low hydraulic head level (such as groundwater
depression cone). Nevertheless, the spatial distributions of the accumulated subsidence and the
groundwater depression cones are not fully aligned with each other, regarding to the profile A–A’
(Figure 6b).

In Beijing, deep water has been extracted at high rates for industrial and agricultural uses.
However, the reported groundwater extraction volumes cannot be used because of the large number
of unregistered wells. Thus, we plot the monitoring results from two selected wells (marked by red
diamonds in Figure 6a). Well 2 is located at the edge of Tianzhu–tongzhou funnel while Well 1 is
located near the center of the funnel. As can be seen in Figure 6b, the time-series hydraulic head level
presents certain seasonal characteristics, especially for Well 2. For the location of Well 1, the measured
subsidence increases along with the hydraulic head level.

In north China, agricultural irrigation is the main water consumption in winter and spring.
Since the Wheat-Maize double cropping system plays a very important role in agriculture production
in North China Plain, irrigation of winter wheat in Beijing Plain is implemented according to the
solar term. In this case, the water level at Well 2 located near farmland presents strong seasonal
characteristics. The groundwater table declines year by year, simply because the water increasing
in summer cannot afford the decrease in winter. Nevertheless, InSAR time-series measurements at
different locations are not strongly affected by the seasonal change of the groundwater. The inner
periodicity in time domain and the relationship between the subsidence and groundwater level are
analyzed in detail based on wavelet transform in the next section.
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Figure 6. Spatial and temporal characteristics of land subsidence and hydraulic head levels:
(a) InSAR-measured accumulated subsidence between June 2003 and August 2010 with the average
hydraulic head level during the same period; and (b) monitoring results for confined hydraulic head
level and InSAR-measured subsidence for selected wells. The illustration at bottom details the profile
A–A’ in Figure 6a.

4.4. Wavelet Transform Results

We implement CWT analysis on hydraulic head level and InSAR time series for two wells to
identify their temporal characteristics, respectively. The CWT analysis of the hydraulic head level and
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InSAR time series at two wells are shown in Figures 7 and 8, respectively. The peaks and troughs are
denoted in blue and red in the contour map. Figure 7a–d shows that there are two main periods under
different scales from January 2005 to December 2011 for HHL time series at Well 1. As can be seen in
Figure 7a, there are about 2.5 circles around scale 50 and >3 circles withn scale 30–40 from January
2005 to December 2011. Nevertheless, the high coefficient modulus of the time series around scale
50 (Figure 7b) indicates a more significant periodicity. To determine the scales, we plot the wavelet
variance in Figure 7c. It can be clearly seen that there are two peaks appearing at scale 37 and 51. Then,
we plot the whole signal of CWT coefficient in Figure 7d. Consequently, there are 2.5 cycles indicating
a period of about 33.6 months at scale 51 and 3.5 cycles with a period of about 24 months at scale
37. Figure 7e–h shows there is no constant period for InSAR time series at Well 1. The time interval
between adjacent peak and trough increases along with scale, as can be seen from Figure 7e. Besides,
taking coefficient curve in scale 60 as example, the amplitude shows significant increase over the same
time interval (Figure 7h).

Figure 8a–d shows that there is one main period at scale 18 from January 2005 to December 2011
for HHL time series at Well 2. It can be seen in Figure 8d that there are seven cycles with a period
of about 12 months at scale 18 and are 14 cycles with a period of about six months. The higher
coefficient at scale 18 (Figure 8b) indicates that the HHL time series at Well 2 have stronger annual
variation characteristics apart from the feature of seasonal variation. Figure 8e–h shows that there are
no permanent periods for InSAR time series at Well 2 from June 2003 to November 2013. As can be
seen, there are 5.5 cycles with a not strong period (because of the low coefficient in Figure 8f) of about
15.6 months at scale 33. Nevertheless, the amplitudes show significant increase after 2011 at scales 33
and 59 in Figure 8h.
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Figure 7. CWT on HHL and InSAR time series for Well 1: (a) the contour lines of the real part of the
CWT analysis for HHL time series; (b) the coefficient modulus of the HHL time series in different
scales; (c) wavelet variance curve of HHL time series; and (d) the CWT coefficients curve of HHL time
series in different scales. (e–h) The same as (a–d) but for InSAR time series.
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Figure 8. CWT on HHL and InSAR time series for Well 2: (a) the contour of the real part of the CWT
analysis for HHL time series; (b) the coefficient modulus of the HHL time series in different scales.
(c) wavelet variance curve of HHL time series; and (d) the CWT coefficients curve of HHL time series
in different scales. (e–h) The same as (a–d) but for InSAR time series.

5. Discussion

5.1. XWT and WTC on Hydraulic Head Level and InSAR Time Series

The connection between the portrayed patterns is quite difficult to see, therefore we use cross
wavelet transform and wavelet transform coherence. Cross wavelet and wavelet coherence analysis are
powerful techniques for testing proposed linkages between two time-series. To untangle the relation
between the hydraulic head level and land subsidence in Beijing Plain, we apply XWT and CWT on
hydraulic head level and accumulated subsidence (AS) time series from Wells 1 and 2. The wavelet
power spectrum (WPS) shows the distribution of a frequency component with respect to the time,
as illustrated in Figure 9. The thick contour is the 5% significance level against red noise, while the
thinner black line indicates the cone of influence (COI). Areas outside the COI are shown as lighter
shadows and are not reliable in signal analysis.

