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Abstract: We evaluate the accuracy of the satellite-based surface solar radiation dataset called Surface
Solar Radiation Data Set-Heliosat (SARAH-E) against in situ measurements over a variety of sites
in India between 1999 and 2014. We primarily evaluate the daily means of surface solar radiation.
The results indicate that SARAH-E consistently overestimates surface solar radiation, with a mean
bias of 21.9 W/m2. The results are complicated by the fact that the estimation bias is stable between
1999 and 2009 with a mean of 19.6 W/m2 but increases sharply thereafter as a result of rapidly
decreasing (dimming) surface measurements of solar radiation. In addition, between 1999 and
2009, both in situ measurements and SARAH-E estimates described a statistically significant (at 95%
confidence interval) trend of approximately −0.6 W/m2/year, but diverged strongly afterward.
We investigated the cause of decreasing solar radiation at one site (Pune) by simulating clear-sky
irradiance with local measurements of water vapor and aerosols as input to a radiative transfer
model. The relationship between simulated and measured irradiance appeared to change post-2009,
indicating that measured changes in the clear-sky aerosol loading are not sufficient to explain the
rapid dimming in measured total irradiance. Besides instrumentation biases, possible explanations in
the diverging measurements and retrievals of solar radiation may be found in the aerosol climatology
used for SARAH-E generation. However, at present, we have insufficient data to conclusively
identify the cause of the increasing retrieval bias. Users of the datasets are advised to be aware of the
increasing bias when using the post-2009 data.
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1. Introduction

India has experienced an extended period of rapid economic growth driven largely by coal-based
nonrenewable energy production [1]. Given the climatic and environmental issues inherent in reliance
on nonrenewable energy sources, the Indian Government has recently launched an ambitious initiative
to substantially increase solar energy production at a national level [2,3]. As a low-latitude country,
India has a large solar resource at its disposal. However, for planning the locations and production
capability of the solar energy plants, accurate mapping of the surface incoming solar radiation (SSR),
or global radiation as it is also called, is required.

For spatiotemporally comprehensive mapping of SSR over the Indian subcontinent, satellite-based
remote sensing offers the most cost effective solution. To answer this need, the Satellite Application
Facility on Climate Monitoring (CM SAF), a project of the European Organization for the Exploitation
of Weather Satellites (EUMETSAT), has developed and released a long-term dataset. This dataset,
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called Surface Solar Radiation Data Set—Heliosat, Meteosat-East (SARAH-E), Edition 1 [4,5], is a
satellite-based climate data record of the solar radiative quantities over India and surrounding regions.
The dataset is derived from observations of the reflected solar radiation from the geostationary
Meteosat Indian Ocean Data Coverage (IODC) satellites. The dataset spans 15 years at a spatial
resolution of 0.05◦.

In addition to SARAH-E, there exists a growing number of satellite-derived datasets of SSR,
calculated with a variety of algorithms for both regional [6,7] and global coverage [8–10]. A multitude of
studies also exists on the validation of said datasets (e.g., [11–13]), but to our knowledge, satellite-based
SSR estimates, including SARAH-E, have not been validated over India at the sub-continental scale.
Therefore, to facilitate the use of this satellite-based dataset, we must be able to ascertain its accuracy
in determining SSR, its seasonal cycle and any possible trends. The goal of this paper is to provide this
information, specifically answering these research questions:

• What is the accuracy of the SARAH-E dataset against quality controlled in situ SSR measurements
from sites all across India? Is the SSR estimation accuracy stable over time? Are there regional
differences in SSR estimation bias?

• Are the source datasets in general robust and long-term enough for reliable trend determination?
If yes, what can we say about trends in SSR over India over the past 15 years? Do the satellite-based
estimates agree with in situ measurements over the magnitude and direction of the trends?

We use ~120 station-years of in situ SSR measurement data from 17 sites across India, maintained
by the India Meteorological Department (IMD), as our reference. The sites cover a wide variety
of environmental conditions, from rural mountainous areas to sites located in India’s largest cities.
The paper is organized as follows: We first summarize the primary parameters of the SARAH-E
dataset, followed by a description of the in situ measurement dataset, its accuracy, and quality
control measures. We then present the validation methods, metrics, and the study results themselves.
The paper concludes with a discussion of the obtained results and the conclusions drawn.

