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Abstract: An accurate and comprehensive representation of an observation task is a prerequisite in
disaster monitoring to achieve reliable sensor observation planning. However, the extant disaster
event or task information models do not fully satisfy the observation requirements for the accurate
and efficient planning of remote-sensing satellite sensors. By considering the modeling requirements
for a disaster observation task, we propose an observation task chain (OTChain) representation model
that includes four basic OTChain segments and eight-tuple observation task metadata description
structures. A prototype system, namely OTChainManager, is implemented to provide functions
for modeling, managing, querying, and visualizing observation tasks. In the case of flood water
monitoring, we use a flood remote-sensing satellite sensor observation task for the experiment.
The results show that the proposed OTChain representation model can be used in modeling
process-owned flood disaster observation tasks. By querying and visualizing the flood observation
task instances in the Jinsha River Basin, the proposed model can effectively express observation
task processes, represent personalized observation constraints, and plan global remote-sensing
satellite sensor observations. Compared with typical observation task information models or engines,
the proposed OTChain representation model satisfies the information demands of the OTChain and
its processes as well as impels the development of a long time-series sensor observation scheme.

Keywords: sensor web; observation task; representation model; remote-sensing sensor planning;
disaster monitoring; flood

1. Introduction

A total of 327 disastrous events were reported around the world in 2016. These disasters
collectively resulted in USD 175 billion worth of economic losses and 11,000 human fatalities [1].
Floods are typical examples of such disasters. The 2016 floods in the Yangtze River Basin in China
resulted in approximately USD 22 billion worth of economic losses, thereby making these floods
the most expensive disaster in the Yangtze River Basin since 1998 [1]. The disaster management
paradigm is currently shifting from a static pattern to dynamic process monitoring [2,3]. In this
case, disaster monitoring can be assigned to an observation task chain (OTChain) that comprises
time-series observation tasks [2,4] with dynamic observation themes, large-scale observation time
and space windows, and other personalized observation characteristics. However, process-owned
observation tasks must be efficiently and effectively expressed to ensure accurate disaster monitoring
management [5].
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Earth observation (EO) has been widely applied to various fields in disaster management,
including disaster preparation, response, recovery, and mitigation. The Sendai Framework for Disaster
Risk Reduction 2015–2030 [6] explicitly defines EO as an essential tool for gathering data on hazard
exposure, vulnerability, and risk. The recent advancements in sensor technologies have greatly
improved the ability of EO to collect geospatial data. More than 1700 operational remote-sensing
satellites equipped with various sensors have been deployed on Earth for observation [7]. Choosing
the right remote-sensing satellite sensors to fulfill dynamic and complex disaster observation task
requirements is an important task [8] that can promote disaster preparedness and improve the
effectiveness of disaster risk management.

1.1. Sensor Planning in Disaster Monitoring

Sensor planning [9] is an important step in disaster monitoring management that can be divided
into four stages based on the surrounding sensor objects, including single sensors, multiple sensors on
a single platform, sensor networks, and sensor webs. In the single sensor stage, because the number of
sensors is small, the mode used to plan those sensors is the “predefined” mode provided by the project
requirements instead of the on-demand “planning” mode matched from the sensor clearinghouse [10].
In the multiple sensors stage, the sensor planner can obtain information regarding the observation
capability of the available sensors as easily as that in the previous stage given the limited number of
sensors on a single platform. To maximize the space coverage or coordinate the observation instructions,
the known sensors are easily planned to complete the given observation task [11]. In the sensor
network stage, several sensors are deployed in various application domains of sensor networks to
obtain environmental information. Planning the distribution of these sensors across different networks
is critical because of the relatively complicated observation tasks in this stage [12]. However, this stage
only focuses on planning the distribution of sensors among protocol-inclusive sensor networks [13].
In other words, the sensor distribution cannot be uniformly planned. The recent developments in web
technology have made the sensor web stage a popular means for managing ubiquitous sensors that are
deployed on Earth [14]. Sensor planning has also received considerable attention. Certain web-based
search engines, such as Google, Yahoo, the NASA Global Change Master Directory (GCMD) retrieval
portal [15], the Committee on Earth Observation Satellites (CEOS) database [16], and the Observing
Systems Capability Analysis and Review Tool of the World Meteorological Organization (WMO) [17],
can be utilized for planning EO sensors. However, these web-based engines employ fuzzy planning
methods depending on the keywords and plain text definitions that reflect the observable properties of
sensors instead of the actual comprehensive disaster observation task requirements. In this case, sensor
planners can only identify the list of qualified sensors, but cannot obtain a detailed sensor observation
planning solution to certain questions, such as “which sensor can be employed with another sensor to
measure the required variable in a given observation time and space for a particular application?”