The continuous wavelet power spectrums of the HHL and AS from Well 1 are shown in Figure 9a,b,
respectively. The HHL time series has high power in the 16–20-month band in the period from 2005 to
2008, although the power is under the 5% significance level. The CWT power of the HHL time series
from Well 2 shown in Figure 9e has 8–14-month band in the period from 2006 to 2011. However, for the
AS time series from two wells, the powers are quite low and therefore there are no high power above
the 5% significance level in the whole period (Figure 9b,f).
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The XWT power of the HHL and SA for the selected wells are shown in Figure 9c,g, respectively.
The relative phase relationship vector is shown as arrows (with in-phase pointing right, anti-phase
pointing left, and HHL leading AS by 90◦ pointing straight down), indicating the phase difference
between the HHL and AS. Here, we notice that there is a relatively high common power in the
8–16-month band from 2006 to 2011 standing out above the 5% significance level (Figure 9g).
We therefore speculate that there is another link between HHL and AS than that implied by the
XWT power.

WTC power can reveal areas with high common power and can describe the coherence of the time
series in time frequency space. The statistical significance level of the WTC is estimated by Monte Carlo
methods. The WTC of the HHL and SA for the selected wells are shown in Figure 9d,h, respectively.
Compared with the XWT power, there are more areas with higher power standing out above the 5%
significance level. Nevertheless, these areas show different phase relationship between HHL and AS
in different periods. Figure 9d shows the HHL and AS are in-phase with significant common power in
the ~2 band from 2007 to 2009, but are anti-phase between June 2010 and November 2010. A similar
situation is found in Figure 9h from the time series of Well 2. There are areas with significant coherence
between the HLL and AS time series in ~8-month band in several periods, although the cross-phase
angle ranges from −84◦ ± 5◦ to 164◦ ± 17◦.
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Figure 9. (a) Wavelet power spectrum (Morlet wavelet) of the HHL at Well 1; (b) wavelet power
spectrum (Morlet wavelet) of the AS at Well 1; (c) the cross-wavelet power between the HHL and AS at
Well 1; and (d) the wavelet coherency and phase between HHL and AS at Well 1. (e–h) The same as
(a–d) but for Well 2. Arrows indicate the phase difference between the HHL and AS. The thick black
contour is the 5% significance level using the red noise model, while the thin black line indicates the
cone of influence (COI).
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5.2. Other Factors Concerned with Land Subsidence in Beijing

As mentioned in Section 2.1, Beijing Plain is a typical piedmont pluvial–alluvial plain composed
of several alluvial–pluvial fans and an alluvial plain area. The aquifer on the top of the alluvial fans
consists of cobbles and gravels; the middle part is full of sand gravel strata, while in the fringe part
and alluvial plain area it gradually converted to the multi-layer structure of the coarse sand, medium
sand, and fine sand. In this case, land subsidence in Beijing Plain is increasingly serious and its causes
are complicated, due to its complex geological conditions and growing anthropogenic intervention.

In Beijing Plain, the scope, range and rate of land subsidence have the direct relation with
overexploitation of groundwater. The poroelastic response to groundwater withdrawal is detected
as surface deformation due to elastic recoverable subsidence or inelastic, permanent compaction [17].
Then, inelastic, permanent subsidence occurs where the aquifer system presents a continuous
compaction associated with the groundwater level decrease. In this case, the land subsidence in
these areas present an increasing trend in the rate. Apart from the Groundwater exploitation, previous
works from our group indicate that the distribution and development trend of the local land subsidence
in eastern plain area are controlled by geological structures [19]. As can be seen in Figure 1a, there are
several active high angle normal faults in the Beijing plain. Tectonic movements cause tectonic units to
decline slowly under the regional stress field, while the relative displacement of the hanging walls and
the footwalls results in differences in the land subsidence patterns on both sides of the fault. However,
in this case, obvious horizontal deformation may be formed under the brute force of active faults,
and the issue should be further analyzed through offset-tracking analysis [55]. Besides, land subsidence
also have connection the quaternary compressible layers [56] and LU/LC [57]. Nevertheless, by creating
an index-based built-up index (IBI) from landsat TM image, the time-varying static load field has been
generated according to the period of the acquisitions used for InSAR measurements in [35]. The result
showed that there is a positive correlation between building density and land subsidence, especially
for the areas with high density buildings or extensive transportation networks.

6. Conclusions

Land subsidence in Beijing Plain has connection with hydraulic head level falling caused by
over-exploitation of groundwater. We implement the Wavelet Based InSAR approach on two SAR
image stacks to investigate the long-term displacement in eastern Beijing Plain. The InSAR-measured
sinking rates and accumulated displacements are in good agreement with results estimated from
ground leveling surveys. Then, through the distribution of subsidence areas and groundwater funnel,
the InSAR based time series and the monitoring well based groundwater level changes, the spatial
correlations and responses between land subsidence field and groundwater flow field are analyzed.
The results show that the distribution of the subsidence centers in the northern Beijing Plain is
consistent with that of the groundwater drop funnels, with a similar downward trend over the whole
observation time. Continuous wavelet transform provides a powerful tool for signal decomposition
and extracting periodic components of a time series. According to the analysis of well based results
located in different areas, the long-term groundwater exploitation in the northern subsidence area has
led to the continuous decline of the water level, resulting in the inelastic and permanent compaction,
while, for the monitoring wells located outside the subsidence area, the subsidence time series show
obvious elastic deformation characteristics (seasonal characteristics) as the groundwater level changes.
According to the wavelet transformation, the land subsidence time series at monitoring well site lags
several months behind the groundwater level change.
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