Although the SARAH-E dataset also contains estimates for direct solar radiation, here we focus
exclusively on investigation of the SSR estimate. In this study, when referring to a daily mean SSR,
we mean the 24-h mean of insolation. Further, monthly mean SSR values are derived from averaging
the daily means to enable comparability between the satellite estimates, provided at daily mean
resolution, and the in situ data, provided on an hourly basis.

2. Materials and Methods

2.1. SARAH-E

The SARAH-E satellite dataset being evaluated covers 1999–2015, with a spatial resolution of
0.05 degrees, based on observations from the Meteosat Visible Infra-Red Imager (MVIRI) instruments
on board the Meteosat First Generation (MFG) satellites 5 and 7 [4,5]. Here, we validate the daily means
of SARAH-E. The year 2006 was not processed in the original release of SARAH-E; however, it was
post-processed and provided for this validation study, to be later included in the publicly available
data. In Figure 1, we illustrate the average SSR in June over the Indian subcontinent between 1999 and
2015, based on averaging the relevant daily means.

The retrieved SSR in SARAH-E is based on the following equation:

SSR = SSRCLR(1−CAL) (1)

where SSRCLR is the clear-sky irradiance and CAL is the effective cloud albedo, as observed by the
satellite imager (CAL is also referred to as cloud index). The method, also known as the Heliosat
method [14–16], is based on the concept that all solar radiation entering the Earth’s atmosphere will
either be reflected away by the cloud cover or will penetrate it to reach the surface as (attenuated) solar
irradiance. Therefore, the absorbing and scattering impacts on SSR from atmospheric constituents such
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as aerosols or water vapor, or variable solar geometry conditions are accounted for in the calculation of
the clear-sky irradiance SSRCLR. Absorption and saturation effects in optically thick clouds (CAL > 0.8)
are considered through adjustment of the cloud albedo. The clear-sky irradiance is obtained from a
linear interpolation of a look-up-table (LUT) of precomputed irradiances from the libRadTran model
(Mayer and Kylling, 2005) for a wide range of atmospheric states [5]. Full retrieval details are available
in Gracia-Amillo et al. [4].
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Figure 1. June mean SSR during 1999–2015 over the Indian subcontinent from SARAH-E data.
Validation site locations shown with circular markers and partial site names. Decreased SSR along the
western seaboard reflects the intense coastal cloudiness of the monsoon season.

The atmospheric state inputs considered in SARAH-E are the total atmospheric water vapor,
aerosol optical depth (at 550 nm) and type, and ozone content. Water vapor data are from the monthly
means of the ERA-Interim reanalysis [17]. Aerosols are considered as a climatology, calculated from
the 2003–2010 monthly means of the Monitoring Atmospheric Composition and Climate (MACC)
dataset [18,19]. Ozone content is considered through climatological values from standard profiles of
the Max-Planck Institute of Air Chemistry [20].

Furthermore, the effective cloud albedo in SARAH-E is calculated from the following equation:

CAL =
CVIS −CCLS

CMAX −CCLS
(2)

where all terms are based on observed digital counts of the MVIRI instrument, i.e., uncalibrated
observed reflectivities. CVIS is the observed count of the observation (pixel value) for which CAL is to
be determined, CCLS is an iteratively precomputed clear-sky count for the observed time slot and pixel
(keeping in mind that the viewing geometry is fixed), and CMAX is the typical (statistical) maximum
reflectivity count for thick bright clouds, precomputed as the 95th percentile of observed counts in a
region within 45.8◦S–52.7◦S and 40◦E–56◦E, known for being consistently very cloudy. Before usage in
this equation, the MVIRI counts are corrected for the instrument dark current as well as variations in
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Sun–Earth distance and Solar Zenith Angle. CMAX is also corrected for the effects of varying scattering
angle between time slots. See Gracia-Amillo et al. [4] for further details on SARAH-E calculations.

