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Abstract: In synthetic aperture radar (SAR) target recognition, the amount of target data increases
continuously, and thus SAR automatic target recognition (ATR) systems are required to provide
updated feature models in real time. Most recent SAR feature extraction methods have to use
both existing and new samples to retrain a new model every time new data is acquired. However,
this repeated calculation of existing samples leads to an increased computing cost. In this paper,
a dynamic feature learning method called incremental nonnegative matrix factorization with Lp

sparse constraints (Lp-INMF) is proposed as a solution to that problem. In contrast to conventional
nonnegative matrix factorization (NMF) whereby existing and new samples are computed to retrain
a new model, incremental NMF (INMF) computes only the new samples to update the trained model
incrementally, which can improve the computing efficiency. Considering the sparse characteristics of
scattering centers in SAR images, we set the updating process under a generic sparse constraint (Lp)
for matrix decomposition of INMF. Thus, Lp-INMF can extract sparse characteristics in SAR images.
Experimental results using Moving and Stationary Target Acquisition and Recognition (MSTAR)
benchmark data illustrate that the proposed Lp-INMF method can not only update models with new
samples more efficiently than conventional NMF, but also has a higher recognition rate than NMF
and INMF.

Keywords: SAR target recognition; incremental learning; incremental NMF; Lp sparse constraint

1. Introduction

Synthetic aperture radar (SAR) is useful for ground observations, as it can work in the all time
and weather conditions. SAR target recognition can use information from images obtained by SAR to
determine the category and type of target. SAR target recognition is one of the key technologies that
has improved the ability of SAR information sensing and realized the application of SAR technology,
especially in military and civil applications. The most recent works in SAR target recognition use
images of training samples to obtain a more than 90% recognition rate without any pretreatment [1–3].

Most of the work on SAR automatic target recognition (ATR) only considers how to use a fixed
number of training samples to train a suitable model for recognition tasks. In SAR target recognition,
new training samples are obtained continuously, and as such there is a need for the feature model to
be updated in real time. However, traditional methods can only train suitable models with a fixed
number of samples. As more training samples are gathered, the model has to be retrained with the
addition of new data. For example, traditional methods can train a suitable model when there are 100
samples to start with. As the sample number increases, they can also train suitable models when the
number of samples is 110, 120, 130, and so on later. Using both existing and new samples to retrain a
new model every time results in a linear increase in computation costs. This leads to reduced data
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processing efficiency . One approach to solving this problem is by developing an incremental learning
method to replace the traditional methods.

Incremental learning methods compute data to update the existing training model rather than
retraining it [4–6], in a manner similar to human cognition. In recent years, in the fields of video
surveillance, facial recognition, and others, many incremental learning methods have been proposed,
and can be divided into two aspects based on the process. Firstly, feature extraction methods based on
incremental learning can use new data to update the existing feature space efficiently. Incremental
principal component analysis (IPCA) is proposed, which is an extension of principal component
analysis (PCA) and is applied in the field of facial recognition [7–9]. Incremental linear discriminant
analysis (ILDA) is derived, which is based on linear discriminant analysis (LDA) [10]. ILDA optimizes
separability of classes incrementally and is applied to facial recognition. Incremental nonnegative
matrix factorization (INMF) is proposed to extract subspace representations for each new sample
to improve traditional nonnegative matrix factorization (NMF) and is applied to video surveillance
tasks [11]. Secondly, a classification method based on incremental learning can use new data to
update the decision function, such as incremental support vector machine (ISVM), incremental nearest
neighbor classification, incremental neural network, and so on [12–15]. The main advantages of
incremental learning are that it saves the storage space of existing samples and improves the speed at
which models are updated. However, completely apart from existing samples, incremental learning
methods usually lead to a decline in recognition accuracy compared to conventional methods [16].

Since feature extraction is a key process of SAR ATR [17], we aimed to develop a kind of
incremental feature extraction method for SAR target features. Compared with other methods of
feature extraction, nonnegative matrix factorization (NMF) can obtain local feature representations of
the target, which is more in line with the mechanism of human cognition and has better performance
than other methods in SAR target recognition [18,19]. As mentioned in the introduction, incremental
nonnegative matrix factorization (INMF) is an incremental learning method for updating single
samples. INMF computes new samples to update the model incrementally, which avoids repetitive
learning of existing samples and improves data processing efficiency. However, because it is completely
divorced from existing data, the performance of INMF in SAR target recognition is inferior to that of
NMF. Thus, we must find a way to improve the accuracy of INMF without increasing computational
complexity. Moreover, we need to ensure that the performance of the incremental method is equal to
or higher than that of the traditional method.

