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Abstract: The Tropical Rainfall Measuring Mission (TRMM) was the first Earth Science mission
dedicated to studying tropical and subtropical rainfall. Up until now, there is still limited knowledge
on the accuracy of the version 7 research product TRMM 3B42-V7 despite having the advantage of a
high temporal resolution and large spatial coverage over oceans and land. This is particularly the case
in tropical regions in Asia. The objective of this study is therefore to analyze the performance of rainfall
estimation from TRMM 3B42-V7 (henceforth TRMM) using rain gauge data in Malaysia, specifically
from the Pahang river basin as a case study, and using a set of performance indicators/scores.
The results suggest that the altitude of the region affects the performances of the scores. Root Mean
Squared Error (RMSE) is lower mostly at a higher altitude and mid-altitude. The correlation coefficient
(CC) generally shows a positive but weak relationship between the rain gauge measurements and
TRMM (0 < CC < 0.4), while the Nash-Sutcliffe Efficiency (NSE) scores are low (NSE < 0.1). The Percent
Bias (PBIAS) shows that TRMM tends to overestimate the rainfall measurement by 26.95% on average.
The Probability of Detection (POD) and Threat Score (TS) demonstrate that more than half of the
pixel-point pairs have values smaller than 0.7. However, the Probability of False Detection (POFD)
and False Alarm Rate (FAR) show that most of the pixel-point gauges have values lower than 0.55.
The seasonal analysis shows that TRMM overestimates during the wet season and underestimates
during the dry season. The bias adjustment shows that Mean Bias Correction (MBC) improved the
scores better than Double-Kernel Residual Smoothing (DS) and Residual Inverse Distance Weighting
(RIDW). The large errors imply that TRMM may not be suitable for applications in environmental,
water resources, and ecological studies without prior correction.
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1. Introduction

For many environmental, water resources, and ecological applications, it is important to quantify
rainfall accurately. However, quantifying the rainfall can be challenging, especially in inaccessible
areas such as Antarctica and Amazonia. The Tropical Rainfall Measuring Mission (TRMM) is a research
satellite designed to provide information on rainfall in the tropical and sub-tropical regions of the
Earth. The TRMM Multi-Satellite Precipitation Analysis (TMPA), also known as TRMM 3B42, is an
algorithm that provides the best estimation of rainfall based on a combination of measurements from
multiple sensors onboard multiple satellites [1]. TRMM 3B42 provides rainfall values between 1998
and 2014 and presents one of the most valuable 17 years of spatiotemporal rainfall datasets to date.
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The algorithm of TRMM Multisatellite Precipitation Analysis involves data sources from multiple
other satellites which are precipitation-related passive microwave and infrared measurements [1].
These are inter-calibrated and merged with the sensor measurements onboard the TRMM satellite,
followed by gauge-adjustment at the monthly timescale before back-scaling to a three hourly temporal
resolution. The multiple data sources and multiple levels of processing result in many sources of errors
in the final product. There have been efforts to evaluate TRMM rainfall data, but until now, there is
still limited knowledge of the accuracy of the TRMM 3B42 in its latest version 7 (henceforth TRMM for
brevity) over the tropical regions of Asia, which restricts its application in the field of ecology, climate,
and hydrology [2]. Topography, seasonality, and climatology have been shown to play a role in the
satellite precipitation products performance.

Topography affects the TRMM rainfall performances, especially in terms of detection
probability and bias. In Thailand, regions with complex terrain exhibited poor rain detection and
magnitude-dependent mean errors [3]. In Morocco, TRMM can estimate precipitation events at
elevations below 1000 m accurately, but faces difficulties within the area of high elevations with high
snow content and low rainfall [4]. The signals in the microwave region could be scattered due to
the cold areas (or snow-covered areas) and complex terrain region [1]. This may be attributed to the
TRMM Microwave Imager (TMI) onboard the TRMM satellite. TMI is sensitive to the temperature and
as a consequence, it can lead to inaccurate rainfall rates. A study carried in Northeastern Iberia showed
TRMM to exhibit a good performance in regions with minimum precipitation events and a low altitude,
and shows a poor performance on the coastal areas and in complex terrains [5]. The impacts of altitude
on the TRMM accuracy are consistent with a study carried out by Ouatiki et al. (2017) in Morocco that
showed that the TRMM product had problems in estimating rainfall rates over mountainous regions [6].
The difficulties are due to the ability of a Precipitation Radar (PR) to obtain the information about the
rain event such as the intensity and distribution, the rain type, and other data [7]. The mountainous
region may shield the radar beam to obtain such information. It also can be caused by the radar wave
that hits the ground, returning false echoes [8].

In addition, the temporal and spatial scale also affects the performance of TRMM estimates.
There are some uncertainties which makes the sensitivity of local-scale rainfall in a small region
contentious [9]. These include the lack of TRMM precipitation algorithm sensitivity to low and high
precipitation clouds [10,11], the effect of upscaling the rainfall rate to an effective temporal scale [12],
and the coarse grid size of the TRMM data for solving local rainfall patterns [13].

The TRMM rainfall performances are also found to be affected by the climatology of a region.
Areas with high snow content are problematic due to the sensitivity to the surface emissivity in passive
microwave sensors, which produces signals similar to those of precipitation [13]. Satellite-based
precipitation datasets also show different performances in warm and cold seasons [14]. Complex
emissivity from a cold place and area covered in ice, especially in winter, may be recognized as a rain
event, which could lead to missed precipitation by TRMM sensors [15].

Apart from topography and climatology, seasonality also plays a big role in the TRMM rainfall
performances. TRMM is reported to be affected by monsoon systems. A study carried out in Malaysia
shows that TRMM is less sensitive towards low precipitation clouds than heavy precipitation clouds
and the correlation obtained was better during the northeast monsoon [9]. The heaviest rainfall events
occurred during the northeast monsoon and were mainly caused by the large-scale monsoon flows
that contained heavy precipitation cloud [10]. The error can be explained by the presence of low
versus heavy precipitation clouds in wet and dry seasons. Based on the study carried out in Bali,
most high-rainfall events increase during the wet season, (December–January–February) and the
lowest rainfall events occur during the dry season (June–July–August) [16]. Those conditions are
associated and generated with the northeast and southwest monsoon patterns. They found that the
correlation levels between rain gauges and TRMM during the wet season are lower, whereas in the dry
season, they are a bit higher. As was found in a study carried in China, TRMM can be overestimated
and underestimated in both the dry season and wet season, depending on the different rain rates [17].
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TRMM under-detects and underestimated rainfall rates during high precipitation events, whereas
it over detects and overestimated rainfall rates during light precipitation events [17,18]. Meanwhile,
a study carried out in Qinghai Lake Basin, China, shows that TRMM exhibits a poor performance
between May and September, which is the dry season [19]. This is consistent with a study carried out
in Morocco, which showed that July and August exhibit the lowest correlation coefficients [6]. A study
in Circum-Bohai-Sea region, China, showed that the rainfall pattern is more effectively captured by
TRMM for the wet region or season than for the dry region or season [20]. In short, the performances
of TRMM rainfall can be dependent on season. In the case of Malaysia, the performance may differ
depending on the monsoons that take place, which are the northeast monsoon (dry season) and
southwest monsoon (wet season).

Rainfall information from a large number of rain gauges is already adopted as part of global
satellite algorithms, including TRMM at a final stage of monthly bias correction [1]. A practical method
of estimating rainfall can be created by merging the satellite data and rain gauge data. Both satellite
and rain gauge data can be merged by combining accurate quantitative rainfall from stations with
spatially continuous information from remote sensing observations. Even so, most of the developing
countries have a restricted accessibility to rain gauge data. Due to this, the global precipitation product
may be found to be unsatisfactory and requiring local adjustment. To improve the performance of
satellite algorithms, multiple statistical methods have been proposed. Example statistical methods,
many with applications originating from ground-based weather radars, are mean bias correction
(MBC) [21,22], double-kernel smoothing (DS) [23], and residual inverse error weighting (RIDW) [24].