2.2. In Situ SSR Measurements

The India Meteorological Department (IMD) operates a network of sites where SSR is observed
on a regular basis. Time series of SSR observations from this network forms the primary in situ
reference data source of this study. The locations of the sites are shown in Figure 1 and their primary
attributes are listed in Table 1. The provided SSR observations were daytime hourly means only
(05:00–20:00 Indian time), extended here into full 24-h days with nighttime hours set to zero irradiance.

Table 1. Characteristics of the India Meteorological Department (IMD) sites measuring Surface Solar
Radiation (SSR).

Site Latitude (◦N) Longitude (◦E) Data Coverage Comments and Climate Regime

Bangalore 12.9716 77.5946 1999–2009 Urban, tropical
Jodhpur 26.2389 73.0243 1999–2014 Desert, arid
Bhopal 23.2599 77.4126 1999–2009 Humid, subtropical
Pune 18.5204 73.8567 1999–2014 Suburban

Sri Nagar 34.0837 74.7973 1999–2009 Valley, mountainous
Jaipur 26.9124 75.7873 1999–2009 Semi-arid, dry
Ranchi 23.3441 85.3096 1999–2010 Urban, hilly

Visakhapatnam 17.6868 83.2185 1999–2014 Coastal, urban
Chennai 13.0827 80.2707 1999–2014 Coastal, urban

Trivandrum 8.5241 76.9366 1999–2014 Coastal, tropical
Nagpur 21.1458 79.0882 1999–2010, 2013–2014 Urban, dry apart from monsoon
Shillong 25.5788 91.8933 1999–2014 Subtropical highland, low AOD

Ahmedabad 23.0225 72.5714 1999–2009, 2013–2014 Dry, semi-arid
Hyderabad 17.385 78.4867 1999–2014 Semi-arid

Kolkata 22.5726 88.3639 1999–2012 Sparse data, urban subtropical
Mumbai 19.076 72.8777 1999–2010, 2013–2014 Coastal, urban

Patna 25.5941 85.1376 1999–2009 Urban

The IMD irradiance measurement network is described in detail in Soni et al. [21]. The sites
operate WMO Class 1 or 2 pyranometers, with periodic re-calibrations every two years against reference
standards (cavity pyrheliometer as primary, PSP pyranometers as secondary) according to present
knowledge. For most of the sites, a change of pyranometer instrumentation and data loggers took place
in 2009 to equipment manufactured by Apogee Instruments and EKO Instruments. The pyranometers
are cleaned and maintained daily at principal measurement sites (e.g., Pune). The provided hourly
averages were subjected to further quality assurance procedures (see below).

The sites represent a wide variety of atmospheric and surface regimes, from the dry,
arid conditions of Jodhpur and Jaipur to the yearlong tropical monsoon climate of Trivandrum
in the south. The summer monsoon season (southwest monsoon; June–September) brings intensive
cloudiness and rainfall to sites in the central and southern parts of the subcontinent. Sites in the north
such as Sri Nagar are also affected by the monsoon, but to a much lesser degree [22]. Some sites,
such as Chennai, also experience rains during the northeast monsoon during October–December,
further altering their annual rainfall cycle.

In terms of aerosol properties, the sites again display a complex variety of conditions and
annual cycles. During the monsoon, sea salts and marine dust form the dominant contribution
to aerosol loading over coastal sites, also impacting inland sites in the central and southern parts of the
subcontinent. On the other hand, rainfall scavenging during monsoon often lowers the overall aerosol
loading of the atmosphere [23]. Anthropogenic industrial and automotive sources have a large impact
on aerosol loading over the urban, densely industrialized sites such as Hyderabad or Bangalore [24,25].
Increased biomass burning during the cooler winter months leads to an increase in aerosol loading
over several urban sites, such as Kolkata [26]. Dust storms are a major natural source of aerosol loading
over the arid sites in Northern India (Jodhpur and Jaipur) [27]. Because of its location in the foothills
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of the Himalayas, Shillong is the only site in the study with a relatively clean atmosphere, with AOD
generally in the range of 0.2–0.25 [28].