The Sensor Web Enablement (SWE) initiative of the Open Geospatial Consortium defines several
standard specifications [18] for planning and discovering relevant sensors on the web [19]. As a flexible
carrier for describing sensor information and for discovering and planning sensors, SensorML [20] has
been adopted as the bottom information model for sensor observation services (SOS) [21] and sensor
planning services (SPS) [22] in many SWE projects [23–25]. SOS facilitates the sensor search process
by using a sensor identification or a basic combination of spatio-temporal observation criteria [21].
Meanwhile, SPS performs sensor planning based on a simple spatio-temporal observation condition,
which cannot well-represent real and complex observation requirements [22]. As mentioned above,
several methods and applications are currently being used for planning EO sensors. However, these
methods plan EO sensors from the perspective of sensors rather than complex and diverse observation
tasks. Given that each disaster has a unique evolution process, the extant sensor planning methods,
which perform sensor planning based on a stationary spatiotemporal observation snapshot of a
process-owned disaster, cannot satisfy the long sequential process monitoring requirements of a
single disaster.
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1.2. Disaster Observation Task Modeling

In disaster monitoring, decision-makers must fairly and comprehensively define the observation
tasks [26]. Only through an accurate representation of observation tasks can sensor planners be able
to achieve reliable sensor planning. A reliable sensor observation planning solution guarantees the
acquisition of accurate disaster information, which is a prerequisite for disaster emergency and risk
management [27,28].

Chen et al. [29] reviewed general and specific types of disaster information modeling carriers.
General information modeling carriers include the Common Alert Protocol (CAP) [30], which is a
data interchange protocol used for all types of disaster alert and Internet-based disaster message
distributions, the Emergency Data Exchange Language-distribution Element (EDXL-DE) [31], which
is a container that supports the dissemination of other EDXL components, and Emergency Data
Exchange Language-Resource Messaging (EDXL-RM) [32], which provides a comprehensive set of
message formats for resource management across all areas of the emergency sector. Meanwhile, specific
information modeling carriers include the Tsunami Warning Markup Language (TWML) [33], Cyclone
Warning Markup Language (CWML) [34], and Earthquake Markup Language (EarthquakeML) [35],
which use different disaster information encoded in varying formats to interpret various aspects of a
disaster, such as the rapid dissemination of information to people in affected areas, the aggregation of
warning information, and interoperability with geospatial systems. However, these specifications do
not emphasize the importance of disaster observation information.

Scherp et al. [36] introduced the DOLCE + DnS Ultralite foundational ontology-based
Event-Model-F (a formal model of events) that partially reflects disaster observation task information
and comprehensively supports the representation of time and space, objects, and persons that are
involved in a certain disaster observation. A TaskOntology model [26] with five aspects, namely
task type, priority, constraints, model, and process, was introduced in 2012. However, this model
was mainly designed for observation data processing-oriented applications and primarily aimed
to support observation data-oriented geoprocessing instead of observation process-oriented sensor
planning management. An SWE information model called Event Pattern Markup Language (EML) [37]
describes the patterns and capabilities of disaster events. Although EML provides a general, flexible,
and extensible framework for describing disaster events, this information model does not define the
specific attributes for event description. By adopting EML as its standard formalization language,
the Full Life Cycle Natural Disaster Event Meta-model (FLCNDEM) [28] develops nine aspects
of disaster event attributes and supports disaster-phase-based observation information modeling.
However, FLCNDEM cannot support fine-grained observation processes modeling, That is, FLCNDEM
is a coarse-grained and four-phase-supported disaster information model that cannot be used for
on-demand observation task process decomposition. In addition, this model does not consider the
interconnections among various observation tasks.

1.3. Our Consideration

To efficiently describe a disaster observation task, the following features are considered in the
proposed OTChain representation model:

(1) Covering the information demands of the OTChain and its processes. Providing observation
information for an incomplete observation scene or a segmented observation window is far from
sufficient. The full life cycle of a disaster can only be understood with a dynamic-supported
observation information description and process-oriented observation task decomposition
support, both of which can also facilitate the effective implementation of disaster preparation
and response initiatives. Therefore, the fine-grained and dynamic observation demands as well
as the observation interconnection among multiple tasks must be considered in the OTChain
representation model.
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(2) Supporting sensor observation planning. Finding out which sensors or sensor combinations can
be used for disaster monitoring is important. Furthermore, knowledge regarding the observation
mode for a certain measurement parameter and when to start the observation tasks is even
more important. Therefore, the proposed OTChain representation model must be used as an
information model for sensor observation planning.

