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Abstract: With success of Deep Belief Networks (DBNs) in computer vision, DBN has attracted
great attention in hyperspectral classification. Many deep learning based algorithms have been
focused on deep feature extraction for classification improvement. Multi-features, such as texture
feature, are widely utilized in classification process to enhance classification accuracy greatly. In this
paper, a novel hyperspectral classification framework based on an optimal DBN and a novel texture
feature enhancement (TFE) is proposed. Through band grouping, sample band selection and
guided filtering, the texture features of hyperspectral data are improved. After TFE, the optimal
DBN is employed on the hyperspectral reconstructed data for feature extraction and classification.
Experimental results demonstrate that the proposed classification framework outperforms some
state-of-the-art classification algorithms, and it can achieve outstanding hyperspectral classification
performance. Furthermore, our proposed TFE method can play a significant role in improving
classification accuracy.

Keywords: deep belief networks; deep learning; texture feature enhancement; hyperspectral
classification; band grouping

1. Introduction

Hyperspectral imagery with hundreds of narrow spectral channels provides wealthy spectral
information. With very high spectral resolution, hyperspectral data has been of great interest in
many practical applications, such as in agriculture, environment, surveillance, medicine [1–4] etc.
Hyperspectral classification is a key technique employed in aforementioned applications. A majority
of classification methods have been promoted in the last several decades to distinguish physical
objects and classify each pixel into a unique land-cover label, such as maximum likelihood [5],
minimum distance [6], K-nearest neighbors [7,8], random forests [9], Bayesian models [10,11],
neural networks, etc., and their improvements [12–15]. Among these supervised classifiers, one of the
most important classifiers is kernel-based support vector machine (SVM), which can also be considered
as a kind of neural network. It can achieve superior hyperspectral classification accuracy via building
an optimal hyperplane to best separate training samples.

In addition, sparse representation based on an over-complete signal dictionary has gained great
attention in the literature. Sparse representation-based classification (SRC) [16–18] and collaborative
representation classification (CRC) [19,20] are proposed from a different aspect: they do not adopt the
traditional training–testing fashion. Such classification methods do not need any prior knowledge
about probability density distribution of the data. To further enhance the performance of SRC and CRC,
Du and Li [21] utilized a diagonal weight matrix to adaptively adjust the regularization parameter.
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To address the issues of Hughes phenomenon in hyperspectral classification, majority of feature
extraction and selection algorithms are utilized to delete redundant features from the original data.
To further improve performance of hyperspectral classification, multi-features are extracted and
employed for classification. For instance, Kang et al. combined spectral and spatial features through a
guided filter to process pixel-wise classification map in each class [22]. Several studies [23–25] focused
on integrating spatial and spectral information in hyperspectral imagery. In addition, texture features
are considered to assist hyperspectral classification [26], and modeling of hyperspectral image textures
is significant for classification and material identification.

Recent research has highlighted deep learning with deep neural networks, which can learn
high-level features hierarchically. They have demonstrated their potential in image classification,
which also motivated successful applications of deep models on hyperspectral image classification.
The classic deep learning method is convolutional neural networks (CNN), which plays a dominant
role in visual-based issues. The local receptive fields of CNN can extract spatial-related features at high
levels. Fukushima [27] introduced the motivations of CNNs. Ciresan and Lee et al. [28,29] depicted
the invariants of CNNs. Chen et al. proposed 2-D CNN and 3-D CNN [30] to capture deep abstract
and robust features, yielding superior hyperspectral classification performance. Although CNNs are
typical supervised models, a massive training dataset is needed to trigger their powers. Unfortunately,
a limited number of labeled samples are usually given in hyperspectral imagery. Deep belief networks
(DBNs) [31] and stacked autoencoders (SAEs) [32] are also very promising deep learning methods for
hyperspectral classification with limited training samples.

In this paper, we mainly investigate the DBN for its suitability and practicality to hyperspectral
classification. A novel hyperspectral classification framework is proposed based on an optimum DBN.
To acquire desirable performance, we also promote an advanced algorithm to enhance the texture
features of hyperspectral imagery. The main contributions of this paper are summarized below.

1. We first promote a band group method to separate the bands of hyperspectral data into different
band groups. Multi-texture features are used to select a sample band in each band group.

2. We propose a novel algorithm to enhance the texture features of hyperspectral data. We advocate
the use of guided filter to complete the procedure of texture feature enhancement (TFE).