2.3. Quality Assurance of SSR Measurements

Quality control of in situ SSR measurements is a critical component to be undertaken prior to any
analysis [29–31]. A series of quality control tests were made to ensure the robustness of the reference
SSR dataset and to provide both liberal and conservative quality control limits for the dataset. The tests
conducted were the BSRN (Baseline Surface Radiation Network) quality check made by Long and
Dutton [32] for the use of irradiance data quality control in the BSRN program, a 0-limit for daytime
values, and percentile based upper and lower limits. In addition to the tests, some basic quality control
measures were taken. The data were found to have some measurement periods with a fixed SSR; these
periods were all discarded as unphysical.

The BSRN quality check has a limit for physically possible and extremely rare values.
The extremely rare-limit was used here, for which the lower limit is −2 W/m2, and the upper limit is
calculated with:

BSRNupper = Sa × 1.2× µ1.2
0 + 50

W
m2 (3)

where Sa = S0/AU2, S0 is the solar constant at mean Earth–Sun distance, AU is the Earth–Sun distance
in astronomical units, µ0 equals the cosine of SZA, and SZA is the solar zenith angle [32]. In the
calculation of the astronomical quantities and solar position, the python-pvlib package was used [33].
The 0-limit for daytime irradiance values was necessary as several days with 0 W/m2 measurements
for daytime irradiance were found after applying the BSRN limits. All irradiances of 0 W/m2 for times
when SZA < 90 degrees were considered unrealistic and thus removed. All irradiances exceeding
the upper limit or below the lower limit in BSRN were removed. As only days with full coverage
(24 available one-hour averages) are used in this analysis, this approach provides the highest coverage
without affecting the data reliability.

To provide a more conservative quality control test, percentile based limits were calculated from
the data to remove some of the physically possible, yet highly unlikely irradiances from both lower
and higher ends of the data. This was made by dividing the data into bins by calendar month and
time of day. The lower percentile limit was determined as the 1st percentile of each bin, and the upper
limit as the 98th percentile with 20% of the 98th percentile added as follows:

Percentile top limit = 98th percentile + 98th percentile × 0.2. (4)

Note that the data used for the calculation of percentiles contain only the days for which full
coverage remains after the BSRN and 0-limit corrections. Other percentiles were tested; however,
the aforementioned limits were found to limit the erroneous values appropriately with little effect
on the data distribution. The percentile limits were also combined to form the most conservative
set of limits. As the validation metrics showed a dependence of less than 1 W/m2 on the chosen set
of QA limits, we present only the in situ data that have passed the most rigorous QA testing in the
subsequent analysis. The original dataset consisted of 74,719 days of observations (204.71 station-years).
The various QA phases discarded a fraction of these observations as follows (cumulative and relative
to the original dataset): BSRN testing, 17.34%; daytime 0-limit filtering, 31.27%; percentile top limit,
33.20%; lower percentile limit, 35.76%; and top and low percentile limit combined, 37.54%. Therefore,
after the strictest set of QA measures, a total of 46,670 full days of observations (127.86 station-years)
remained for the validation. A visualization of the limits employed is available as Figure S1.

As a further QA measure, we obtained level 1.5 (V3) measurement data on aerosols and
water vapor from the Aerosol Robotic Network (AERONET) site at Pune, spanning 2004–2014 [34].
These cloud-screened AERONET measurements acted as inputs for the python-pvlib implementation
of the Simplified Solis radiative transfer model [35], which provided an independent estimate of
clear-sky SSR to compare against the in situ SSR measurements at Pune. The comparison is presented
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in Section 3. In addition to Pune, the AERONET site at Jaipur also possesses a relatively long-term
measurement record. However, the Jaipur AERONET data begin in 2009 when the SSR measurements
end at the IMD site, thus no comparison at this site was possible.

2.4. Validation Metrics and Methods

We have chosen to use validation methods and metrics applied in past studies (e.g., [11,13,36]) to
facilitate easier comparison of results. Thus, for each site, we report the Mean Bias Difference, Mean
Absolute Bias Difference and Root Mean Square Difference (MBD, MABD and RMSD, respectively):

MBD =
1
n ∑n

i=1(SISi − Fi) (5)

MABD =
1
n ∑n

i=1|SISi − Fi| (6)

RMSD =

√
∑n

i=1(SISi − Fi)
2

n
(7)

where SIS is the satellite-derived SSR, F is the site-measured SSR, and n is the number of available
valid observations (in the period in question).