Table 1 summarizes the above-mentioned disaster observation task models (Section 1.2) to support
the features of the proposed OTChain representation model. We believe that those models described in
Section 1.2 do not fully satisfy the observation requirements for accurately expressing process-owned
observation tasks and for efficiently planning EO sensors.

Di [38] argued that the metadata about the sensors, platforms, observation data, and observation
tasks are critical aspects of Sensor Web infrastructures. The author further noted that “ . . . availability
of metadata for the Sensor Web can be very useful in discovery of the right sensor at right time and
location with the right quality, and to achieve sensor interoperation...” To satisfy such a requirement,
our previous research has successively developed meta-models for sensor sharing [39], observation
capability representation [40], and heterogeneous sensor web node management [41]. Therefore,
this paper supplements a meta-model-based OTChain representation for disaster process-oriented
remote-sensing satellite sensor planning. Section 2 explains the OTChain meta-modeling framework,
the concrete metadata contents, and their formalization. Section 3 describes the processes and results
of an experiment that is conducted by applying the OTChain representation model in a flood remote
sensing water monitoring scenario. Section 4 discusses the versatility, extensibility, and advantages
of the OTChain representation model. Section 5 concludes the paper and presents directions for
future research.
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Table 1. Summary of the abovementioned disaster observation task models for supporting observation task chain (OTChain) features.

OTChain Features
Models

CAP EDXL-DE EDXL-RM TWML CWML EarthquakeML Event-Model-F Task-Ontology EML FLCNDEM

Dynamic observation information
description × × × × × × # # × #

Process-oriented observation task
decomposition × × × × × × × # × #

Observation interconnection × × × × × × × × × ×
Time-series observation planning × × × × × × × × ×

√

Observation planning provenance × × × × × × × # × #

Notes:
√

Supported; # Partially Supported; × Unsupported.
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2. OTChain Representation Model

2.1. Basic Representation Requirements

The International Directory Network of CEOS, an international provider of Earth Science
data, recommends that five aspects [38], including a standard syntax for sensor description,
sensor geolocation for dynamic tasking, the applicability of sensor observations, sensor quality,
and accessibility, must be considered when representing sensors to guarantee effective sharing and
interoperability. Although this work takes the observation task rather than the sensors as its starting
point, the abovementioned recommendation for formulating the sensor metadata enlightens us. In this
case, the proposed OTChain representation model considers the following aspects:

• Constraints: Identifying the constraints of the observation task and the corresponding
geo-environments to help sensor planners determine the usefulness of sensors;

• Interconnections: Defining the correlations among different atom observation tasks to form an
observation task group with the associated relations;

• Formalization: Supporting machine-to-machine interfaces to facilitate standard exchanges in the
unified OTChain description framework;

• Extensibility: Allowing an extension to satisfy the high requirements of individual communities
because an appropriate representation is always purpose-dependent.

2.2. OTChain Meta-Modeling Framework

A meta-model is a simplified version of the actual model of a sensor, system, or software-like
entity [42]. The meta-model framework must cover the analysis, rules, constraints, processes, construction,
and development of a model. The meta-object facility (MOF) proposed by the object management
group [43] is released as a meta–meta-model for constructing models and meta-models. MOF has a
four-level hierarchy [44] that determines the meta-modeling concepts and their relationships, which
are required for interpreting any model. This four-level hierarchy can greatly help in the abstraction of
model information.

Figure 1 shows the OTChain meta-modeling architecture. Based on the meta-layers of the MOF,
this architecture also comprises four levels, with each level serving as an instance of the preceding
level. The M0 level includes observation tasks from the real world, such as disaster domains and
observation objects. The M1 level is a model layer that includes the observation task information
description model, the XML modeling language, and the OTChain representation model. The M2 level
is the meta-model layer that includes formalization, a modeling facility, and information description.
The topmost M3 level is the meta–meta-model layer that defines the involved OTChain metamodeling
elements, such as the related concepts, packages, and relationships.
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2.3. Contents of the OTChain Representation Model

This work aims to provide a functional OTChain representation model that can act as an
“intermediary broker” between observation tasks and remote-sensing satellite sensors. Based on
the observation requirements of OTChain, the sensor planners can systematically plan the available
sensors and observations by using an OTChain-model-based engine.