In addition, due to the scattering center characteristics and target attitude sensitivity of SAR,
the basis matrix and coding matrix obtained by NMF should be sparse in SAR [2]. To some extent,
NMF with sparse constraints can improve the ability of feature selection and the precision of matrix
decomposition [20,21]. NMF based on sparse constraints such as L1-NMF and L1/2-NMF can improve
the accuracy of SAR target recognition, which has been confirmed by previous work [2]. The
authors of [2] propose the novel non-negative matrix factorization (NMF) variant L1/2-NMF after
visualization and analysis of the process of target recognition via NMF for synthetic aperture radar
(SAR) images. These authors [2] show that both the basis and coding matrices obtained by L1/2-NMF
have higher sparseness than those obtained by NMF, L1-NMF, and NMF with sparseness constraints
(NMFsc), and recognition results demonstrate that the L1/2-NMF outperforms L1-NMF, NMFsc and
non-smooth NMF.

Considering sparse characteristics of scattering centers in a SAR image, a new INMF method
based on generalized sparse constraints is proposed. This method, called Lp-INMF, adds Lp sparse
constraints to the decomposition matrix during the update process, obtaining more accurate solutions
than general INMF. The p is typically between 0 and 1 so that different norm sparse constraints
can be used. Experimental results on Moving and Stationary Target Acquisition and Recognition
(MSTAR) benchmark data illustrate that Lp-INMF can not only compute gradually increasing numbers
of samples more efficiently than traditional non-incremental NMF and incremental PCA (IPCA), but
can also obtain a higher recognition rate than NMF and incremental NMF (INMF).
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The rest of the paper is organized as follows. In Section 2, related works are introduced. Section 3
summarizes the proposed Lp-INMF and the whole SAR target incremental recognition process based
on Lp-INMF. Section 4 shows the experimental results of the proposed method based on the MSTAR
data set. Section 5 concludes this paper.

2. Related Works

2.1. Nonnegative Matrix Factorization

This section is used to introduce the formula and symbol representation of NMF.
We assume that a SAR target sample is represented by an m dimensional vector and the number

of training samples is equal to n. The data matrix, V, will be an m by n matrix where Vij refers to an
entity in V (i = 1, ..., m, j = 1, ..., n). NMF approximately factors the data matrix (V ∈ Rm×n) into two
matrices: the base data, W ∈ Rm×r, and the encoding matrix, H ∈ Rr×n. Each column vector in V has a
corresponding representation in the coding matrix. The r is a pre-defined parameter which is designed
as the rank of the factorization and determines the level of dimension reduction.

Conventionally the NMF method minimizes a cost function regarding the reconstruction error
defined by Equation (1).

F (W, H) = 1
2‖V −WH‖2 (1)

This error function F is a convex function of W and H separately. Therefore, multiplicative and
alternating update rules for W and H are derived via gradient descent optimization. The update rules
for the elements of matrix W and H are given by Equations (2) and (3), where µ = 1, ..., r.

Wi,µ ←Wi,µ
(VHT)i,µ

(WHHT)i,µ
(2)

Hµ,j ← Hµ,j
(WTV)µ,j

(WTWH)µ,j
(3)

Since each column of data matrix V corresponds to a different sample, the arrival of each new
sample leads to an additional column in V. It is well known that the computational complexity of a
standard NMF is O(mnr) per iteration, which implies that the computational cost increases linearly
with the number of columns of data. Therefore, whenever a new sample is received, re-running the
existing and new samples is not an approach which meets the demands of model updating.

2.2. Incremental NMF for SAR Target Recognition

In this subsection, INMF is introduced to overcome the efficiency problem of NMF for updating
the model.

The idea of incremental nonnegative matrix factorization is to update the decomposition matrices
W and H with the addition of a new sample without increasing the computational cost. In this process,
a column representing a new sample has been added to the sample matrix V and the coding matrix H,
and then the matrix W is updated with the new sample [11].

The optimized factor matrices of the existing k samples are denoted by Wk and Hk. In Equation (4),
Fk refers to the cost function corresponding to NMF representation of the existing k samples.