The in situ SSR measurement data were spatiotemporally collocated to the SARAH-E
satellite-based estimates. The hourly in situ data were averaged into daily means, discarding any days
with missing hourly measurements. The daily means were then spatially matched with SARAH-E daily
means using a nearest-neighbor search. A nearest-neighbor collocation retains the basic impediment of
a point-to-pixel comparison, however, the representativeness impact into SSR bias determination has
been studied over Europe and generally found to be very small for a spatial resolution of 0.05 degrees,
such as SARAH-E [37]. However, this result may not hold for sites in mountainous terrain with rapidly
varying topography. In this study, the site at Sri Nagar is potentially such a site, but we have retained
its measurements for completeness.

3. Results and Discussion

We begin with a general overview of SARAH-E performance. Figure 2 shows the temporal
evolution of the SARAH-E SSR estimation bias against all in situ measurement sites with valid data.
The result suggests very stable estimation precision and scatter between 1999 and 2009, but increasing
and more variable estimation bias since then. The difference in annual mean SSR bias between 2013 and
2000 is 23.9 W/m2, while the annual mean bias between 1999 and 2009 varied by less than 5 W/m2.

We point out that the in situ data shown here have been filtered with the strictest set of tests, i.e.,
BSRN tests combined with discarding realistic but improbable daily means with SSR in the lowest
1%, or in the highest 98% + 0.2 × 98%. We point out that the mean bias or standard deviation of the
full comparison varied by less than 1 W/m2 between this set and the set filtered with the basic BSRN
tests, making the choice of filter conditions of secondary important. Because IMD measurements were
available only until 2014, the 2015 SARAH-E data are not included and do not affect the results.

Resolving the validation for each individual site shows that the upward trend in SSR estimation
bias is not specific to any subset of the validation sites, but rather a common feature for many of the
investigated sites (Figure 3). The year-to-year variation and level shifts in MBD over some sites such as
Jodhpur or Ahmedabad are nearly always a result of variations in measured SSR; SARAH-E retrieved
SSR generally varies much less from year to year. The validation metrics for the individual sites are
also collected and shown in Table 2. For MBD, we also show value for both pre- and post-2009 periods
to illustrate the scale of the change in bias. We further note that MBD and MABD are similar for many
sites, suggesting that SARAH-E consistently overestimates the in situ SSR measurement, as shown in
Figure 2.
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Table 2. Validation metrics for all sites (QA method: conservative).

Site MBD (W/m2) MABD (W/m2) RMSD (W/m2) MBD (W/m2)
1999–2009

MBD (W/m2)
2010–2014

Bangalore 9.12 18.84 24.39 9.12 N/A
Jodhpur 24.60 26.64 31.42 21.18 37.71
Bhopal 10.45 18.57 24.09 10.45 N/A
Pune 20.92 25.60 31.46 14.69 42.84

Sri Nagar 17.04 26.71 35.12 17.04 N/A
Jaipur 5.30 13.83 18.04 5.30 N/A
Ranchi 20.92 23.92 29.60 20.26 32.67

Visakhapatnam 31.83 34.34 39.65 27.55 47.10
Chennai 26.33 30.19 37.44 20.43 47.12

Trivandrum 38.35 38.77 42.35 36.45 46.99
Nagpur 30.52 31.90 37.98 25.54 52.70
Shillong 7.85 30.15 37.61 -5.05 40.75