3. An optimal DBN structure is proposed with consideration of learning and deep features extraction.
The learned features are exploited in Softmax to address the classification problem. Furthermore,
with enhanced texture features, accurate classification maps can be generated by considering
spatial information.

The rest of the paper is organized into four sections. Section 2 is a brief description of related work.
In Section 3, we detail our proposed DBN model. Datasets and parameters setting are demonstrated
in Section 4. Experimental results and discussions are depicted in Section 5. Section 6 draws the
conclusion of this paper.

2. The Related Work

A deep belief network (DBN) is a model that is first pre-trained in an unsupervised way, and then
the available labeled training samples are used to fine-tune the pre-trained model through optimizing
a cost function defined over the labels of training samples and their predictions.

The original DBN, published in Science [33], uses a generative model in the pre-training procedure,
and uses back-propagation in the fine-tuning stage. This is very useful when the number of training
samples is limited, such as in the case of hyperspectral remote sensing. DBN can be efficiently trained
in an unsupervised, layer-by-layer manner where the layers are typically made of restricted Boltzmann
machines (RBM). Thus, to explain the structure and theory of the DBN, we first describe its main
component, the RBM.
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2.1. Restricted Boltzmann Machines (RBM)

An RBM generally uses unsupervised learning, which can be interpreted as stochastic neural
networks. It was originally developed to form a distributed representation. It is a two layer-wise
network, which is composed of visible and hidden units. Learning RBM only allows the full connection
between visible and hidden units, and does not allow connection between two visible units or
connections between two hidden units. With the given visible units, hidden units can be obtained via
mapping of visible units. The activations of each neuron in hidden layers are independent. Meanwhile,
with the given hidden units, visible units have the same effects. A typical RBM structure is depicted in
Figure 1.
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Figure 1. Architecture of Restricted Boltzmann Machines.

The visible units can be represented as h, and the hidden units can be expressed as v. The RBM
model is a kind of energy-based models in which the joint distribution of the layers can be expressed as
Boltzmann distribution. Energy-based probabilistic models define a probability distribution through
an energy function as:

p(v, h|θ) = exp(−E(v, h|θ))
Z(θ)

, (1)

where the normalization constant Z(θ) is called the partition function by analogy with
physical systems:

Z(θ) = ∑
v

∑
h

E(v, h; θ) (2)

A joint configuration of the units has an energy given by:

E(v, h; θ) = −∑n
i=1 aivi −∑m

j=1 bjhj −∑n
i=1 ∑m

j=1 viwijhj

= −aTv− bTh− vTwh
, (3)

where θ = {ai, bj, wij}; wij represents the weight connecting the visible unit i and the hidden unit j;
ai and bj denote the bias terms of visible and hidden layers, respectively; n and m are the total visible
and hidden unit numbers; and vi and hj represent the states of visible unit i and hidden unit j.

Due to the specific structure of RBMs, visible and hidden units are conditionally independent,
as given by:

P(vi = 1|h, θ) = σ(ai + ∑i wijvi)

P(hj = 1|v, θ) = σ(bj + ∑j wijhj)
, (4)

where σ(•) is the logistic function defined as

σ(x) =
1

1 + exp(−x)
(5)

Overall, an RBM has five parameters: h, v, w, a and b, where w, a and b are achieved via learning,
v is input, and h is output. w, a and b can be learned and updated via the contrastive divergence (CD)
method as

wij ← wij + λ(P(hj|vi)vi − P(hr
j |vr

i )v
r
i ) (6)
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ai ← ai + λ(vi − vr
i ) (7)

bj ← bj + λ(hj − hr
j ) (8)

where λ denotes the learning rate, P(hr
j |vr

i ) represents the reconstructed probability distribution, and vr
i

and hr
j are the reconstruction of visible and hidden unit, respectively. Once the states of hidden units

are chosen, the visible units can be reconstructed via the hidden units sampled via Gibbs method. Then,
the states of hidden units are updated through the visible units, so that the hidden units demonstrate
the features of reconstruction. The distribution of visible units approximates the distribution of the real
data. The learning ability of an RBM depends on whether the hidden units contain enough information
of the input data.