Fk = ‖V −Wk Hk‖2 =
m
∑

i=1

k
∑

j=1

(
Vi,j − (Wk Hk)i,j

)2
(4)
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When the (k + 1)th sample, vk+1, is added, the reconstruction error is formulated by Equations (5) and (6).

Fk+1 = ‖V −Wk+1Hk+1‖2

=
m
∑

i=1

k+1
∑

j=1

(
Vi,j − (Wk+1Hk+1)i,j

)2

=
m
∑

i=1

k
∑

j=1

(
Vi,j − (Wk+1Hk+1)i,j

)2

+
m
∑

i=1
((vk+1)i − (Wk+1hk+1)i)

2

∼= Fk + fk+1

(5)

fk+1 =
1
2

m

∑
i=1

((vk+1)i − (Wk+1hk+1)i)
2 (6)

Thus, when the (k + 1)th sample, vk+1, is added, the cost function of INMF can be divided into
Fk and f k+1 approximately. f k+1 is the part which is relevant to the (k + 1)th sample. Thus, when
the new sample is added, the existing model can be updated with the new information, instead of
being retrained. Let ∂Fk+1

∂(Wk+1)iµ
= 0, ∂Fk+1

∂(hk+1)µ
= 0. The iterative rules of matrix Wk+1 and column hk+1 are

derived as follows:

(Wk+1)iµ ← (Wk+1)iµ

(Vk HT
k + vk+1hT

k+1)iµ

(Wk+1Hk HT
k + Wk+1hk+1hT

k+1)iµ

(7)

(hk+1)µ ← (hk+1)µ

(WT
k+1vk+1)µ

(WT
k+1Wk+1hk+1)µ

(8)

The optimization equations of NMF and INMF computing the new samples are shown in Figure 1.
The computational complexity is also shown in the Table 1. The training of existing k samples has
been completed. Figure 1 describes the processes of INMF updating and NMF retraining when the
(k + 1)th sample comes. Blue represents the existing part and yellow part represents the updating part.
When the number of training samples increases, conventional NMF must compute all existing and
new samples to retrain, but INMF just computes the new sample to update the model incrementally.
Therefore, INMF can avoid repetitive learning existing training samples and improve data processing
efficiency.

~ k samples

V   m

k

W H

r

  m

k

r

V   m

k

W H

r

  m

k+1

r

Vk+1 W m

r

The new 

(k+1)
th

 

sample

hk+1

r

NMF training of 

existent k 

samples

NMF 

updating

Incremental 

NMF 

updating

Figure 1. The (k + 1)th sample updating process comparison of traditional nonnegative matrix
factorization (NMF) and incremental NMF (INMF) when existing k samples have been trained by NMF.
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Table 1. Computational complexity of NMF and INMF for computing the new sample.

Method Computational Complexity for Computing the (k + 1)th Sample

NMF O(m(k + 1)r)
INMF O(mr)

Note that in the cost function of INMF,

Fk =
m

∑
i=1

k

∑
j=1

(
Vi,j − (Wk Hk)i,j

)2 ∼=
m

∑
i=1

k

∑
j=1

(
Vi,j − (Wk+1Hk+1)i,j

)2
(9)

assuming that the first k columns of (Wk+1Hk+1) would be approximately equal to (WkHk) in
Equation (9). Hence, Fk+1 can be divided into Fk and f k+1 approximately as mentioned above.
The approximation of the cost function of INMF creates an error. The matrix resolution accuracy
when updating is lower than that of NMF retraining. While the error cannot be avoided, we can use
SAR target sparseness to improve the matrix resolution accuracy.

Our previous study proposed a novel incremental nonnegative matrix factorization (INMF) and
experiments were carried out with respect to recognition performance and efficiency in order to
overcome the defects that conventional methods have in online processing. For details, please refer
to [22].

3. Lp-INMF Method for SAR Target Recognition

3.1. Incremental NMF with Lp Sparse Constraint

Related work [2] has illustrated that the base matrix W and the coding matrix H of NMF should
be sparse in SAR. Representing the SAR targets by methods with sparse constraints on the base matrix
and coding matrix are beneficial for SAR target recognition [19]. Thus, we derive a new INMF method
based on Lp constraints for SAR target training model updating. The p is typically between 0 and 1
so that different norm sparse constraints can be used. In the following sections, we analyze the cost
function, the update rule and the realization process of the proposed Lp-INMF.