Ahmedabad 29.55 30.84 36.58 25.18 51.77
Hyderabad 14.62 22.16 28.22 12.35 41.65

Kolkata 27.89 35.35 43.07 38.22 37.34
Mumbai 27.85 31.25 36.29 25.99 53.35

Patna 28.93 32.98 38.92 28.93 N/A
All (mean) 21.89 27.77 33.66 19.62 44.33

The mean MBD and RMSD per site are geographically visualized in Figure 4. SSR retrievals
over coastal validation sites have, in general, both a larger bias (MBD) and more scatter (RMSD) than
retrievals further inland. Nagpur and Patna appear to be exceptions; at Nagpur, the metrics are affected
by sharply decreasing measured SSR in 2013 and 2014, while at Patna, the larger MBD and RMSD are
quite constant through time (Figure 3).
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We also examine the SARAH-E estimation bias on monthly basis. Figure 5 illustrates these results,
showing MBD (a) and relative MBD (b). The post-2009 increase in MBD is clearly seen to affect all
months, though most prominently in the early and late part of the year, particularly when taking the
seasonal SSR variation into account (Figure 5b). Interestingly, retrievals fare better during the monsoon
season (April–June/July) contrary to expectations; a common finding in satellite-based SSR validation
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studies has been that biases grow during intensively cloudy periods, either because of incomplete
cloud characterization from satellites, or small-scale variability in cloudiness which affects in situ
measurements differently from the coarser satellite observations. The winter and autumn seasons are
well-known to be less cloudy than summer over India.
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All of the results shown here suggest the same conclusion: The mean SARAH-E SSR estimation
accuracy has been 10–35 W/m2 between 1999 and 2009 for any month of the year (with midsummer
retrievals accurate to within 10–20 W/m2), but has grown to 30–65 W/m2 post-2009 for virtually
all sites providing data for this period. These biases are on average larger than reported by Gracia
Amillo et al. [4] when validating SARAH-E against Baseline Surface Radiation Network (BSRN)
sites across Asia, although their analysis did not cover sites in India. In addition, their reported
SSR estimation biases were in the range of −7–+14 W/m2 for MBD, and 22–44 W/m2 for MABD.
This suggests that the biases seen here for SSR, particularly for 1999–2009, are relatively close to
the expected performance envelope, although with a clear tendency for overestimation particularly
after 2009. Next, we will investigate possible causes of this behavior using independent in situ
measurements and stability analyses of both SARAH-E and the in situ SSR record.

Figure 6 shows a per-month stability analysis of both SARAH-E and in situ monthly mean SSR.
We show the analysis as a violin plot to simultaneously compare the extents and distribution of the
monthly mean SSR, averaged across all validation sites, across 1999–2014. Markers within the violin
plots show the SSR values for each year. We immediately note that while the groups of SARAH-E
monthly mean SSRs are relatively tightly packed and their distribution is usually fairly even, the in
situ record distribution displays both wider scatter and a prominent lower tail for most months of the
year. The tail is predominantly formed from values of the years 2010–2014.
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Figure 6. Monthly mean SSR over all validation sites between 1999 and 2014 from: (a) SARAH-E; and
(b) in situ measurements. Violin plots indicate the kernel density estimates for each month, cropped to
data extents. Markers within represent the SSR of the different years in the period.

While the differences post-2009 are clear, this comparison alone does not reveal if the increasing
difference results from an undetected and uncompensated bias in the satellite retrievals or the in
situ measurements. Soni et al. [21] showed a decreasing SSR trend from in situ measurements of a
subset of the IMD sites used here, but for a longer analysis period which ended in 2009. They argued
that the SSR measurement network is well-maintained and that a large factor in the decrease is the
increasing in aerosol loading over India from anthropogenic emissions. This would imply that the
atmospheric constituent records (aerosols, water vapor, etc.) used in SARAH-E generation do not
adequately consider a substantial increase in aerosol loading over the subcontinent as a whole after
2010, since we observe an increasing bias for nearly all sites in that period.

To partially test this supposition, we extracted the AERONET level 1.5 measurement record at
Pune, as described in Section 2. The record at Pune is the longest available for Indian AERONET sites,
and the only one with a significant overlap with the SARAH data record. Level 1.5 is cloud-screened,
although the final calibration of the data is not yet applied. Level 2 data are not yet available at
Pune. Figure 7 shows the measured AOD at 440 and 675 nm at Pune between 2005 and 2015.
The measurements show slight increasing trends in AOD at these wavelengths close to the one
used in SARAH generation from the MACC dataset. However, the increases are modest in comparison
to the magnitude of bias growth. Moreover, between 2010 and 2013, there is little evidence of an
increasing aerosol loading, whereas the SARAH-E MBD was already seen to grow over several sites
(Figure 3). Similarly, the single scattering albedo (SSA) of aerosols at 440 and 675 nm at Pune showed
no evidence of a downward trend consistent with increased aerosol absorption (not shown).