As shown in Figure 2, OTChain information can be described by descriptive, structural,
administrative, or technical metadata [39]. These four basic segments epitomize the common
OTChain attributes that constitute an extensive OTChain information model, including OTChainTag,
OTaskCompents, OTConnections, and OPlanningOutputs. OTChainTag includes OTChain identification
and classification information that serves as the basic information for OTChain representation.
OTaskCompents includes a series of sub-observation tasks that have complete and unique observation
needs. Certain sub-observation tasks can be interconnected as a sub-observation task group instead
of viewed as mutually isolated tasks. OTConnections conveys possible interconnections, while
OPlanningOutputs expresses the sensor observation solutions because each observation task must
produce a sensor observation planning result.
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Each segment contains its own information. In this case, each OTChain segment must be
formalized by using eight-tuple metadata components that are expressed as MD = {Identification,
Classification, BasicObservationInputs, DynamicObservationConstraints, InObservationCondition, Contact,
InterConnections, SensorObservationPlanningOutputs}. The eight-tuple metadata components of OTChain
include the following:

(1) Identification, which includes the observation task name, ID, and description.
(2) Classification, which includes the disaster domains of the described observation tasks

(i.e., typhoons, floods, earthquakes, and droughts) and their involved observation objects
(i.e., flooding, damaged house, destroyed traffic, affected farmland, and broken road).

(3) BasicObservationInputs, which includes the basic observation requirements in the time, space,
and theme dimensions that describe the essential observation information of an observation task.

(4) DynamicObservationConstraints, which includes advanced and personalized observational
constraints, such as observation cycle and interval, key observation area, specified platform,
observation priority, and observation weight. These constraints are used to further describe the
time, space, and theme of the observation task, thus forming a complex observation task with
dynamic observation constraints.

(5) InObservationCondition, which includes the weather condition and the geographical
environment damage level at the time when the observation task is dispatched.

(6) Contact, which includes the name and telephone number of the person who creates the
observation task as well as the time of its creation.

(7) InterConnections, which includes sequential, complementary, enhanced, and cooperative
connections. A sequential connection describes the observation parameters of two observation
tasks that are observed in a time sequence. A complementary connection describes two or more
observation tasks that complement each other in either the time or space dimension to extensively
reflect another observation scene. An enhanced connection describes two or more observation
tasks in the same observation area that can be grouped together to create an environment
parameter with a time-intensive observation. A cooperative connection describes two or more
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observation tasks in the same observation area and in a similar observation time that can be
grouped together to reflect a comprehensive observation topic. These interconnections can
express the association among sub-observation tasks.

(8) SensorObservationPlanningOutputs, which includes the sensor observation planning solutions
for each sub-observation task component, interconnected observation task group, and observation
task set with priority. These solutions help sensor planners or OTChain modelers generate sensor
selection programs by answering the questions “What group of sensors?” and “Which sensor with
what mode is to be combined with other sensors for what measurement parameters, and when
do they start?”

2.4. Formalization of the OTChain Representation Model

This section aims to transform the OTChain meta-model into a formal expression. The solutions
offered in this research avoid the recreation of a bottom data class wherever possible. However, some
existing standards, such as the Geography Markup Language (GML), the SWE common data model,
SensorML, and EML, have been reused. GML [45] is an information exchange and storage format for
describing and validating geographic objects. The typical data classes, such as gml:id, gml:timeInstance,
and gml:timePeriod, are included in GML. The SWE common data model [46] defines low-level
data classes for exchanging sensor and sensor-derived observation data, such as swe:DataRecord,
swe:DataArray, swe:Count, and swe:Text. SensorML follows a clear hierarchy in formalizing sensor
information. In addition to adopting the SWE common data model as the basic data model, the new
SensorML version (SensorML 2.0) [20] designs sml:Position to denote various types of positions, such
as the static location point, static location area, and dynamic trajectory. Based on the above analysis,
we can use the existing data classes to develop an OTChain model language (OTChainML) that can be
used for formalizing the eight-tuple metadata components of the proposed OTChain representation
model (Figure 3). The specific attributes for event description have not been defined in EML. Thus,
given the extensibility and reusability of the EML specification, the formalized OTChain representation
model can be completely embedded in the EML attribute data structure (eml:Attributes) as a concrete
description about the observation requirements of a given disaster.
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Based on the information description structure of the eight-tuple OTChain, the common metadata
features, including their data types and constraint conditions, are defined in the Unified Modeling
Language (UML) diagram as shown in Figure 4. The corresponding schema of OTChainML can be
found in http://bigdatasensing.cn/OTChain/OTChainML.xsd.
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3. Experiment