On February 2014, the Global Precipitation Mission (GPM) was launched as a follow-on to TRMM
and the objective was to observe global precipitation more frequently and more accurately than TRMM.
The GPM design is based on improvement of the shortcomings of TRMM and hence an in-depth
study of the performance of TRMM could provide the basis for a study on GPM improvements.
Yet, despite having a significant period of rainfall records, extensive studies of TRMM accuracy in
measuring rainfall in South East Asia, specifically in Malaysia, are sparse. Thus, the objectives of this
paper are: (1) to analyse the performance of rainfall estimation from TRMM in Malaysia using the
Pahang river basin as a case study; and (2) to compare several adjustment methods for correcting
TRMM based on rainfall estimates from ground stations. Pahang river is the largest river in Peninsular
Malaysia and the river basin is one of the important water catchment areas in Malaysia that also
provides water resources to neighbouring urbanized states such as Selangor. The performance will be
assessed by computing a set of performance indicators using rain gauge data. Section 2 will describe
the study area, methodology, and datasets used, while Section 3 will present the results and discussion.
Finally, Section 4 will provide some conclusions and recommendations for future work.

2. Methods and Data

2.1. Study Area

The location of study is in Pahang. Pahang is situated on 2◦25′55”–4◦48′4′′N and
101◦19′18′′–104◦14′31′′E in the Peninsular Malaysia. As shown in Figure 1, the topography of
Peninsular Malaysia is dominated by a mountain range known as Banjaran Titiwangsa (Main Range),
which extends from the Thailand border southwards to Negeri Sembilan. The largest basin in
peninsular Malaysia is the Sg. Pahang Basin [25]. The Sg. Pahang basin has an annual rainfall
of about 2170 mm, a large proportion of which occurs during the North-East Monsoon between
mid-October and mid-January [26].

Malaysia’s climate is hot and humid throughout the year since it is situated near the equator.
The rainfall distribution patterns are dependent on the seasonal wind flow patterns and the local
topography features [27]. In particular, Malaysia deals with two distinct monsoons that are the
northeast monsoon which blows a wet season from October to March and the Southwest monsoon
which blows a dry season from June to September. Throughout the northeast monsoon season,
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areas such as the east coast of peninsular Malaysia, Western Sarawak, and the northeast coast of Sabah
will experience heavy rain spells. In addition, the inland areas or areas which are sheltered by mountain
ranges are protected from its influences. In addition, the two shorter periods of inter-monsoon seasons
are marked by heavy rainfall as it yields uniform periodic changes in the wind flow patterns over
the country.

Remote Sens. 2018, 10, x FOR PEER REVIEW  4 of 24 

 

such as the east coast of peninsular Malaysia, Western Sarawak, and the northeast coast of Sabah will 

experience heavy rain spells. In addition, the inland areas or areas which are sheltered by mountain 

ranges are protected from its influences. In addition, the two shorter periods of inter-monsoon 

seasons are marked by heavy rainfall as it yields uniform periodic changes in the wind flow patterns 

over the country. 

 

Figure 1. Study location in Pahang river basin. (a) Rain gauge station location and (b) Total annual 

rainfall is calculated between years 1998 to 2016. Each point represents a rain gauge location(s) co-

located to the midpoint of TRMM pixels (see further explanation of the pixel-point construction in 

Section 2.1). Two points are located outside Pahang state but are located within the Pahang River 

basin tributary area. 

2.2. Rainfall Data 

The TRMM 3B42-V7 dataset was obtained from https://pmm.nasa.gov/data-

access/downloads/trmm. The satellite estimates were obtained with a 3-h temporal resolution and 

0.25° × 0.25° (approximately 27.8 km × 27.8 km) spatial resolution. The data is extracted for the region 

covering Pahang (latitudes and longitude boundaries) and for the years 1998–2014 (17 years). In order 

to match the temporal resolution of the rain gauge data, which is daily, the values were aggregated 

to the daily scale. The three-hourly rainfall rate was assumed to be constant over the 3 h, and the all 

the three-hourly total rainfalls in the defined 24-h period are summed to get the total daily rainfall. 

Meanwhile, the ground-based (rain gauge) rainfall data are obtained from Department of 

Irrigation and Drainage (DID). The data are taken from all 32 stations in Pahang with data on record 

between 1998 and 2014. Table A1 (Appendix A) shows the rain gauge stations which were collocated 

with the midpoints of TRMM pixels. As several TRMM pixels contained more than one station within 

the pixel, this resulted in a total of 27 pixel—point pairs. For these pixels, the rain gauge values from 

the multiple stations were averaged to obtain a pixel-averaged time series. 

The study region is further divided into the low-altitude (h < 100 m), mid-altitude (100 m < h < 

500 m), and high-altitude (h > 500 m) areas using the Digital Elevation Model from the Shuttle Radar 

Topography Mission (SRTM) Version 3.0 Global 1 arc second Data (data available from the U.S. 

Geological Survey). Table 1 shows the number of pixel-point pairs based on the altitudes. It is 

important to note that satellite-derived measurements are different from ground station observations 

for various reasons. The satellite sensors have finite field-of-views, thus when a measurement is taken 

by a satellite sensor, it represents the average value within a pixel. Besides that, measurements from 

ground stations are generally point values. Therefore, satellite measurements are intrinsically 

different from ground station measurements. 

Table 1. Number of pixel-point pairs. 

No. of Stations 

No. of TRMM Pixel- Rain Gauge Point Pairs No. of Stations Based on the Altitude 

 
Low-Altitude 

(h < 100 m) 

Mid-Altitude 

(100 m < h < 500 m) 

High-Altitude 

(h > 500 m) 

32 27 15 9 3 

Figure 1. Study location in Pahang river basin. (a) Rain gauge station location and (b) Total annual
rainfall is calculated between years 1998 to 2016. Each point represents a rain gauge location(s)
co-located to the midpoint of TRMM pixels (see further explanation of the pixel-point construction in
Section 2.1). Two points are located outside Pahang state but are located within the Pahang River basin
tributary area.

2.2. Rainfall Data

The TRMM 3B42-V7 dataset was obtained from https://pmm.nasa.gov/data-access/downloads/
trmm. The satellite estimates were obtained with a 3-h temporal resolution and 0.25◦ × 0.25◦

(approximately 27.8 km × 27.8 km) spatial resolution. The data is extracted for the region covering
Pahang (latitudes and longitude boundaries) and for the years 1998–2014 (17 years). In order to match
the temporal resolution of the rain gauge data, which is daily, the values were aggregated to the
daily scale. The three-hourly rainfall rate was assumed to be constant over the 3 h, and the all the
three-hourly total rainfalls in the defined 24-h period are summed to get the total daily rainfall.

Meanwhile, the ground-based (rain gauge) rainfall data are obtained from Department of
Irrigation and Drainage (DID). The data are taken from all 32 stations in Pahang with data on record
between 1998 and 2014. Table A1 (Appendix A) shows the rain gauge stations which were collocated
with the midpoints of TRMM pixels. As several TRMM pixels contained more than one station within
the pixel, this resulted in a total of 27 pixel—point pairs. For these pixels, the rain gauge values from
the multiple stations were averaged to obtain a pixel-averaged time series.

The study region is further divided into the low-altitude (h < 100 m), mid-altitude (100 m < h <
500 m), and high-altitude (h > 500 m) areas using the Digital Elevation Model from the Shuttle Radar
Topography Mission (SRTM) Version 3.0 Global 1 arc second Data (data available from the U.S. Geological
Survey). Table 1 shows the number of pixel-point pairs based on the altitudes. It is important to
note that satellite-derived measurements are different from ground station observations for various
reasons. The satellite sensors have finite field-of-views, thus when a measurement is taken by a satellite
sensor, it represents the average value within a pixel. Besides that, measurements from ground stations
are generally point values. Therefore, satellite measurements are intrinsically different from ground
station measurements.

https://pmm.nasa.gov/data-access/downloads/trmm
https://pmm.nasa.gov/data-access/downloads/trmm
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Table 1. Number of pixel-point pairs.

No. of Stations
No. of TRMM Pixel- Rain Gauge Point Pairs No. of Stations Based on the Altitude

Low-Altitude
(h < 100 m)

Mid-Altitude
(100 m < h < 500 m)

High-Altitude
(h > 500 m)

32 27 15 9 3

2.3. Performance of Precipitation Estimations Analysis

2.3.1. Detection Metrics

Rainfall detection metrics are the performance criteria that compare the occurrence and
non-occurrence of rainfall events between TRMM and rain gauges. Table 2 shows the detection
metrics used in this study.

Table 2. Detection metrics to be used in the study (Sakolnakhon (2013)).

No. Detection Metrics Explanation Equation

1 The probability of detection
(POD) or the hit rate

• A fraction of the observed ‘yes’ events that were also
forecasted ‘yes’ events.

• Range: 0 to 1 (perfect forecast = 1)
• This score is sensitive to hits, but it ignores the

false alarms.