A more direct means of assessing any radiative impact of increasing aerosol loading is to model
the clear-sky SSR given the AERONET observations as the atmospheric state descriptors. We have done
this for the Pune AERONET record using the clear-sky Simplified Solis radiative transfer model [35].
AOD at 675 nm is used as proxy for AOD at 700 nm, which is the Solis input variable. We further
average the AERONET-Solis record to one-hour temporal resolution and use the timestamps to
select corresponding clear-sky measured SSR one-hour averages at Pune between 2004 and 2014.
A differential comparison between these data is shown in Figure 8.

The data are variably sparse and therefore we must refrain from any strong conclusions based
on them; however, it is apparent that post-2009, Solis-modeled SSR predominantly overestimates
the in situ measurement whereas over- and underestimations were much more equally distributed
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prior to that. In fact, the annual mean biases (relative to in situ SSR measurement) of SARAH-E and
Solis-AERONET over Pune are linearly correlated with r2 of 0.65. Despite the sparse data, this suggests
that the observed decrease in measured SSR at Pune disagrees with both SARAH-E and the AERONET
clear-sky measurements.
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inputs, and in situ measured SSR at Pune. Red bars and numbers at the bottom show their annual
mean difference.

Furthermore, a recent validation document with the CM SAF project [38] reports the evaluation
of the CM SAF Clouds, Albedo and Radiation dataset—Edition 2 (CLARA-A2) over India.
The CLARA-A2 is based on polar-orbiting satellites and its algorithm is independent of SARAH-E;
however, the findings on SSR retrieval accuracy over India mainly reflect those reported here: a stable
period of retrievals in the 2000s, followed by a sharp increase in retrieval bias associated with an
across-the-board drop in in situ measured SSR. The SSR from CLARA-A2 has been validated in the
literature against a very large number of in situ measurements from different station networks over
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Europe [13] with little evidence of a bias increase post-2009. However, the validity of the aerosol
dataset used in CLARA-A2 generation has not been specifically validated over India in the recent
years. In addition, it should be kept in mind that both SARAH-E and CLARA-A2 use climatological
aerosol backgrounds for their retrievals.

Considering the divergent measurements and retrievals, the question of SSR trend estimation
should be approached with utmost care and caution. Because of the varying temporal coverage of
the IMD sites, the first precaution is to only include sites which offer the full 1999–2014 coverage,
and calculate both in situ and SARAH-E SSR trends based on that subset. The resulting data and
its trends are shown in Figure 9. While the overall trend in measured in situ SSR is stronger than
in SARAH-E (−1.93 W/m2/year vs. −0.24 W/m2/year), the trends diverge strongly only after
2009. Prior to that, both datasets describe a decreasing trend with a comparable magnitude of
~−0.6 W/m2/year. All trends described here are statistically significant (i.e., non-zero trend) at
the 95% confidence interval when evaluated with either the two-tailed t test or the nonparametric
Mann–Kendall test. The diverging trends also remain when the datasets are evaluated through
seasonal decomposition (not shown). Again, these findings should be considered preliminary prior
to conclusively identifying the cause of the increasing discrepancy between satellite estimates and in
situ measurements.

While the period 2010–2014 is too short for any reliable trend estimation, it remains notable that,
should present circumstances persist, the IMD measurements would describe a decreasing trend of
~−7 W/m2/year, an exceedingly high rate of dimming.
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SARAH-E and in situ data included only from sites with coverage from 1999 to 2014 (see Table 1).
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Overall, we must say that the available data do not allow conclusive findings about the cause of
the increasing SARAH-E (or CLARA-A2) bias vs. Indian in situ measurements post-2009. If the sharp
drop in measured SSR reflects intensifying aerosol loading, suggested to be caused by anthropogenic
sources in the literature [21], this loading is not seen in the aerosol climatologies behind SARAH-E,
or CLARA-A2. This is certainly within limits of possibility, especially considering the recent increases
in air pollution over India [39]. However, the currently available AERONET measurements at Pune
do not describe clear-sky aerosol or water vapor conditions which would agree with a drastically
dimming clear-sky global radiation after 2009. This would imply that the cause of the large divergence
of this period lies in SSR retrievals under cloudy skies, but there are no Supplementary Materials to
test this hypothesis at present.