2.2. Deep Belief Learning

The learning ability of a single hidden layer is limited. To capture the comprehensive information
of data, the hidden units of the RBM can be feed as the input (visible units) of another RBM. This kind
of layer-by-layer learning structure trained in a greedy manner forms so-called Deep Belief Networks.
In this way, DBN can extract deep features of image data. The structure of three-layer DBN is depicted
in Figure 2.

Remote Sens. 2018, 10, x FOR PEER REVIEW  4 of 20 

 

Overall, an RBM has five parameters: h , v, w , a  and b , where w , a  and b  are achieved 
via learning, v is input, and h  is output. w , a  and b can be learned and updated via the 
contrastive divergence (CD) method as 

( ( | ) ( | ) )r r r
ij ij j i i j i iw w P h v v P h v vλ← + −  (6) 

( )ri i i ia a v vλ← + −  (7) 

( )rj j j jb b h hλ← + −
 

(8) 

where λ  denotes the learning rate, ( | )r r
j iP h v  represents the reconstructed probability distribution, 

and r
iv  and r

jh  are the reconstruction of visible and hidden unit, respectively. Once the states of 

hidden units are chosen, the visible units can be reconstructed via the hidden units sampled via Gibbs 
method. Then, the states of hidden units are updated through the visible units, so that the hidden 
units demonstrate the features of reconstruction. The distribution of visible units approximates the 
distribution of the real data. The learning ability of an RBM depends on whether the hidden units 
contain enough information of the input data.  

2.2. Deep Belief Learning 

The learning ability of a single hidden layer is limited. To capture the comprehensive information 
of data, the hidden units of the RBM can be feed as the input (visible units) of another RBM. This kind 
of layer-by-layer learning structure trained in a greedy manner forms so-called Deep Belief Networks. 
In this way, DBN can extract deep features of image data. The structure of three-layer DBN is depicted 
in Figure 2. 

 
Figure 2. An illustration of three-layer DBN with logistic regression. 

The process of training of DBN consists of two parts: pre-training and fine-tuning. The pre-
training is an unsupervised training stage that initializes the model in such a way to enhance the 
efficiency of supervised training. The fine-tuning process can be realized as supervised training stage, 
which adjusts the classifier’s prediction to match the ground truth of the data. 

3. The Proposed Framework 

To extract more powerful and invariant features, we propose a novel DBN hyperspectral 
classification algorithm based on TFE. DBN is composed of several layers of latent factors, which can 
be deemed as neurons of neural networks. However, the limited training samples in the real 
hyperspectral image classification task usually lead to many “dead” (never responding) or “potential 
over-tolerant” (always responding) latent factors (neurons) in the trained DBN. Our proposed 

 

Figure 2. An illustration of three-layer DBN with logistic regression.

The process of training of DBN consists of two parts: pre-training and fine-tuning. The pre-training
is an unsupervised training stage that initializes the model in such a way to enhance the efficiency of
supervised training. The fine-tuning process can be realized as supervised training stage, which adjusts
the classifier’s prediction to match the ground truth of the data.

3. The Proposed Framework

To extract more powerful and invariant features, we propose a novel DBN hyperspectral
classification algorithm based on TFE. DBN is composed of several layers of latent factors, which can be
deemed as neurons of neural networks. However, the limited training samples in the real hyperspectral
image classification task usually lead to many “dead” (never responding) or “potential over-tolerant”
(always responding) latent factors (neurons) in the trained DBN. Our proposed framework mainly
consists of three steps: band grouping and sample band selection, TFE, and DBN-based classification.

3.1. Band Grouping and Sample Band Selection

Compared to multispectral imagery, hyperspectral imagery with hundreds of spectral bands
has relatively narrow bandwidths. The correlation between spectral bands needs to be considered.
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In our framework, we calculated all the pair wise correlation coefficient of bands, and then utilized
the correlations between adjacent bands. The spectral correlation coefficients in different datasets are
depicted in Figure 3.
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Figure 3. The maps of correlation coefficients of spectral bands in different datasets: (a) Indian Pines;
(b) University of Pavia; and (c) Salinas.