3.1.1. Formulating the Cost Function of Lp-INMF

The optimized factor matrices of the existing k samples are denoted by Wk and Hk, where k ≥ 2r.
In Equation (10), Fk refers to the cost function corresponding to the Lp-NMF representation of the first
k samples. hj represents the jth column of H, which is relevant to the jth sample.

Fk =
1
2‖Vk −Wk Hk‖2 + λ

k
∑

j=1

∥∥hj
∥∥p

p

= 1
2

m
∑

i=1

k
∑

j=1

(
Vi,j − (Wk Hk)i,j

)2
+λ

k
∑

j=1

∥∥hj
∥∥p

p

(10)

where ∥∥hj
∥∥p

p =
r

∑
i=1

hj(i)
p (11)

and hj(i) is the ith element of hj.
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When the (k + 1)th sample vk+1 is added, the reconstruction error is formulated by
Equations (12) and (13).

Fk+1 = 1
2‖Vk+1 −Wk+1Hk+1‖2 + λ

k+1
∑

j=1

∥∥hj
∥∥p

p

= 1
2

m
∑

i=1

k
∑

j=1

(
Vi,j − (Wk+1Hk+1)i,j

)2
+λ

k
∑

j=1

∥∥hj
∥∥p

p

+ 1
2

m
∑

i=1
((vk+1)i − (Wk+1hk+1)i)

2+λ ‖hk+1‖p
p

≈ Fk + fk+1

(12)

fk+1 =
1
2

n

∑
i=1

((vk+1)i − (Wk+1hk+1)i)
2+λ ‖hk+1‖p

p (13)

Thus, when the (k + 1)th sample vk+1 is added, the p norm constraints of the coding matrix can be
divided into two parts. Therefore, the cost function of Lp-INMF can also be divided into Fk and f k+1,
similar to INMF.

3.1.2. Inferring the Multiplicative Update Rules of Lp-INMF

After formulating the cost function of Lp-INMF, as shown in Equations (14) and (15), a gradient
descent method is used to derive the update rule of Lp-INMF. Whenever a new sample is added,
the update variables of the cost function are the base matrix W and the corresponding column hk+1 of
the new samples in the coding matrix H. The calculation procedure is as follows:

∂Fk+1
∂(Wk+1)iµ

= ∂
∂(Wk+1)iµ

[
m
∑

i=1

k+1
∑

j=1

(
Vij − (Wk+1Hk+1)ij

)2
]

=
k+1
∑

j=1
(−Vij(Hk+1)µj + (Hk+1)µj(Wk+1Hk+1)ij)

(14)

∂Fk+1
∂(hk+1)µ

=
∂ fk+1

∂(hk+1)µ

= −
(

WT
k+1vk+1

)
µ
+
(

WT
k+1Wk+1hk+1

)
µ
+ λ

∂
(
‖hk+1‖p

p

)
∂(hk+1)µ

= −
(

WT
k+1vk+1

)
µ
+
(

WT
k+1Wk+1hk+1

)
µ

+ λp
(
(hk+1)µ

)p−1

(15)

Let ∂Fk+1
∂(Wk+1)iµ

= 0, ∂Fk+1
∂(hk+1)µ

= 0. The iterative rules of matrix Wk+1 and column hk+1 are derived:

(Wk+1)iµ ← (Wk+1)iµ

(Vk HT
k + vk+1hT

k+1)iµ

(Wk+1Hk HT
k + Wk+1hk+1hT

k+1)iµ

(16)

(hk+1)µ ← (hk+1)µ

(WT
k+1vk+1)µ

(WT
k+1Wk+1hk+1)µ

+λp
(
(hk+1)µ

)p−1 (17)

We complete the addition of Lp sparse constraints to the decomposition matrices in the update
process by using Equations (16) and (17).

After the end of each new sample update, it is necessary to store the history information for the
next update. The storage matrixes are given by Equations (18) and (19).

A = Vk+1HT
k+1 = Vk HT

k + vk+1hT
k+1 (18)
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B = Hk+1HT
k+1 = Hk HT

k + hk+1hT
k+1 (19)

In summary, the updating process of Lp-INMF is shown in Figure 2. The base matrix Wnew and
hnew are regularly updated, along with the addition of new samples. The last Wnew is the final result of
this incremental learning process which can be used in feature extraction.