3.1. Hydrological Analysis of Flood Remote-Sensing Observations in Jingsha River Basin

Located in the upper reaches of the Yangtze River, the Jinsha River Basin (JRB) has an annual
precipitation that ranges from 1600 mm to 2000 mm and a drainage area of 473,000 km2, which
accounts for approximately 26% of the total drainage area of the Yangtze River Basin [47]. The JRB
is divided into upper, middle, and lower sections. The lower section, which covers the new town
in Pingshan County to the Min River Estuary in Yibin City, Sichuan Province, has a total length
of 782 km, a basin area of 135,473 km2, and a basin drop of approximately 719 m. The upper and
lower sections of the JRB have high and low elevations, respectively, thereby creating a ladder-level
distribution. The runoff from the JRB is flushed from the upper section to the lower section, and the
lower section is highly vulnerable to flooding because of the snow melt in the upper reaches of the JRB,
the heavy rainfall in the entire basin, and the branch waters flowing into its mainstream. Therefore,
the lower reaches of the JRB are the most flood-prone areas in the entire basin. The JRB also has a
variable flow that exhibits a seasonal behavior. Specifically, JRB has a low flow during the winter
months that reaches its peak from May to November [41]. From the perspective of hydrological
phenomenon remote-sensing monitoring, the observation themes in flood disasters are mainly related

http://bigdatasensing.cn/OTChain/OTChainML.xsd
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to long time-series and wide-range-related water regime monitoring [48], including real-time water
flow, water volume, inundated time, and flooding range. In this case, the experiment takes the flooding
water from the lower section of the JRB as its observation object, which requires time-series and space
continuous monitoring by using multiple remote-sensing satellite sensors.

3.2. OTChain Manager for the Experiment

A prototype system called OTChainManager is designed by our research team as a tool for modeling,
managing, querying, and visualizing the proposed OTChain representation model and its application.

As shown in Figure 5, OTChainManager comprises four layers, including the data, middleware,
business, and presentation layers. The data layer includes all of the observation tasks of disasters, such
as flooding, landslide, and earthquake. These tasks are formalized by OTChainML as a data basis for
the upper layers. The middleware layer facilitates the serialization, storage, retrieval, and visualization
of the proposed OTChain representation model. The business layer is the core of the system that
defines a set of functions and operations for modeling, managing, querying, and visualizing OTChain.
The presentation layer provides a series of graphical user interfaces through which observation task
modelers or sensor planners can communicate with the system and accomplish the tasks that are
defined in the function layer.

Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 19 

 

takes the flooding water from the lower section of the JRB as its observation object, which requires 
time-series and space continuous monitoring by using multiple remote-sensing satellite sensors. 

3.2. OTChain Manager for the Experiment 

A prototype system called OTChainManager is designed by our research team as a tool for 
modeling, managing, querying, and visualizing the proposed OTChain representation model and its 
application. 

As shown in Figure 5, OTChainManager comprises four layers, including the data, middleware, 
business, and presentation layers. The data layer includes all of the observation tasks of disasters, 
such as flooding, landslide, and earthquake. These tasks are formalized by OTChainML as a data 
basis for the upper layers. The middleware layer facilitates the serialization, storage, retrieval, and 
visualization of the proposed OTChain representation model. The business layer is the core of the 
system that defines a set of functions and operations for modeling, managing, querying, and 
visualizing OTChain. The presentation layer provides a series of graphical user interfaces through 
which observation task modelers or sensor planners can communicate with the system and 
accomplish the tasks that are defined in the function layer. 

Modeling Interface Managing Interface Querying Interface Visualizing Interface

Modeling and Application of the Observation Task Chain

Modeling Managing VisualizingQuerying

OTChainTag

OTComponents

OTConnections

OPlanningOutputs

Add

Delete

Modify

Run

Chain Query

Component Query

SensorML Query

OTChainML Query

OTChain Visualization

WorldWind Visualization

SensorML Visualization

OTChainML Visualization

XML 
Seriallization

SQL Server WorldWind SGP4

Java Runtime Environment

Observation Task Chain of a Certain Disasters

Flooding
 Observation Task

Landslide 
Observation Task

Earthquake 
Observation Task

….