**POD = a
a+c

2 The false alarm ratio (FAR)

• A touchstone of the fraction of predicted ‘yes’ events that
actually did not happen.

• Range: 0 to 1 (perfect forecast = 0)
• This score is sensitive to false alarms, but it ignores the

missed events.

**FAR = b
a+b

3 The probability of false detection
(POFD) or the false alarm rate

• A fraction of the observed ‘no’ events that satellite
observatory were incorrectly forecast as ‘yes’ events.

• Range: 0 to 1 (perfect forecast = 0)
• While it is sensitive to false alarms, it ignores the

missed events.

**POFD = b
b+d

4 The threat score (TS) or critical
success index (CSI)

• It tells how well did the forecast ‘yes’ events correspond
to the observed ‘yes’ events.

• Range: 0 to 1 (perfect forecast = 1)
• It is the most accurate when correct negatives have been

removed from consideration

**TS = a
a+b+c

Where a, b, c, and d are the numbers of events observed shown in Table 3.

Table 3. Contingency table for category estimates of a point to point event, where a, b, c, and d are the
numbers of events observed (Sakolnakhon (2013)).

Estimate
Observed

Total
Yes No

Yes a (HIT) b (FALSE ALARM) a + b
No c (MISS) d (CORRECT REJECTION) c + d

Total a + c b + d a + b + c + d = n

2.3.2. Volumetric Metrics

The satellite product and rain gauge time series were compared to analyse their variation
and relationship using various volumetric metrics: Root Mean Squared Error (RMSE), Correlation
Coefficient (CC), Nash-Sutcliffe Efficiency (NSE), and Percent Bias (PBIAS). Table 4 shows the standard
verification indices for evaluating the TRMM rainfall data.
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Table 4. Standard verification indices for evaluating the TRMM rainfall data (Sources: Tan & Duan
(2017) [28]; Zambrano-Bigiarini (2014) [29]).

No. Methods Explanation Equation

1 Root Mean Square Error (RMSE)
• The square root of the average of the difference

between the observed value and median of
the forecast.

*RMSE =

√
1
N

N
∑

i=1
(Si −Oi)

2 Nash Sutcliffe Efficiency (NSE)

• It indicates how well the plot of observed vs.
forecast values fits the 1:1 line. NSE range from
-Inf to 1. The closer to 1, the more accurate the
model is

*NSE = 1− ∑N
i=1(Si−Oi)

2

∑N
i=1(Si−O)

2

3 Percentage Bias (PBIAS)
• A measure of the average tendency of the

forecast values to be larger or smaller than their
observed ones

*PBIAS = 100x ∑N
i=1(Si−Oi)

∑N
i=1 Oi

4 The correlation coefficient (CC)

• A measure of the strength and direction of the
linear relationship between two variables.

• The correlation coefficient may take any value
between −1.0 and +1.0.

*CC =
∑N

i=1(Si−S)(Oi−O)√
∑N

i=1(Si−S)∑N
i=1(Oi−O)

2

Where Si is the estimated values, Oi is the observed values and N is the number of samples.

2.4. Bias Adjustment Parameters

The evaluation of each point value is carried out using a cross validation against the rain gauge
observations for examining the improvement in the accuracy of the satellite rainfall estimates. In this
study, leave-one-out cross validation was used to evaluate the three adjustment methods for all events
using the performance indicators. Leave-one-out cross validation was used such that one rainfall data
is removed at a time from the data set and the value is estimated from the remaining data [30].

2.4.1. Mean Bias Correction (MBC)

The mean bias correction (MBC) provides information on the long-term performance of the
correlations by allowing a comparison of the actual deviation between calculated and measured values
term by term. MBC is the simplest method in which a bias correction factor is constant over time and
space [31–33]. The MBC factor is calculated for each time step as an average across all point-pixel
pairs and is multiplied with the satellite estimates over the entire study area. For each time step,
the correction factor can be calculated as follows:

Correction factor, CF =
∑N

j=1 zG
(
xj
)

∑N
j=1 zs

(
xj
)

where, N = the number of available gauges inside the satellite domain, ZG
(

xj
)

and Zs
(
xj
)

= the gauge
and satellite daily rainfall values corresponding to gauged location j.

2.4.2. Residual Inverse Distance Weighting (RIDW)

The method estimates the unknown value at one point using a linearly weighted combination of
its neighbour sample points, with the weights inversely related to the distance between the estimated
and sample point [34]. The bias adjustment is based on a previous study carried in Ethiopia [35]. First of
all, the satellite rainfall estimates are extracted at rain gauge locations. The differences between satellite
and rain gauge estimates are calculated at each station location. These residuals are interpolated using
inverse distance weighting (IDW) to each satellite pixel centre and the interpolated differences are
added back on to the satellite estimates. The weights for each sample are inversely proportional to the
distance from the point being estimated:

Px =
∑N

j=1
1

dj
2

(
ZS
(
xj
)
− ZG

(
xj
))

∑N
j=1

1
dj

2
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where, Px = estimate of rainfall for the ungauged station, ZS
(
xj
)

and ZG
(
xj
)

= the gauge and satellite
daily rainfall values corresponding to gauged location j, dj = distance from each location the point
being estimated, N = No. of surrounding stations.

2.4.3. Double-Kernel Residual Smoothing (DS)

The double-kernel smoothing technique (DS) is used to estimate the residual field by a weighted
average of point residuals εs, using kernel functions, and then adjust the satellite field by the predicted
residual field [23]. The point residual at the given gauged location j = 1, . . . , N is defined as:

εSj = εS
(
xj
)
= ZS

(
xj
)
− ZG

(
xj
)

where ZG
(

xj
)

and Zs
(

xj
)

= the gauge and satellite daily rainfall values corresponding to gauged
location j.

The idea of a double smoothing estimator is by adding new pseudo observations by a coarse
interpolation and leading to the production of the final estimates. There are two steps that need to
be taken for the double smoothing estimator to be constructed. Firstly, the original residual εSj is
transformed to a gridded pseudoresidual εSSj with equal spacing. At the given gridpoint location i = 1,
. . . , M, the pseudoresidual is defined to be:

εSSj =
∑N

j=1 Λ
( ‖Hi−Hj‖

b

)
εSj

∑N
j=1 Λ

( ‖Hi−Hj‖
b

)
where ||.|| is the Euclidean norm and Λ is the Kernel function defined as a Gaussian kernel following
Li and Shao [23]:

Λ
(‖ Hi − Hj ‖

b

)
=

1√
2π

exp

[
−1

2

(‖ Hi − Hj ‖
b

)2]
The variable H is the position of the points, and the bandwidth b is determined using Silverman’s

rule of thumb:

b =

(
4σ5

3n

) 1
5

where, n = number of samples and s is the standard deviation of samples.
The second step of DS is applied to both the residuals and pseudoresiduals to estimate the final

error field εDS :

εDSK =
∑N

j=1 Λ
( ‖Hi−Hj‖

b1

)
εSj + ∑M

j=1 Λ
( ‖Hi−Hj‖

b2

)
εSSi

∑N
j=1 Λ

( ‖Hi−Hj‖
b

)
+ ∑M

j=1 Λ
( ‖Hi−Hj‖

b2

)
The merged product ZDS at point k is calculated by subtracting the corresponding error from the

satellite estimate ZSk:
ZDS = ZSK − εDSK

The kernel smoothing (interpolation) of the residuals does not rely on the stationary assumption.
Thus, the product of the merging will converge toward the rain gauge estimates with decreased
distance toward the ground observations.
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3. Results and Discussion

3.1. Comparison between Satellite Product and the Rain Gauge Data

3.1.1. Detection Metrics

The probability of detection (POD) values for rainfall estimates in Pahang are shown in Figure 2a.
The figure shows that 14 out of 27 pixel-point pairs located in the low and mid-altitude region have
POD scores lower than 0.7. The lowest POD value is 0.54, which is located near to the coast. Table 5
shows that the POD values vary from 0.5 to 0.8 (with average POD of 0.68), which can be considered
as an acceptable performance. A previous study analysing the performance of TRMM, amongst
other satellite products over a smaller time window (2003–2007), shows that the POD for the rain
gauges in Pahang have a range of 0.7–0.8, which is close to the range of scores obtained (0.5–0.8) [36].
The region-specific performance could be due to the fact that the spatial resolution (0.25◦) causes
TRMM estimates to be insensitive to local-scale precipitation events.