Initial samples Lp-NMF
Vk

W, H

New sample Lp-INMF Wnew, hnew

W, A, B, H 

vk+1

New sample Lp-INMF Wnew, hnew

Wnew, Anew, Bnew, Hnew 

vk+2

...... ...

Figure 2. The updating process of Wnew and hnew in incremental nonnegative matrix factorization with
Lp sparse constraints (Lp-INMF).

3.2. The SAR Target Training Model Updating Process

The process of updating a SAR target training model is completely different from traditional SAR
target recognition. This section describes the incremental learning process of new samples and gives
the SAR target training model updating process based on Lp-INMF.

In the last section, the calculation process based on Lp-INMF is introduced. Lp-NMF is used to
calculate the basic matrix W of the existing samples, and the new base matrix Wnew is updated by
Lp-INMF as the number of new samples increases.

As described in the introduction, we use an incremental learning method to compute projection
matrix W in a time-consuming feature extraction process. In SAR target recognition based on traditional
NMF, the coding matrix H is the feature matrix of training samples. However in INMF, error of W and
H accumulates gradually as the number of new samples increased. After incremental learning with a
new sample, hk+1 could not be used as a feature vector of the new sample. Therefore, when all the new
samples have been incorporated and the update is complete, the final base matrix Wnew is used to map
all the training data in Lp-INMF. The formula is as follows:

Htrain = W−1
newVtrain = (WT

newWnew)
−1WT

newVtrain (20)

where Vtrain represents all existing and new samples.
After getting the characteristic Htrain of the training sample, it is sent to the support vector machine

(SVM) to train the classifier to complete the training process [23,24]. The SVM-based Radial Basis
Function (RBF) kernel function is used to classify the feature vector htest of the test sample to obtain
the final result. We also use the final base matrix Wnew to calculate the feature vector htest of the test
sample vtest, as shown in Equation (21).

htest = W−1
newvtest = (WT

newWnew)
−1WT

newvtest (21)

In summary, the SAR target training model updating process based on Lp-INMF and traditional
NMF are compared in Figure 3.
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Initial samples Feature extraction（NMF） 

Mapping

W

Test samples Classifier（SVM）

H 

(Training) 

Testing
Recognition resultNew samples

Initial samples Feature extraction（Lp-NMF） 

New samples Incremental learning（Lp-INMF） 

W,H

Test samples Mapping

Wnew

Train samples maping
Wnew

Classifier（SVM）

H   (Training) 

Testing
Recognition result

Updating  process of traditional SAR target recognition

Updating  process of the proposed method

recalculate

Update

Figure 3. Synthetic aperture radar (SAR) target training model updating process based on traditional
NMF and our Lp-INMF.

As can be seen from the schematic, there are two main improvements with our method. Firstly,
the proposed Lp-INMF uses incremental learning in time-consuming pivotal feature extraction to avoid
repetitive computing of existing samples, which improves data processing efficiency. Secondly, the
proposed Lp-INMF adds Lp sparse constraints to the decomposition matrices in the update process,
which can result in more accurate solutions than traditional INMF and improve the recognition
performance.

4. Experiments

The SAR images used in our experiments were taken from the MSTAR public database and
consist of X-band and HH polarized SAR images with 0.3-m resolution for multiple targets [25]. These
targets include BMP2 (tank), BTR70 (armored car), T72 (tank), BTR60 (armored car), 2S1 (cannon),
BRDM2 (truck), D7 (bulldozer), T62 (tank), ZIL131 (truck), and ZSU23/4 (cannon). The images were
captured at two different depression angles (15◦ and 17◦) with 190 ∼ 300 different aspect versions,
which provide full aspect coverage over 360◦ [26]. Similar to the earlier experiments, the images with
depression angle of 17◦ are used as training set, and the images with depression angle of 15◦ are used
for the test, as shown in Table 2 [27].

Table 2. Summary of the Moving and Stationary Target Acquisition and Recognition (MSTAR) database.