Presentation 
Layer

Function 
Layer

Middleware 
Layer

Data
 Layer

 

Figure 5. Architecture and components of the OTChainManager system. 

A flood monitoring task is a complex process that includes a large number of distributed and 
time-series sub-observation tasks. The flood disaster management cycle involves diagnosis, 
preparedness, response, and recovery phases, with each phase having different observation 
requirements [28]. The flood diagnosis phase requires a routine monitoring of precipitation. The 
preparedness phase forecasts flood-inducing factors within a suitable time interval. The response 
phase dynamically observes the precipitation, range of disaster area, and water level and flow in real 
time. The recovery phase focuses on the economic losses and ecological damage resulting from 
floods. A flood observation system is an important tool for flood risk management that assesses the 
entire flood monitoring process and understands the flood condition by using the appropriate 
sensors. Our proposed OTChainManager system can build a life-cycle-supported flood OTChain 
information model, which helps illustrate the long-term process monitoring requirements for flood, 
establish interconnections among different observation task components, and impel overall 
observation planning decision-making. 

Figure 5. Architecture and components of the OTChainManager system.

A flood monitoring task is a complex process that includes a large number of distributed and
time-series sub-observation tasks. The flood disaster management cycle involves diagnosis, preparedness,
response, and recovery phases, with each phase having different observation requirements [28]. The flood
diagnosis phase requires a routine monitoring of precipitation. The preparedness phase forecasts
flood-inducing factors within a suitable time interval. The response phase dynamically observes
the precipitation, range of disaster area, and water level and flow in real time. The recovery phase
focuses on the economic losses and ecological damage resulting from floods. A flood observation
system is an important tool for flood risk management that assesses the entire flood monitoring process
and understands the flood condition by using the appropriate sensors. Our proposed OTChainManager
system can build a life-cycle-supported flood OTChain information model, which helps illustrate
the long-term process monitoring requirements for flood, establish interconnections among different
observation task components, and impel overall observation planning decision-making.
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Remote-sensing satellite sensors with specific spectral bands (e.g., red, near infrared (NIR),
and L- and C-bands) and space resolutions (e.g., more than 100 m) can be used to observe various
flood water conditions, such as range, water volume, water depth, and inundation time. Nearly
200 flood-observation-supported satellite sensors are counted for the experiment as the source of
data for the OTChainManager system. Detailed information on these sensors can be found in http:
//www.bigdatasensing.cn/data/Flood_Observation-Supported_Satellite_Sensors.html.

3.3. Flood Water Monitoring OTChain Modeling

A flood OTChain on the lower reaches of the JRB is selected as a typical modeling example that
involves time-series observation processes.

Figures 6 and 7 show the observation task chain modeling function of the OTChainManager
prototype. We create four sub-observation task components and establish two observation task
interconnections. Mandatory observation features, such as tag, basic observation input, and contact,
are contained in each task component, while optional elements, such as in-observation condition,
dynamic observation constraints, and interconnections, can be self-customized in the observation
task component. The modeling process is conducted by using a drag-and-drop method, that is,
the encapsulated observation task items in the left column of Figure 6 can be dragged to the drawing
board in the right column.
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By combining real flood observation requirements, we set the duration of the entire flood
remote-sensing OTChain from 2017-11-03T09:00:00 to 2017-11-03T12:00:00 in the lower section of the
JRB. The observation themes include water depth, water volume, inundation time, and flooding range.
Four sub-observation tasks with different observation features were sequentially built within this specified
period. Each item of an observation task can be instantiated in a wizard user interface pattern. As shown
in Figure 6, when we drag the item “Basic Observation Inputs” to observation task 4, the corresponding
labels and descriptions help us fill out the forms in each wizard page. Generally, if certain
sub-observation tasks can be interconnected (e.g., a number of disaster themes can be temporally
associated, and one disaster parameter can be spatially, complementarily, or time-extensively observed),
then the disaster condition can be efficiently monitored. Here, we integrate observation task 1 for water
depth monitoring and observation task 2 for water volume monitoring into an interrelated observation
task group that follows the sequential connection mode (Figure 7). In other words, these two tasks are
interconnected to sequentially observe water depth and volume. An enhanced observation connection
is demonstrated between observation tasks 3 and 4 because these tasks aim to time-extensively observe
the flood range (Figure 7).