Figure 2b shows the False Alarm Ratio (FAR) of the rainfall estimates in Pahang Basin. The lowest
FAR value is located at the Gunung Brinchang station (4.625◦N, 101.375◦E), which is 0.32. The highest
FAR value is 0.62, which is located near to the east coast of Pahang. There are 14 out of 27 pixel-point
gauges located in the low and mid-altitude region that have FAR scores of more than 0.45 This result is
consistent with the study carried out in Nepal, which shows a higher FAR in a low elevation region [37].
Table 5 shows that FAR values vary from 0.3 to 0.5.

Figure 2c shows the Probability of False Detection (POFD) for rainfall estimates in Pahang Basin.
The POFD scores across the study area appear to be independent of geographical characteristics.
The independency can be explained by the sensitivity of microwave and infrared retrieval algorithms to
scattering signals and cold cloud temperatures from the rainfall systems over these terrain features [38].
The majority of the pixel-point gauges located at the coast have a POFD value of more than 0.6, indicating
a tendency of TRMM to over detect rainfall. Table 5 shows the POFD values at each pixel-point pair.

Figure 2d shows the TS of TRMM in Pahang. The highest TS value is in Gunung Brinchang
(4.625◦N, 101.375◦E), with TS = 0.57. There are 17 out of 27 pixel-point pairs that have TS scores lower
than 0.5. The figure shows that the overall TS is poor despite having the highest value of 0.57. On the
east coast, it shows that the majority of the pixel-point pairs have TS scores lower than 0.4.
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Table 5. The detection performance scores calculated using TRMM using the rain gauge measurement.

TRMM
PIXEL ID Station Name

Elevation
(m)

COORDINATES Average Annual
Rainfall (mm) POD FAR POFD TS

Long Lat

450219 Gunung Brinchang
di C.Highlands 1736 101.375 4.625 2091.719 0.775 0.324 0.520 0.566

451015
Kuala Marong

223 101.875 3.625 2139.778 0.749 0.366 0.572 0.523Bukit Peninjau

451016 Stor JPS Raub 143 101.875 3.875 1889.919 0.807 0.450 0.548 0.486

451017
Bukit Betong

151 101.875 4.125 2018.206 0.749 0.367 0.598 0.523JKR Benta

451413 Simpang Pelangai 546 102.125 3.125 1495.813 0.806 0.550 0.549 0.406

451812 Ldg. Glendale 86 102.375 2.875 1326.756 0.651 0.596 0.529 0.332

451814 Jps. Temerloh 43 102.375 3.375 1281.556 0.594 0.556 0.437 0.341

451816 Rumah Pam
Paya Kangsar 61 102.375 3.875 1901.238 0.785 0.484 0.588 0.452

451817
Kg. Sg. Yap

70 102.375 4.125 1932.072 0.774 0.361 0.621 0.539Kg. Merting

451818 Kuala Tahan 103 102.375 4.375 1848.825 0.797 0.443 0.547 0.488

452213 Pos Iskandar 53 102.625 3.125 1410.544 0.653 0.550 0.502 0.363

452217 Ulu Tekai (A) 292 102.625 4.125 2524.606 0.768 0.397 0.562 0.510

452612 Ulu Sg.Chanis 76 102.875 2.875 1708.791 0.671 0.452 0.644 0.432

452613
Sg. Kepasing

78 102.875 3.125 2041.4 0.676 0.412 0.640 0.459Bkt. Ibam

452614 Sg. Cabang Kanan 157 102.875 3.375 2038.463 0.741 0.513 0.625 0.416

452615 Pintu Kawalan
Paya Kertam 110 102.875 3.625 1676.019 0.572 0.533 0.477 0.346

452617 Kawasan ‘B’
Ulu Tekai 565 102.875 4.125 2178.175 0.635 0.439 0.421 0.424

453011 Kg. Kedaik 132 103.125 2.625 1710.381 0.774 0.504 0.552 0.433

453012 Pecah Batu
Bkt. Raidan 46 103.125 2.875 2209.75 0.556 0.521 0.472 0.347

453013 Temeris 40 103.125 3.125 2303.394 0.560 0.430 0.560 0.393

453014
Kg. Unchang

27 103.125 3.375 2578.45 0.623 0.418 0.701 0.430Kg. Batu Gong

453016 Sg. Lembing
P.C.C.L Mill 29 103.125 3.875 3073.263 0.540 0.449 0.494 0.375

453411 Sg. Anak Endau
Kg. Mok 162 103.375 2.625 2463.394 0.587 0.472 0.465 0.385

453413 Dispensari Nenasi
di Pekan 11 103.375 3.125 2301.631 0.551 0.622 0.610 0.289

453415 Rumah Pam Pahang
Tua di Pekan 18 103.375 3.625 2762.063 0.632 0.562 0.684 0.349

453416 Pejabat JPS
Negeri Pahang 0 103.375 3.875 2511.481 0.621 0.579 0.668 0.335

454612 Takek, Pulau Tioman 0 104.125 2.875 2619.363 0.761 0.432 0.486 0.482

3.1.2. Volumetric Metrics

Figure 3a–d show the performances of the TRMM daily product in terms of RMSE, PBIAS, NSE,
and CC. Table 6 shows the performance scores calculated using TRMM using the rain gauge measurement.

Figure 3a shows the RMSE between the gauge and TRMM daily rainfall over the Pahang Basin.
The lowest RMSE is found in one of the high-altitude stations (RMSE = 12.80 mm/day) at Gunung
Brinchang Station. However, the value is still considered as a large error, considering the average daily
rainfall at the station is 19.14 mm/day. On the other hand, the higher RMSE is located near to the
coastal region (RMSE = 29.87 mm/day). This result agrees with a study in Iran, which shows that
estimations of satellite rainfall in highland and mountainous areas are more accurate than in lowland
areas [39]. Besides that, TRMM performs poorly on coastal and island sites, which is consistent with



Remote Sens. 2018, 10, 388 10 of 24

the study carried out in Tropical Pacific Basin [40]. The convergence zones can be persistent when
the breezes and synoptic gradient winds interact with each other and the surface friction increases in
transition from sea to land [41]. When the level of convergence of moist air is low, it will assist the
dynamical and microphysical processes for the formation of clouds and precipitation [41]. Due to this,
the TRMM estimates can be inaccurately measured.

Figure 3b shows the percent bias (PBIAS) for Pahang. The positive or negative values indicate
overestimation or underestimation bias, respectively. Most of the PBIAS values that are close to zero and
negative are in the east coast of Pahang. This is consistent with a previous study which also showed
that TRMM underestimates rainfall in the coast [36]. These are also the same pixel-point pairs associated
with high RMSE values. During the northeast monsoon season, the exposed areas like the east coast of
Peninsular Malaysia experience heavy rain spells. Underestimation in satellite-based precipitation products
may be caused by the heavy rainfall which can cause a reduction in the signal of the passive microwave
(PMW) sensor [42]. Usually on the coastal area, the frequent occurrence of low stratiform clouds can
affect the TRMM estimates if the clouds are under stable conditions, which is detached from precipitation
patterns [43]. The average PBIAS value is 26.95%, which indicates an overall overestimation bias.

Figure 3c shows the Nash Sutcliffe Efficiency (NSE) of rainfall estimates in Pahang Basin. Efficiency
scores below 0 indicates that the TRMM rainfall results are less accurate than the mean of the observed
data and therefore very poor estimates [44]. The figure shows that most of the values are under 0, and the
NSE values reduced as the area moved further away from the coast. There is only one station with a
positive value (NSE = 0.1), which is located at Pulau Tioman (2.875◦N, 104.125◦E). Even though the value
is positive, it is still low, indicating the weak performance of the satellite product at the daily scale.

Figure 3d shows the correlation coefficient (CC) of rainfall estimates in Pahang basin.
The correlation coefficients are shown in Table 6 where the correlations vary from 0 to 0.49. Most of
the CC values are positive; however, the average CC value is 0.26, indicating a weak performance.
There are 16 out of 27 pixel-point pairs that have CC scores ranging from 0.30 to 0.49. A study in
Malaysia also displayed the same range of CC scores in the Pahang area [36].
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Table 6. The volumetric performance scores calculated using TRMM using the rain gauge measurement.