Target Class 1 2 3 4 5 6 7 8 9 10 SUM

Target Type BMP2 BTR70 T72 BTR60 2S1 BRDM2 D7 T62 ZIL131 ZSU23/4sn-9563 sn-9566 sn-c21 sn-c71 sn-132 sn-812 sn-s7

Training 233 N/A N/A 233 232 N/A N/A 256 299 298 299 299 299 299 2747
Test 195 196 196 196 196 195 191 195 274 274 274 273 274 274 3203

We read the image from the RAW format slice data. The original size of the RAW data is large
and ranges from 100 to 200. The difference is the size of the scene around the target. All the images in
the following experiments are cropped by extracting 64 × 64 patches from the center of the image but
without any other preprocessing. Optical and SAR images of ten kinds of target samples are shown in
Figure 4.
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Figure 4. Optical and SAR images of ten kinds of target samples, in the order: BMP2, BTR70, T72,
BTR60, 2S1, BRDM2, D7, T62, ZIL131, and ZSU23/4.

4.1. Experimental Requirements

To simulate the practical use of the update learning process of the SAR target recognition, specific
experimental requirements are set as follows:

(1) The number of existing training samples is 497, and the remaining training samples are new
samples. In practice, new samples are obtained continually in batches; therefore, we establish one
batch containing 250 samples. Every time a batch of new training samples is added to update the
training model, all the test samples are used to verify the recognition performance and efficiency.

(2) In the contrast experiment, the recognition ability of our Lp-INMF and traditional NMF
is compared when the number of training samples is increased, as described in experimental
requirement (1).

(3) Since training samples are randomly obtained in real-life applications, the order of the training
samples is randomized multiple times to simulate how samples are obtained in the real life, and in
order to conduct several experiments using the same batch of experimental samples..

(4) Non-incremental L1-NMF and L1/2-NMF are successfully applied in SAR target recognition.
Thus, the p of Lp-INMF is set to 1 and 1

2 in the experiments.
(5) In order to ensure the comparison in experiments is fair, the dimension of feature extraction is

always set to 40.

4.2. Experiments on Efficiency

Experiments are repeated ten times and the average training times are recorded. Details of training
times of the incremental learning process are shown in Figure 5. The proposed method (Lp-INMF) is
compared with NMF.
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Figure 5. Efficiency comparison of conventional NMF and our Lp-INMF.

To verify that the proposed Lp-INMF can improve the accuracy of INMF without increasing
computational complexity, the computation times when updating a single sample for IPCA INMF,
L1-INMF, and L1/2-INMF are shown in Figure 6 when the number of existing samples is 200.

Figure 6. Computation time for updating a single sample under incremental principal component
analysis (IPCA), INMF, L1-INMF, and L1/2-INMF.

4.3. Experiments on the Error of the Decomposition Value

Previous work [2] has detailed sparseness analysis of base matrices obtained by non-incremental
NMF, L1-NMF, and L1/2-NMF. Thus, we only measure the precision of the extracted base matrix W and
the coding matrix H to evaluate the sparse constraint of INMF as the number of samples continuously
increases.

This evaluation method is similar to that found in [20]. Two indexes are used to measure the errors
of the extracted base matrix W and the coding matrix H, which are represented by the vector angle
error (VAE) and root-mean-square error (RMSE), respectively. For the µth (1 ≤ µ ≤ r) base vector, the
true value is W∗µ . Then, the VAE between the estimate Wµ and the actual value W∗µ is defined as

VAEµ = cos−1
(

W∗µ
TWµ

‖W∗µ‖‖Wµ‖

)
(22)

For the µth projection value of the µth base vector, the calculated theoretical value is H∗µ. The RMSE
between the estimate Hµ and the actual value H∗µ is represented by the RMSE, defined as

RMSEµ=

(
1
N

∣∣∣H∗µ − Hµ

∣∣∣2)1/2
(23)

where N is the number of samples.
The definitions in Equations (22) and (23) refer to W∗ and H∗, which are ground truth. The ground

truth is derived from the direct matrix operation rather than the INMF iteration. For example,
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W∗ = VH+ and H∗ = W+V. V is the data matrix, W, H are the iterative values of INMF, and “+”
means pseudo-inverse. The total VAE of the base matrix W and the total RMSE of the coding matrix H
are given as follows:

VAE =
r
∑

µ=1
VAEµ (24)

RMSE =
r
∑

µ=1
RMSEµ (25)

Since the calculated theoretical value is relative, there are two points with respect to index
comparison. First, low index values mean better precision of matrix factorization. Second, if the matrix
factorization precision is good, the indexes of the two decomposition matrix W and H should be low at
the same time.