http://www.bigdatasensing.cn/data/Flood_Observation-Supported_Satellite_Sensors.html
http://www.bigdatasensing.cn/data/Flood_Observation-Supported_Satellite_Sensors.html
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The complete records of the OTChainML-based OTChain representation instance can be found in
http://bigdatasensing.cn/OTChain/OTChainInstance.xml.Remote Sens. 2018, 10, x FOR PEER REVIEW  13 of 19 
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3.4. Flood Remote-Sensing Sensor Planning and Visualization

To further describe the results of remote-sensing satellite sensor observation planning,
the available sensors are presented on a three-dimensional (3D) platform. Figure 8 shows the
planned remote-sensing satellite sensors of observation task 3 (highlighted in bright red), including
MIRAS_SMOS, TIM_SORCE, and ARGOS-4_NOAA-19 (interpretation tip: equipped sensor_satellite
platform). The sensors of the other observation tasks can be visualized in the virtual earth by clicking
on the corresponding observation task.
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All of the planning results of the OTChain can be recorded in the OTChain model language
to help sensor planners compile and track the sensor observation planning schedule. As shown in
Figure 9, sensor planners can explicitly view the sensors’ usable observation modes of each observation
task. For example, in observation task 2 (denoted as ID_OTaskCom2), RA_HY-2A can observe water
volume in the observation area surrounded by three observation points (25.5130 N, 107.0101 E),
(30.9983 N, 107.0101 E), and (30.9983 N, 106.5641 E) from observation time 2017-11-03T10:12:40
to 2017-11-03T10:15:10. Meanwhile, MOPITT_Terra can observe water volume in the observation
area surrounded by five observation points (24.4978 N, 100.0012 E), (24.4978 N, 101.1925 E),
(26.3371 N, 107.0101 E), (29.1570 N, 107.0101 E), and (27.2063 N, 100.0012 E) from observation time
2017-11-03T10:21:40 to 2017-11-03T10:23:15.
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4. Discussion

4.1. Versatility and Extensibility of OTChain

By complying with the specific requirements of the disaster observation task, the proposed
OTChain meta-model fully considers the aggregated information. Figure 10a shows the mandatory
elements of one observation task chain, such as task tag, basic observation task inputs, observation task
connections, and observation planning outputs, while Figure 10b presents the dynamic observation
task constraints where the highly personalized observation constraints can be optionally supplemented.
For instance, an observation task modeler can set a special area, such as University City, with a 1-h
observation interval. This observation task occurs in a cloudy weather condition, and the flood has
seriously destroyed the local geospatial environment. Although the task has several observation
themes, Flooding Range is selected as the prior observation object. The observation weight is also
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considered to measure the observation applicability of the discovered sensors. As discussed above,
the current OTChain meta-model comprehensively covers the required information for observation
task representation and sensor planning. Moreover, the data classes used in the proposed OTChainML
follow the principle of maximum versatility, which is widely accepted by the OTChain representation
model examiner.
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Other observation tasks, such as drought, mudslide, and earthquake, are characterized by
long-term and process-owned observation requirements. By comprehensively covering the basic
and personalized observation task information, the design framework of the proposed OTChain
meta-model can be applied for the observation representation of other disaster domains. Nonetheless,
given that the current maximum reusable observation task features may be unsuitable or unable
to satisfy certain individual requirements, our OTChain meta-model allows for the extension and
modification of the fields in our current observation task representation model. In other words,
the other new task properties of an observation requirement can be represented as subfields
of OTML:DynamicObservationConstraints. However, the proposed OTChain representation model
framework is retained.

4.2. Global Sensor Planning Support for Process-Owned Flood Disasters

The extant models for observation task representation are often static models that only portray
one segment of the observation task and are unable to depict the process-owned observation task
chain for time-series sensor planning. The proposed OTChain allows the observation task modeler
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to build on-demand observation task components throughout the disaster diagnosis, preparedness,
and response-to-recovery stages, with each component having its own observation requirements.