TRMM
PIXEL ID Station Name

Elevation
(m)

COORDINATES Average Annual
Rainfall (mm)

RMSE
(mm/day)

PBIAS
(%) NSE CC

Long Lat

450219 Gunung Brinchang
di C.Highlands 1736 101.375 4.625 2091.719 12.801 9.4 −0.238 0.379

451015
Kuala Marong

223 101.875 3.625 2139.778 14.702 32.5 −0.53 0.316Bukit Peninjau

451016 Stor JPS Raub 143 101.875 3.875 1889.919 15.292 50.8 −0.747 0.281

451017
Bukit Betong

151 101.875 4.125 2018.206 14.74 36.6 −0.59 0.309JKR Benta

451413 Simpang Pelangai 546 102.125 3.125 1495.813 13.205 53.9 −0.477 0.351

451812 Ldg. Glendale 86 102.375 2.875 1326.756 15.055 54.9 −0.855 0.168

451814 Jps. Temerloh 43 102.375 3.375 1281.556 16.836 50.6 −1.124 0.033

451816 Rumah Pam Paya
Kangsar 61 102.375 3.875 1901.238 15.259 34.7 −0.538 0.318

451817
Kg. Sg. Yap

70 102.375 4.125 1932.072 14.526 45.2 −0.966 0.377Kg. Merting

451818 Kuala Tahan 103 102.375 4.375 1848.825 17.194 35.6 −0.495 0.343

452213 Pos Iskandar 53 102.625 3.125 1410.544 16.345 46.9 −1.176 0.145

452217 Ulu Tekai (A) 292 102.625 4.125 2524.606 16.068 14.1 −0.078 0.498

452612 Ulu Sg.Chanis 76 102.875 2.875 1708.791 14.185 37.4 −0.852 0.392

452613
Sg. Kepasing

78 102.875 3.125 2041.4 15.974 26 −0.99 0.316Bkt. Ibam

452614 Sg. Cabang Kanan 157 102.875 3.375 2038.463 18.766 18.6 −0.193 0.347

452615 Pintu Kawalan
Paya Kertam 110 102.875 3.625 1676.019 21.307 48.6 −2.149 -0.004

452617 Kawasan ‘B’
Ulu Tekai 565 102.875 4.125 2178.175 29.87 30.3 −0.469 0.028

453011 Kg. Kedaik 132 103.125 2.625 1710.381 16.486 46.2 −0.282 0.459

453012 Pecah Batu Bkt.
Raidan 46 103.125 2.875 2209.75 25.269 18.9 −1.102 0.01

453013 Temeris 40 103.125 3.125 2303.394 23.259 19.5 −1.261 0.105

453014
Kg. Unchang

27 103.125 3.375 2578.45 19.957 9.3 −0.648 0.394
Kg. Batu Gong

453016 Sg. Lembing
P.C.C.L Mill 29 103.125 3.875 3073.263 27.116 −4.2 −1.257 0.043

453411 Sg. Anak Endau
Kg. Mok 162 103.375 2.625 2463.394 28.563 −4.5 −0.614 0.035

453413 Dispensari Nenasi
di Pekan 11 103.375 3.125 2301.631 26.936 14 −0.775 0.167

453415 Rumah Pam Pahang
Tua di Pekan 18 103.375 3.625 2762.063 22.502 −2 −0.007 0.46

453416 Pejabat JPS
Negeri Pahang 0 103.375 3.875 2511.481 22.924 14.8 −0.366 0.405

454612 Takek, Pulau Tioman 0 104.125 2.875 2619.363 21.654 −10.4 0.093 0.44

3.2. Rainfall Performance at Different Elevation Regions

3.2.1. Detection Metrics

In Figure 4a, approximately 50% of the points in the high-altitude have POD scores higher than
0.77, but the results constitute a higher frequency of lower valued scores. While at the mid-altitude,
about 75% of the pixel-point pairs have POD scores of more than 0.74. However, there are exactly
two pixel-point pairs that have POD scores below 0.60. In the low-altitude regions, the distribution is
positively skewed and all the station scores are under 0.80. There are about 50% pixel-point pairs with
POD scores lower than 0.63.
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For the FAR scores, Figure 4b shows that the minimum scores are located in the high-altitude
region (FAR = 0.32), while the highest scores are located in the low-altitude region (FAR = 0.62).
Unlike in the low-altitude region, the high-altitude and mid-altitude region scores distributions are
almost symmetrical. Predominantly, the interquartile range is large, indicating that there is a large
variability in the results between the pixel-point pairs.

Figure 4c shows the performances of POFD. In the high-altitude region, the highest score in the
high-altitude region is 0.54 and the lowest score is 0.44. The lowest score in the high-altitude area
also represents the lowest scores in all regions. Almost all pixel-point pairs in the mid-altitude region
have scores higher than 0.54. In the low-altitude region, the data distribution is negatively skewed,
indicating that the data contains a higher frequency of low valued scores.

The TRMM threat score (TS), on the other hand, shows a large variability for each altitude region.
The boxplot for the mid-altitude region in Figure 4d shows that the scores distribution is negatively
skewed and 75% of the pixel-point pairs have scores lower than 0.49. As for the high-altitude and
low-altitude region, the scores distribution is positively skewed, indicating that the data constitute a
higher frequency of high valued scores.

3.2.2. Volumetric Metrics

For the RMSE in Figure 4e, the scores for the high-altitude region and low-altitude region have a
large variability since the interquartile range for both altitudes is respectively large. Overall, the highest
RMSE score and the lowest RMSE score are located in the high-altitude region. The mid-altitude region
has the smallest variability in scores compared to other regions. Station Sg. Anak Endau Kg. Mok in
the mid-altitude region have a high score compared to the other station and are numerically far from
other scores (RMSE = 28.56 mm/day). The results conclude that pixel-point pairs in the mid-altitude
region have overall good RMSE performances compared to other regions.

In Figure 4f, the PBIAS scores distribution in the mid-altitude area are negatively skewed;
about half of the pixel-point pairs in the region have scores below 35.6%. Compared to the mid-altitude
region, the scores distribution in the low-altitude region is positively skewed, where the scores
constitute a higher frequency of high PBIAS. In the high-altitude region, the score distribution is normal.

The highest NSE score is 0.09, which is located in the low-altitude region. In Figure 4g, the TRMM
scores distribution in the low-altitude region is positively skewed. This indicates that the scores
constitute s higher frequency of higher NSEs. Similarly, the TRMM scores distributions in the
mid-altitude and high-altitude region are also positively skewed. The overall NSE performances
were poor, as generally, all pixel-point pairs in the high- and mid-altitude areas had NSE values below
0 and almost 75% of the pixel-point pairs in the low-altitude area had NSE values below 0.

The CC scores distributions in the high-altitude and low-altitude regions are negatively skewed in
Figure 4h. The scores in both regions constitute a higher frequency of lower CC. The overall highest CC
score is located in the mid-altitude region (CC = 0.49). Figure 4h concludes that most of the pixel-point
pairs at all regions have CC values below 0.4, which indicates poor performances. Compared to other
regions, the mid-altitude region shows a slightly better performance as there are two pixel-point pairs
with high CC values and the differences in CC values in the mid-altitude region are not too distinct.

3.3. Seasonal Analysis of TRMM

A seasonal analysis is performed by taking all seasons from 1998 to 2014 into consideration.
Figure 5 shows the PBIAS of TRMM in each season. During the wetter seasons (DJF and MAM),
negative bias occurs in the coastal region and in Cameron Highland (highest altitude pixel-point pair).
The rest of the locations show high numbers of overestimated PBIAS readings. This is contrary to
other reports of underestimations during the wet season, for example, by Zulkafli in Andean–Amazon
River [45]. Inland locations generally show overestimations. DJF and MAM seasons are overestimated
on average by 33.05% and 30.33%, respectively. In dry seasons, there are several locations that show an
underestimation by TRMM, mostly located in the area close to the coastal region. However, on average,
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the average PBIAS reading for JJA and SON is 29.81% and 22.92%, respectively, demonstrating
overestimation. The overestimation in the wet season and dry season in the inland locations may
be attributed to the type of rainfall events that predominantly occur, which are longer term low
to moderate intensity rainfall. TRMM can overestimate rain for light and moderate rain rates and
underestimate for heavy rain rates, as reported by Guo [17].Remote Sens. 2018, 10, x FOR PEER REVIEW  15 of 24 
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3.4. Rainfall Performance After Bias Adjustment

3.4.1. Detection Metrics

Figure 6 shows the performance scores for detection metrics after bias adjustment. In Table 7,
the average scores of both pre-corrected and post-corrected TRMM are compared. The average
pre-corrected POD shows a moderate performance, but after bias adjustment, the scores improved.
POD scores at a high altitude generally show a smaller increase compared to POD scores at mid-altitude
and low-altitude.