Two hundred existing samples were used, and 498 new samples were introduced gradually.
After computing each sample, the VAE and RMSE were calculated to evaluate the error of the two
decomposition matrices W and H. Experiments were repeated ten times, and the average values of
the two indexes were recorded. The experimental results of Lp-INMF(L1-INMF and L1/2-INMF) and
traditional INMF are compared in Figures 7 and 8.

Figure 7. Vector angle error (VAE) comparison of INMF, our L1-INMF, and L1/2-INMF.

Figure 8. Root-mean-square error (RMSE) comparison of INMF, our L1-INMF, and L1/2-INMF.

4.4. Experiments on Recognition Performance

To verify that the sparsity constraint can improve the performance of SAR target recognition,
the target recognition accuracies for ten classes using three non-incremental methods (NMF, L1-NMF,
and L1/2-NMF) are shown in Table 3.
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Table 3. Average accuracies of three non-incremental methods (NMF, L1-NMF [2], and L1/2-NMF [2]),
in MSTAR data.

Method NMF L1-NMF [2] L1/2-NMF [2]

Accuracy 91.29% 92.84% 93.41%

In Table 3, it can be seen that NMF with the Lp sparse constraint obtains higher accuracy than
traditional NMF when p is set to 1 and 1

2 . L1/2-NMF obtains the best accuracy, which is verified by the
previous study [19].

Experiments were repeated ten times, and the average values of recognition rates were recorded
as the number of training samples increased. Recognition rates of the incremental learning process are
shown in Figure 9. Incremental INMF is compared with non-incremental methods (NMF) in Figure 9.
When p was set to 1 and 1

2 , two incremental methods with Lp sparse constraint (our L1-INMF and
L1/2-INMF) were compared with traditional incremental NMF. The best recognition rates of three
incremental methods (INMF, our L1-INMF, and L1/2-INMF) for every class are shown in Table 4.

Figure 9. Accuracy comparison of NMF, INMF, L1-INMF, and L1/2-INMF, as the number of training
samples increased.

Table 4. The recognition performance for ten classes using three incremental methods (INMF, L1-INMF, and
L1/2-INMF).

Method BMP2 BTR70 T72 BTR60 2S1 BRDM2 D7 T62 ZIL131 ZSU23/4 Avg.

INMF 87.56% 97.25% 87.07% 90.84% 89.05% 88.32% 95.98% 90.47% 95.61% 96.71% 90.78%
L1-INMF 91.65% 98.47% 89.00% 93.85% 93.07% 90.88% 97.45% 95.24% 98.18% 98.18% 93.69%

L1/2-INMF 92.33% 98.98% 89.86% 93.33% 93.43% 91.24% 99.27% 94.87% 98.54% 99.64% 94.32%

In order to verify that feature updating led to recognition performance improvement as the
number of training samples increased, the feature set (basis matrix W) remained static and updated the
SVM only. Note that when the number of training samples increased from 497 to 997, the recognition
rate increased clearly, as shown in Figure 9. Hence, the initial static features were obtained at 497, 747,
and 997 training samples, respectively, and the SVM was updated to learn all 2747 training samples.
Recognition performance of the SVM when the feature set remained static is shown in Table 5.
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Table 5. Recognition performance of the support vector machine (SVM) when the feature set
remains static.

The Sample Size Used for Static Feature Extraction 497 747 997

Initial accuracy 80.99% 85.08% 87.79%
Final accuracy of only SVM learning 86.42% 87.39% 88.73%

Final accuracy of NMF and SVM learning 91.29%

5. Discussion

In this work, we show how incremental learning can be applied to SAR target recognition. High
computation efficiencies are demonstrated with the developed Lp-INMF, with the number of samples
continually increasing. The results are compared to NMF, which is a batch-learning method. Moreover,
applying sparse constraints to the developed Lp-INMF leads to an increase in accuracy. The recognition
performance of Lp-INMF also surpassed that of non-incremental NMF and INMF. Since this work
aimed to reduce computational complexity with increasing sample number while maintaining the
same recognition performance as the corresponding non-incremental methods, we did not compare the
method to more time-consuming batch learning methods such as deep learning. A detailed discussion
of the corresponding experimental section follows.