Contrary to expectations, SARAH-E estimation accuracy appears highest against in situ
observations during the monsoon season. This is the period when rainfall scavenging of aerosols
is most efficient, although the aerosol loading is reported to be on average higher than the winter
period over most of India [40]. In addition, during the October–March (winter/pre-monsoon) season,
anthropogenic particles contribute relatively more to the aerosol properties than during the monsoon
season when natural particles dominate [40]. In principle, the larger SARAH-E bias during the winter
period could therefore be consistent with increasing anthropogenic aerosol loading during that period
post-2010 that is not present in the aerosol climatology; however, the sheer magnitude of the negative
SSR trend in station observations, present for any month of the year, and our inability to reproduce
the decrease with AERONET-measured clear-sky aerosol properties at Pune casts some doubt on
that theory.

To summarize, it remains possible that the increasing bias post-2009 results from an undetected
issue in the Indian in situ measurement network. On the other hand, deficiencies related to recent
changes in aerosol loading or properties unseen by the SARAH-E aerosol climatology over India are
also a possible cause. There is also a distinct possibility of a multi-factor explanation, the divergence
resulting partly from an instrumentation bias on the ground, and partly from a deficiency in the aerosol
background in the last years of this analysis.

4. Conclusions

We have evaluated the surface solar radiation (SSR) retrieval accuracy of the satellite-based
SARAH-E dataset against in situ measured SSR over India. The primary findings of this study are:

1. Between 1999 and 2009, SARAH-E consistently overestimates in situ measured SSR over India by
10–30 W/m2 (~10–20% in relative terms).

2. Between 1999 and 2009, both SARAH-E and the in situ measurements indicate an overall
decreasing trend in SSR with a magnitude of ~−0.6 W/m2/year. The trends are statistically
significant at the 95% confidence interval.

3. Post-2009, in situ measured SSR begins to decline sharply whereas SARAH-E retrievals remain
stable, leading to a sharply increasing estimation bias.

4. A modeling test of the clear-sky SSR over Pune with AERONET-measured aerosol and water
vapor data as input indicates that the relationship between AERONET-based SSR estimate and
measured SSR (in clear-sky conditions) is different pre- and post-2009. However, it should also
be noted that the SARAH-E aerosol background is based on a 2003–2010 climatology, which may
not fully capture recent changes in ambient atmospheric conditions over India.

While the diverging SSR retrievals and measurements are clearly seen post-2009, the cause remains
unconfirmed at this stage. Identifying the cause of the rapidly increasing bias would require both
radiometric calibration studies on the in situ data as well as decomposition of the satellite retrieval
algorithm, both of which are beyond the scope of the present study. Here, we outline potential
explanations (in Section 3) and recommend further studies and assessments for both in situ SSR
measurements, and the validity of the atmospheric constituents used in the satellite retrievals.
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Overall, while the SARAH-E retrieval bias observed in this study during 1999–2009 is higher than
reported in general for the dataset [4], the bias for this period is largely stable enough to encourage
usage, with due attention to seasonal and geographical limitations. Post 2009, we advise users to
caution until the cause of the increasing estimation bias has been ascertained. As stated, we also
encourage and highly recommend further studies on the topic, examining the full measurement chain
from raw data to temporally averaged SSR means for both satellite and in situ sources.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/10/3/392/s1, Figure
S1: An illustration of the QA measures taken with the in situ data for one example site (Hyderabad) for one month
of data. Circles indicate hourly mean SSR at the site versus measurement time (Indian time, night set to zero SSR).
The graphs indicate the maximum allowable SSR by the various QA phases.
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