As for FAR and POFD, the scores reduced towards zero, indicating better detection skills.
The MBC method reduces FAR, especially at high altitudes and mid-altitude pixel-point pairs.
Compared to the MBC method, the DS method reduces FAR especially for pixel-point pairs in
low-altitude and mid-altitude regions. The RIDW method has the highest average FAR and the
altitude seems to have no effect on the reduction. For POFD, the MBC method shows that 50% of
the pixel-point pairs have scores below 0.2, which indicates a good performance. The majority of the
pixel-point pairs located in the low-altitude and mid-altitude region have POFD scores below 0.2 after
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correction using the DS method. However, the RIDW method shows that only a few of the pixel-point
pairs in the coastal and inland regions have POFD scores below 0.3. Half of the pixel-point pairs have
scores in the range of 0.3–0.4.

On the other hand, the average pre-corrected TS shows a slightly weak performance, but after
being bias adjusted, the scores improved. The MBC method improved the scores especially for
pixel-point pairs at the coastal region and some pixel-point pairs in the inland region. The DS method
particularly improved some pixel-point pairs in the inland region and there is not much improvement
in the TS scores for the RIDW method as the average pre-corrected TS score (TSav = 0.423) is close to
the average post-corrected TS score (TSav = 0.552).

The scores show that MBC improved the scores the most compared to the other methods.
The results show that MBC and DS have a strong correlation with the elevation, unlike the RIDW
method. The average performance scores for RIDW show only a small improvement compared to the
pre-corrected average.
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Table 7. Average performance scores of pre-corrected TRMM and post-corrected TRMM (MBC, DS, RIDW).

Pre-Corrected Scores (Original)
Post-Corrected Scores

MBC DS RIDW

POD 0.682 0.911 0.804 0.722
FAR 0.473 0.126 0.213 0.298
POFD 0.558 0.142 0.238 0.336
TS 0.423 0.806 0.662 0.552

3.4.2. Volumetric Metrics

Figure 7 shows the performance scores for detection metrics after bias adjustment. In Table 8,
the average scores of both pre-corrected and post-corrected TRMM are compared. The average
performances score overall in Pahang shows a poor performance before correction. RMSE scores
are significantly reduced after the DS method is applied, with an average of 19.14 mm/day before
correction and 15.86 mm/day after bias adjustment. The MBC method also performed well in reducing
the RMSE scores. However, the RMSE scores are not consistent with the elevations. This may
be caused by the correction factor being applied to the pixel-point pairs. The correction factor
applied to the pixel-point pairs was calculated using both ground-based and satellite estimates from
different elevation regions. The range of pre-corrected RMSE is 12.80–29.87 mm/day and the range of
post-corrected RMSE is 9.95–27.17 mm/day.

Table 8. Average performance scores of pre-corrected TRMM and post-corrected TRMM (MBC, DS, RIDW).

Pre-Corrected Scores (Original)
Post-Corrected Scores

MBC DS RIDW

RMSE (mm/day) 19.140 15.621 15.863 17.944
PBIAS (%) 26.952 3.904 13.544 30.233

NSE −0.692 −0.260 −0.264 −0.524
CC 0.264 0.307 0.289 0.186

Most of the PBIAS values corrected by the MBC method that are closer to 0 are on the east coast
of Pahang. During the northeast monsoon season, the exposed areas like the east coast of Peninsular
Malaysia experience heavy rain spells. The heavy rainfall may cause signal attenuation of the passive
microwave (PMW) sensor, which may cause underestimation in satellite-based precipitation products
(Qin et al., 2014). The average PBIAS value before correction is +26.95%, which indicates overestimation
bias. After the MBC method (range of −34.1%–47.1%) was applied, there was a significant decrease in
the average PBIAS value (PBIAS = 3.904%), which indicates a much smaller amount of overestimation.
There are 12 out of 27 pixel-point pairs that underestimate the rainfall event. RIDW and the DS
method show that the PBIAS scores decrease but remain positive, which indicates overestimated bias.
The majority of pixel-point pairs in RIDW (range of −12.9%–98.8%) and the DS method (range of
−18.8%–51.2%) are overestimating the rainfall event. However, compared to the MBC method and DS
method, the average of PBIAS after being corrected by RIDW increases, from +26.95% (pre-corrected)
to +30.32% (post-corrected).

Before correction, half of the pixel-point pairs have NSE values which are under 0. The NSE
values reduced as the area moved further away from the coast. The overall NSE values which
have been corrected by using the MBC method increase towards 1, which indicates improvement.
Some pixel-point pairs increase beyond 0, which indicates a better estimation. Most of the pixel-point
pairs after adjustment have NSE values beyond 0, even though the average for the MBC method is still
below 0 (NSE = −0.26). Furthermore, the RIDW method shows that there is only one station which
shows an NSE value below −1. The range of pre-corrected NSE scores is −0.21 to 0.09 and the range
of post-corrected NSE scores is −1.68 to 0.32.
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Prior to correction, most of the pixel-point pairs have a positive CC value. However, the average
CC value is 0.26 (range between 0–0.5) and this shows a slightly weak overall performance. The higher
correlations are located on the east coast of Pahang and the mountainous areas. Most of the
post-corrected CC increases towards the perfect score (CC = 1). The average CC value for the MBC
method is 0.31 (range of 0.07–0.52), which is the highest average value, followed by the MBC method
(CCav = 0.29, range of 0–0.59) and RIDW (CCav = 0.18, range of 0.01–0.36).
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4. Conclusions

Rain gauge data were used to evaluate the TRMM performance over the Pahang River basin
covering approximately 48,380 km2. A variety of performance indicators are used to evaluate the
rainfall measurements in different ways.

Based on the results, TRMM shows a moderate performance in detection and volumetric
correspondence between TRMM and rain gauges. This can be verified by the moderate performance of
POD and weak performance of TS at most of the pixel-point pairs. The poor performances of TRMM
at the coast reflect the inability of TRMM instruments and algorithms to capture the complex rain
formation system on the coast. POFD and FAR demonstrate that the pixel-point pairs generally have
high false alarm values (POFD > 0.5 and FAR > 0.5). The errors between the rain gauge and TRMM
measurement at most of the pixel-point pairs are high. The high errors were located mostly in the
coastal areas and this may due to the coastal convergence zone. At most of the pixel-point locations on
the east coast of Pahang, TRMM underestimates the rainfall due to heavy rains which can reduce the
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signal emission to obtain rain event information. The performance of all pixel-point pairs in Pahang is
also characterised by a weak average correlation. The results obtained by this study are also consistent
with Tan et al., but with more rain gauges to be considered and a longer temporal scale [36].

Based on the seasonal analysis, TRMM generally shows overestimation in both the wet and dry
season. This may be caused by the rainfall rates during each season. Three methods are used in
this study to adjust the biases. Overall, it shows that MBC performed better than DS and RIDW.
The differences in the post-corrected results are because of the different ways in which each method
adjusts the biases. Most of the detection and volumetric scores improved after being adjusted.

Based on the detection scores and volumetric scores, TRMM shows a weak to moderate
performance at the daily scale. Therefore, the use of the product for analysis and models in the
field of ecology, climate, and hydrology will be limited at this scale. The product may be more
suitable at higher temporal aggregation values such as monthly or annual scales. Furthermore, the bias
correction results show that the errors between TRMM and rain gauge estimates were reduced by up
to 18.38% and the correlation between TRMM and rain gauge estimates was increased by up to 16.28%.
This improvement shows that the post-corrected TRMM product may be reliable compared to the
pre-corrected TRMM product for its applicability for environmental, water resources, and ecological
studies. Correction/merging methods other than MBC, DS, and RIDW can be used to improve
the product in its representation of the region’s rainfall characteristics. Simple bias correction or
more complex data assimilation methods such as the Bayesian Combination [46] may be assessed
and implemented to achieve this. On the other hand, this study has focussed on elevation as a
controlling factor in the comparison of the performance at various locations in the study area. Generally,
TRMM performance at all altitudes shows large errors between satellite and rain gauge estimates.
However, compared to high-altitude and low-altitude regions, the range of errors in mid-altitude areas
is smaller. TRMM also tends to have a high accuracy of detecting the rainfall event in high-altitude and
mid-altitude regions compared to the low-altitude regions. More advanced analysis such as looking at
the performance by different storm types (convective, stratiform, et cetera) may provide better insights
into TRMM 3B42 capabilities and limitations in measuring tropical rainfall.
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Appendix A

Table A1. Rain Gauge Station located in Pahang (Sources: DID).