5.1. Efficiency Analysis

As the number of training samples increases continually, the training time of NMF increases. The
training time of Lp-INMF remains stable, as shown in Figure 5. When the number of training samples
increases, NMF must retrain all existing and new training samples, whereas Lp-INMF just updates
the model by computing the new samples. This demonstrates that the computational complexity of
traditional NMF methods increases with the sample size.

Incremental PCA (IPCA) is also tested, but IPCA is not an ideal incremental learning method
because of its massive computation requirements. The computation time for updating a single sample
for IPCA is about six times longer than that of INMF, L1-INMF, and L1/2-INMF, as shown in Figure 6.

We verify that the proposed Lp-INMF avoids repetitive learning of existing samples and improves
data processing efficiency without increasing INMF’s computational complexity.

5.2. Decomposition Value Error Analysis

Two important phenomena are shown in Figures 7 and 8. Firstly, the VAE and RMSE of Lp-INMF
(L1-INMF and L1/2-INMF) are both lower than for the traditional INMF at all times. This means that
L1-INMF and L1/2-INMF have more accurate decomposition matrices than INMF. Note that RMSE
values for INMF and Lp-INMF (L1-INMF and L1/2-INMF) are not too different. However, the results
of the two indexes should be compared together. It is proved that L1-INMF and L1/2-INMF obtain
more precise solutions than INMF. Secondly, the VAE and RMSE values increase as the number of
new training samples increases. This phenomenon validates that the error of the two decomposition
matrices W and H accumulates as the number of training samples increases. Thus, mapping of training
samples is a necessary last step to avoid error accumulation, as discussed in Section 3.2.

5.3. Recognition Performance Analysis

In Table 5, keeping the features unchanged, SVM updating can bring the recognition rate up
along with the increasing of training sample number. SVM updating is an important factor, in that
the recognition accuracy increases along with the increase in sample number. However, the final
recognition accuracy value of SVM learning is inferior to the final recognition accuracy of NMF and
SVM, which is 91.29%. Not a single case of feature updating or classifier updating can be dispensed
with. This article focuses on NMF feature updates rather than SVM updating. Our goal is to prove
that our feature update method (Lp-INMF) is superior to traditional methods (NMF, INMF). Future
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research will focus on classifier updating. From an experimental completeness perspective, study in
this area is necessary.

Figure 9 verifies two points: (1) INMF cannot outperform non-incremental NMF; and (2) the
proposed methods (L1-INMF and L1/2-INMF) obtain higher accuracy than non-incremental methods
(NMF) and incremental methods (INMF) when the number of samples increases continuously.

For INMF methods, incremental methods with Lp sparse constraint (L1-INMF and L1/2-INMF)
obtain higher accuracy rates than incremental NMF, as shown in Figure 9 and Table 4.

The main advantage of the proposed method is that Lp-INMF can improve the accuracy of INMF
without increasing computational complexity in SAR target recognition.

6. Conclusions

In this paper, Lp-INMF is proposed to solve efficiency problems when the number of training
samples increases continuously in SAR target recognition. There are two improvements in the proposed
method: (1) the existing training model can be updated directly, reducing computational cost and
improving efficiency when the number of training samples increases; and (2) Lp sparse constraints
are added to the decomposition matrix during the update process, leading to more accurate solutions
compared to general INMF. The experimental results verify that Lp-INMF reduces the computational
cost, while improving the recognition performance.

To demonstrate recognition performance and efficiency of the proposed Lp-INMF, specific
experiments were set. By using MSTAR data, experimental results showed that Lp-INMF has a faster
training model computation speed compared to non-incremental NMF. Moreover, the computation
time for updating one sample in Lp-INMF was six times faster than for IPCA. We also demonstrated
that the recognition performance of Lp-INMF is higher than that of NMF and INMF when p is set to
1 and 1

2 . Finally, error analyses showed that the VAE and RMSE values of Lp-INMF are both lower
than those of traditional INMF. Therefore, the proposed Lp-INMF updates the existing training model
efficiently and precisely as the number of target training samples increases gradually.

This paper verifies that the proposed Lp-INMF can be an efficient and accurate feature-updating
method in SAR target recognition systems. This research provides a foundation for us to study the
intelligent SAR target learning system. In the future, we will explore a classification model-updating
method for SAR target recognition.
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