As shown in Figure 9, a global remote-sensing satellite sensor planning solution that avoids
small-chunk and isolated sensor observation planning for a single observation task can be identified
based on the compiled observation task chain. Figure 8 shows four observation task components
and two interconnections among the different observation task components in this OTChain.
The OTChain representation model (http://bigdatasensing.cn/OTChain/OTChainInstance.xml)
presents six sets of sensor observation planning results. For the observation task component 1 labeled
as ID_OTaskCom1, MIRAS_SMOS can be used for the observation parameter—WaterDepth in the
observation area surrounded by five observation points (24.8518 N, 100.0012 E), (24.4978 N, 100.0012 E),
(24.4978 N, 103.9288 E), (25.8083 N, 107.0101 E), and (27.5485 N, 107.0101 E) from observation periods
2017-11-03T09:18:55 to 2017-11-03T09:21:05. For the interconnectional observation task group 2 labeled
as ID_ConOTaskGroup2, MIRAS_SMOS, TIM_SORCE, ARGOS-4_NOAA-19, SOLSTICE_SORCE,
and Sounder_GOES-15 can be enhanced to observe the flooding range in the observation area
surrounded by three observation points (27.3175 N, 101.9679 E), (29.1253 N, 103.2103 E), and (30.0006 N,
102.0009 E) in the time series (2017-11-03T10:49:55, 2017-11-03T10:51:50), (2017-11-03T10:50:30,
2017-11-03T10:52:15), (2017-11-03T10:54:20, 2017-11-03T10:55:00), (2017-11-03T11:24:15,
2017-11-03T11:25:50), and (2017-11-03T11:44:45, 2017-11-03T11:45:00). Through this setup, the sensor
planner can (1) formulate a correlated plan of the sensor that may satisfy different sub-tasks and
pre-determine in which task this sensor must be used; and (2) formulate an overall sensor planning
schedule that can help decision-makers make a rapid and evidence-based sensor dispatch decision.
Our proposed OTChain representation model also supports the establishment of on-demand
observation task components. However, disaster managers cannot make an explicit observation
plan for the macro monitoring of an entire disaster by using past short-term sensor planning for a
segment-based observation task. In other words, presently, sensor inquirers can customize a long-term
sensor planning support for evolution process-owned flood disasters to facilitate (1) the compilation of
a timely and overall remote-sensing satellite sensor observation list by understanding in advance the
time-series observation planning program of an entire flood disaster; (2) the dynamic understanding
of a disaster condition and the subsequent evaluation of a disaster risk.

4.3. Comparison with Other Models for Observation Task Information Management

As mentioned in Section 1.2, the existing, typical observation task information models include
TWML, CWML, EarthquakeML, EML, FLCNDEM, and TaskOntology. Although these models can
be used for observation task information management, they focus on different aspects. For instance,
FLCNDEM and TaskOntology partially support process-oriented observation task decomposition,
which is not supported by any of the other models. Dynamic observation information needs to
be expressed because people have a varied understanding of observation tasks. EML is a blank
framework that does not include descriptions for dynamic observation information description, while
the other models partially support this aspect. Unlike the OTChain with hierarchical constraint
information (e.g., time, space, platform, observation condition, observation priority, and observation
weight constraints), none of the aforementioned models comprehensively cover dynamic observation
task information. Additionally, the support for observation task and planning provenance is very
distinctive. In the past, sensor planners have had difficulties in capturing provenance information
in sensor observation planning schedules and even forget which of the selected sensors can match a
certain set of observation requirements or concrete observation tasks. The OTChain archives allow a
comprehensive tracing of previous observation task instantiation and subsequent sensor observation
planning results at any level of detail. In this way, OTChain allows for the sensor observation planning
results to be correlated back to the instantiated observation tasks. Overall, compared with other models
or engines, our proposed OTChain representation model comprehensively supports the features listed
in Table 1 and can act as a driver component for managing observation task information.

http://bigdatasensing.cn/OTChain/OTChainInstance.xml
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5. Conclusions and Future Works

This study introduced an OTChain representation model with four segments and eight-tuple
metadata components that are developed based on the observation requirements of disasters.
This model was then applied to the remote-sensing satellite sensor observation planning of a long-term
process-owned observation task. The results confirm that the proposed model can function as a
driver component for observation task process decomposition, personalized observation constraint
representation, and global remote-sensing satellite sensor observation planning. The proposed model
can also be embedded into EML as a standard description specification for representing the entire
observation task of an EO disaster.

This paper mainly focused on the meta-model framework of OTChain. Although our proposed
model can be used for remote-sensing satellite sensor planning, its results are purely qualitative, such
as results for which sensors or sensor combinations can be used in certain periods and for specific
observation themes. Moreover, the proposed model neither conveys to the sensor planners that these
sensors or sensor combinations can collaborate in complementary, enhanced, and cooperative modes
nor informs them regarding the extent to which these sensors can quantitatively collaborate. Therefore,
our future work aims to solve a quantitative sensor synergistic observation planning program based
on the proposed OTChain representation model.
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