TRMM
PIXEL ID Station ID Station Name

COORDINATES
Elevation

(m)
Average Daily

Rainfall (mm/day)Longitude
(Degrees)

Latitude
(Degrees)

450219 2630001 Gunung Brinchang di C.Highlands 101.375 4.625 1736 5.391

451015
2634193 Kuala Marong

101.875 3.625 223 5.5152828173 Bukit Peninjau

451016 2829001 Stor JPS Raub 101.875 3.875 143 4.871

451017
2831179 Bukit Betong

101.875 4.125 151 5.2022841001 JKR Benta

451413 2924096 Simpang Pelangai 102.125 3.125 546 3.855

451812 3026156 Ldg. Glendale 102.375 2.875 86 3.419

451814 3028001 Jps. Temerloh 102.375 3.375 43 3.303
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Table A1. Cont.

TRMM
PIXEL ID Station ID Station Name

COORDINATES
Elevation

(m)
Average Daily

Rainfall (mm/day)Longitude
(Degrees)

Latitude
(Degrees)

451816 3030178 Rumah Pam Paya Kangsar 102.375 3.875 61 4.900

451817
3032167 Kg. Sg. Yap

102.375 4.125 70 4.9803121143 Kg. Merting

451818 3129177 Kuala Tahan 102.375 4.375 103 4.765

452213 3134165 Pos Iskandar 102.625 3.125 53 3.635

452217 3228174 Ulu Tekai (A) 102.625 4.125 292 6.507

452612 3231163 Ulu Sg.Chanis 102.875 2.875 76 4.404

452613
3330109 Sg. Kepasing

102.875 3.125 78 5.2613424081 Bkt. Ibam

452614 3519125 Sg. Cabang Kanan 102.875 3.375 157 5.254

452615 3533102 Pintu Kawalan Paya Kertam 102.875 3.625 110 4.320

452617 3628001 Kawasan ‘B’ Ulu Tekai 102.875 4.125 565 5.614

453011 3717001 Kg. Kedaik 103.125 2.625 132 4.408

453012 3818054 Pecah Batu Bkt. Raidan 103.125 2.875 46 5.695

453013 3833002 Temeris 103.125 3.125 40 5.937

453014
3924072 Kg. Unchang

103.125 3.375 27 6.6453930012 Kg. Batu Gong

453016 4019001 Sg. Lembing P.C.C.L Mill 103.125 3.875 29 7.921

453411 4023001 Sg. Anak Endau Kg. Mok 103.375 2.625 162 6.349

453413 4127001 Dispensari Nenasi di Pekan 103.375 3.125 11 5.932

453415 4219001 Rumah Pam Pahang Tua di Pekan 103.375 3.625 18 7.119

453416 4223115 Pejabat JPS Negeri Pahang 103.375 3.875 0 6.473

454612 4227001 Takek, Pulau Tioman 104.125 2.875 0 6.751

Table A2. Rainfall performances adjusted using MBC.

TRMM
PIXEL ID

Station
ID Station Name

COORDINATES
RMSE PBIAS NSE COR POD FAR POFD TS

Lon Lat

450219 2630001 Gunung Brinchang
di C.Highlands 101.375 4.625 15.369 26.600 −1.199 0.302 0.926 0.065 0.126 0.870

451015
2634193 Kuala Marong

101.875 3.625 13.360 26.500 −0.318 0.390 0.935 0.092 0.133 0.8542828173 Bukit Peninjau

451016 2829001 Stor JPS Raub 101.875 3.875 13.119 34.200 −0.337 0.347 0.955 0.132 0.129 0.834

451017
2831179 Bukit Betong

101.875 4.125 14.983 29.500 −0.742 0.291 0.938 0.090 0.136 0.8582841001 JKR Benta

451413 2924096 Simpang Pelangai 102.125 3.125 12.661 47.100 −0.454 0.369 0.948 0.184 0.140 0.781

451812 3026156 Ldg. Glendale 102.375 2.875 13.263 42.000 −0.615 0.229 0.899 0.185 0.148 0.746

451814 3028001 Jps. Temerloh 102.375 3.375 13.640 26.000 −0.807 0.069 0.896 0.110 0.117 0.807

451816 3030178 Rumah Pam
Paya Kangsar 102.375 3.875 11.976 9.600 0.011 0.398 0.945 0.136 0.128 0.823

451817
3032167 Kg. Sg. Yap

102.375 4.125 10.510 19.500 −0.068 0.446 0.945 0.084 0.128 0.8703121143 Kg. Merting

451818 3129177 Kuala Tahan 102.375 4.375 19.244 18.000 −1.251 0.249 0.930 0.092 0.116 0.850

452213 3134165 Pos Iskandar 102.625 3.125 12.363 20.100 −0.475 0.215 0.914 0.129 0.123 0.805

452217 3228174 Ulu Tekai (A) 102.625 4.125 14.148 −10.900 0.125 0.430 0.941 0.098 0.123 0.854

452612 3231163 Ulu Sg.Chanis 102.875 2.875 10.519 9.100 −0.074 0.415 0.915 0.115 0.148 0.818

452613
3330109 Sg. Kepasing

102.875 3.125 11.096 −7.100 0.016 0.401 0.921 0.105 0.147 0.8313424081 Bkt. Ibam

452614 3519125 Sg. Cabang Kanan 102.875 3.375 15.405 −13.700 0.105 0.378 0.930 0.128 0.136 0.818

452615 3533102 Pintu Kawalan
Paya Kertam 102.875 3.625 14.034 5.200 −0.558 0.091 0.909 0.111 0.110 0.816
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Table A2. Cont.

TRMM
PIXEL ID

Station
ID Station Name

COORDINATES
RMSE PBIAS NSE COR POD FAR POFD TS

Lon Lat

452617 3628001 Kawasan ‘B’
Ulu Tekai 102.875 4.125 24.595 3.400 −0.084 0.152 0.922 0.097 0.100 0.839

453011 3717001 Kg. Kedaik 103.125 2.625 13.765 24.500 −0.014 0.435 0.929 0.143 0.143 0.805

453012 3818054 Pecah Batu
Bkt. Raidan 103.125 2.875 18.568 −15.000 −0.242 0.102 0.892 0.130 0.127 0.787

453013 3833002 Temeris 103.125 3.125 15.804 −20.100 −0.088 0.230 0.893 0.106 0.150 0.808

453014
3924072 Kg. Unchang

103.125 3.375 13.338 −28.300 0.237 0.521 0.892 0.101 0.165 0.8113930012 Kg. Batu Gong

453016 4019001 Sg. Lembing
P.C.C.L Mill 103.125 3.875 19.838 −34.100 −0.275 0.126 0.880 0.116 0.143 0.789

453411 4023001 Sg. Anak Endau
Kg. Mok 103.375 2.625 22.893 −21.700 −0.277 0.095 0.871 0.099 0.127 0.796

453413 4127001 Dispensari Nenasi
di Pekan 103.375 3.125 18.535 −23.400 0.073 0.350 0.865 0.210 0.195 0.704

453415 4219001 Rumah Pam Pahang
Tua di Pekan 103.375 3.625 19.507 −31.900 0.191 0.467 0.875 0.188 0.198 0.728

453416 4223115 Pejabat JPS
Negeri Pahang 103.375 3.875 17.984 −18.300 0.108 0.433 0.856 0.199 0.188 0.706

454612 4227001 Takek,
Pulau Tioman 104.125 2.875 21.245 −11.400 0.003 0.373 0.879 0.170 0.204 0.744

Table A3. Rainfall performances adjusted using DS.

TRMM
PIXEL ID

Station
ID Station Name

COORDINATES
RMSE PBIAS NSE COR POD FAR POFD TS

Lon Lat

450219 2630001 Gunung Brinchang
di C.Highlands 101.375 4.625 14.567 9.100 −0.976 0.253 0.734 0.200 0.358 0.620

451015
2634193 Kuala Marong

101.875 3.625 12.735 8.600 −0.197 0.420 0.770 0.246 0.351 0.6152828173 Bukit Peninjau

451016 2829001 Stor JPS Raub 101.875 3.875 11.944 23.900 −0.108 0.413 0.833 0.288 0.299 0.623

451017
2831179 Bukit Betong

101.875 4.125 13.393 10.900 −0.392 0.324 0.756 0.237 0.346 0.6122841001 JKR Benta

451413 2924096 Simpang Pelangai 102.125 3.125 12.119 27.800 −0.332 0.272 0.740 0.357 0.270 0.524

451812 3026156 Ldg. Glendale 102.375 2.875 12.994 29.300 −0.551 0.164 0.711 0.362 0.294 0.507

451814 3028001 Jps. Temerloh 102.375 3.375 13.002 19.000 −0.642 0.089 0.763 0.262 0.286 0.600

451816 3030178 Rumah Pam
Paya Kangsar 102.375 3.875 12.128 11.200 −0.014 0.419 0.800 0.277 0.264 0.612

451817
3032167 Kg. Sg. Yap

102.375 4.125 9.952 21.800 0.042 0.547 0.841 0.173 0.262 0.7153121143 Kg. Merting

451818 3129177 Kuala Tahan 102.375 4.375 13.121 11.400 −0.046 0.420 0.795 0.218 0.272 0.651

452213 3134165 Pos Iskandar 102.625 3.125 11.112 22.500 −0.192 0.347 0.830 0.252 0.256 0.648

452217 3228174 Ulu Tekai (A) 102.625 4.125 16.726 −10.700 −0.223 0.251 0.820 0.168 0.199 0.704

452612 3231163 Ulu Sg.Chanis 102.875 2.875 10.687 24.400 −0.109 0.407 0.798 0.191 0.234 0.671

452613
3330109 Sg. Kepasing

102.875 3.125 10.856 5.200 0.058 0.434 0.853 0.136 0.184 0.7523424081 Bkt. Ibam

452614 3519125 Sg. Cabang Kanan 102.875 3.375 16.006 1.900 0.034 0.312 0.848 0.180 0.186 0.715

452615 3533102 Pintu Kawalan
Paya Kertam 102.875 3.625 16.981 39.900 −1.281 0.003 0.834 0.186 0.184 0.700

452617 3628001 Kawasan ‘B’
Ulu Tekai 102.875 4.125 27.168 29.900 −0.322 0.030 0.844 0.179 0.186 0.713

453011 3717001 Kg. Kedaik 103.125 2.625 17.430 51.200 −0.625 0.143 0.811 0.190 0.177 0.681

453012 3818054 Pecah Batu Bkt.
Raidan 103.125 2.875 19.240 0.600 −0.334 0.065 0.831 0.190 0.185 0.695

453013 3833002 Temeris 103.125 3.125 15.752 7.600 −0.081 0.307 0.859 0.125 0.174 0.765

453014
3924072 Kg. Unchang

103.125 3.375 14.922 −0.200 0.044 0.426 0.841 0.097 0.149 0.7713930012 Kg. Batu Gong
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Table A3. Cont.

TRMM
PIXEL ID

Station
ID Station Name

COORDINATES
RMSE PBIAS NSE COR POD FAR POFD TS

Lon Lat

453016 4019001 Sg. Lembing
P.C.C.L Mill 103.125 3.875 22.922 −12.900 −0.702 0.047 0.816 0.176 0.215 0.695

453411 4023001 Sg. Anak Endau
Kg. Mok 103.375 2.625 23.588 −18.800 −0.355 0.041 0.763 0.191 0.241 0.646

453413 4127001 Dispensari Nenasi
di Pekan 103.375 3.125 18.033 12.300 0.123 0.439 0.839 0.238 0.223 0.665

453415 4219001 Rumah Pam Pahang
Tua di Pekan 103.375 3.625 17.878 −2.400 0.320 0.589 0.836 0.187 0.189 0.701

453416 4223115 Pejabat JPS
Negeri Pahang 103.375 3.875 19.299 29.100 −0.027 0.399 0.815 0.205 0.186 0.674

454612 4227001 Takek,
Pulau Tioman 104.125 2.875 23.750 13.100 −0.246 0.255 0.732 0.236 0.256 0.597

Table A4. Rainfall performances adjusted using RIDW.

TRMM
PIXEL ID

Station
ID Station Name

COORDINATES
RMSE PBIAS NSE COR POD FAR POFD TS

Lon Lat

450219 2630001 Gunung Brinchang
di C.Highlands 101.375 4.625 14.768 11.500 −0.648 0.194 0.713 0.186 0.318 0.613

451015
2634193 Kuala Marong

101.875 3.625 14.548 25.600 −0.498 0.233 0.751 0.239 0.329 0.6082828173 Bukit Peninjau

451016 2829001 Stor JPS Raub 101.875 3.875 13.587 34.400 −0.379 0.266 0.805 0.316 0.330 0.587

451017
2831179 Bukit Betong

101.875 4.125 14.413 22.400 −0.520 0.225 0.735 0.253 0.366 0.5892841001 JKR Benta

451413 2924096 Simpang Pelangai 102.125 3.125 17.804 96.900 −1.685 0.096 0.724 0.413 0.334 0.480

451812 3026156 Ldg. Glendale 102.375 2.875 15.579 72.300 −0.987 0.107 0.689 0.416 0.357 0.462

451814 3028001 Jps. Temerloh 102.375 3.375 16.807 57.600 −1.117 0.019 0.647 0.355 0.375 0.477

451816 3030178 Rumah Pam
Paya Kangsar 102.375 3.875 14.649 30.300 −0.417 0.216 0.741 0.356 0.354 0.526

451817
3032167 Kg. Sg. Yap

102.375 4.125 12.422 30.500 −0.438 0.333 0.740 0.260 0.385 0.5873121143 Kg. Merting

451818 3129177 Kuala Tahan 102.375 4.375 15.077 4.600 −0.150 0.285 0.701 0.322 0.409 0.526

452213 3134165 Pos Iskandar 102.625 3.125 16.702 98.800 −1.273 0.155 0.724 0.326 0.322 0.536

452217 3228174 Ulu Tekai (A) 102.625 4.125 18.883 16.600 −0.489 0.171 0.686 0.286 0.331 0.538

452612 3231163 Ulu Sg.Chanis 102.875 2.875 14.315 52.300 −0.886 0.219 0.713 0.284 0.350 0.556

452613
3330109 Sg. Kepasing

102.875 3.125 15.859 47.900 −0.962 0.241 0.746 0.243 0.329 0.6013424081 Bkt. Ibam

452614 3519125 Sg. Cabang Kanan 102.875 3.375 19.176 41.600 −0.245 0.202 0.798 0.237 0.248 0.639

452615 3533102 Pintu Kawalan Paya
Kertam 102.875 3.625 17.844 71.200 −1.209 0.016 0.763 0.273 0.277 0.593

452617 3628001 Kawasan ‘B’
Ulu Tekai 102.875 4.125 27.156 23.700 −0.214 0.035 0.726 0.310 0.330 0.547

453011 3717001 Kg. Kedaik 103.125 2.625 17.500 46.600 −0.444 0.188 0.707 0.326 0.316 0.527

453012 3818054 Pecah Batu
Bkt. Raidan 103.125 2.875 20.012 7.000 −0.319 0.075 0.720 0.320 0.321 0.538

453013 3833002 Temeris 103.125 3.125 17.158 11.400 −0.230 0.216 0.708 0.243 0.322 0.577

453014
3924072 Kg. Unchang

103.125 3.375 16.376 0.200 −0.109 0.289 0.725 0.239 0.376 0.5903930012 Kg. Batu Gong

453016 4019001 Sg. Lembing
P.C.C.L Mill 103.125 3.875 22.367 −4.700 −0.536 0.028 0.686 0.293 0.352 0.534

453411 4023001 Sg. Anak Endau
Kg. Mok 103.375 2.625 25.346 −12.700 −0.271 0.018 0.674 0.271 0.334 0.539

453413 4127001 Dispensari Nenasi
di Pekan 103.375 3.125 21.489 3.900 −0.130 0.246 0.660 0.416 0.400 0.449
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Table A4. Cont.

TRMM
PIXEL ID

Station
ID Station Name

COORDINATES
RMSE PBIAS NSE COR POD FAR POFD TS

Lon Lat

453415 4219001 Rumah Pam Pahang
Tua di Pekan 103.375 3.625 21.611 10.300 0.071 0.357 0.767 0.274 0.283 0.595

453416 4223115 Pejabat JPS
Negeri Pahang 103.375 3.875 20.083 29.000 −0.048 0.329 0.752 0.308 0.297 0.564

454612 4227001 Takek,
Pulau Tioman 104.125 2.875 22.960 −12.900 −0.020 0.257 0.683 0.292 0.318 0.533
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