We can obtain the correlation coefficient between adjacent bands as:

ρi,j = corr(Bi, Bj) = cov(Bi, Bj)/
√

var(Bi)var(Bj) (9)

where cov is covariance and var means variance. Bi and Bj represent the i-th and j-th band channels,
respectively. i = 1, 2, . . . , L− 1. Here, L denotes the number of bands of the hyperspectral dataset.
Based on Equation (9), the correlation coefficients between adjacent bands in different datasets are
calculated, as shown in Figure 4. We can see that the highest correlation coefficient in Indian Pines
is 0.9997, and the lowest correlation coefficient is 0.0686. The spectral bands of university of Pavia
have strong correlations overall, where the highest correlation coefficient is 0.9998, and the lowest
correlation coefficient is 0.9294. The highest correlation coefficient in Salinas is 0.9999, and the lowest
correlation coefficient is 0.5856.
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(b) University of Pavia; and (c) Salinas.

Here, we design an algorithm for grouping bands rationally.
Firstly, calculate the average correlation coefficients of the adjacent bands, denoted as C, which is

utilized as the threshold in the following steps. It can be calculated through:

C =
1

L− 1

L−1

∑
i=1

ρi,j (10)

where j = i + 1. If the correlation coefficients of adjacent bands are greater than C, these two bands are
considered to have strong correlation.
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Second, search local minimum values from the correlation coefficients between the adjacent
bands, denoted as ρmin, where ρmin = {ρi,j|ρi,j ≤ ρi+1,j+1 || ρi,j ≤ ρi−1,j−1}. All the elements in ρmin

are compared with C. If the inequality {ρi,j ∈ ρmin} < C is satisfied, it indicates that the correlation
between the i-th band and the j-th band is lower than the average correlation value, and the correlation
between these two bands is considered to be weak. Then, the corresponding index group {i, j} is
recorded and added to the set ρLoc.

Third, band grouping depends on the stored index pairs in ρLoc. For instance, with regard to
index pair {i, j}, the i-th band is set as the end band of the former band group and the j-th band is set
as the first band of the next band group. Thus, based on the aforementioned rules, all the bands are
divided into different band groups {G1, G2, · · · , GK}.

After dividing all the bands of hyperspectral dataset into different band groups, a sample band
with the strongest and clearest texture features is searched and selected from each group.

To extract texture features, the gray level co-occurrence matrix (GLCM) has been employed
successfully. GLCM [34] is defined as a matrix of frequencies which can extract second order statistics
from a hyperspectral image. The distribution in the matrix depends on the angular and distance
relationship between pixels. After the GLCM is created, it can be used to compute various features.
We choose the five most commonly used features in Table 1 to select a sample band from each band
group. The texture feature score of each band can be calculated by Equation (11):

T =
5

∑
i=1

Fi (11)

Table 1. Feature calculated from the normalized co-occurrence matrix P(i, j).

No. Feature Formula

F1 Energy ∑i ∑j P2(i, j)
F2 Entropy ∑i ∑j P(i, j) log P(i, j)
F3 Contrast ∑i ∑j (i− j)2P(i, j)
F4 Mean 1

m∗n ∑i ∑j |i− j|P(i, j)

F5 Homogeneity ∑i ∑j
P(i,j)

1+|i−j|

The sample band in each band group can be selected through:

gk = argmax
Blk

{
TBlk

∣∣∣Blk ∈ Gk

}
, (12)

where Gk represents the k-th band group of the dataset, lk ∈ {1, 2, · · · , Nk}, Nk is the number of bands
in the k-th band group, and Blk represent the lk-th band in the k-th band group. Finally, the sample
band set are comprised of {g1, g2, · · · , gk}.

3.2. Texture Feature Enhancement

As an effective edge-preserving filter, guided filter (GF) was proposed by He in 2012. It can
enhance the detail of an image. Texture feature is a kind of important spatial characteristics and also
has long history in image processing. In this paper, we utilize the GF in each band group to enhance
the texture features of the image.

The general guided image filtering was designed for gray-scale images or color images. It is very
easy to extend to multi-channel image. Firstly, the guidance image in our proposed framework is
multi-channel image, denoted as IM, which is comprised of the copies of the band with the strongest
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texture features in each band group. We assume qM is a linear transform of IM in a window ωk centered
at the pixel k, and the multi-channel guided filter model can be expressed as

qM
i = (aM

k )
T

IM
i + bM

k , ∀i ∈ ωk (13)

where IM
i is a C× 1 vector, and C is the channel number of the input image, aM

k is a C× 1 coefficient
vector, and qM

i and bM
k are scalars. The guided filter for multi-channel guidance image becomes

aM
k = (∑k +εU)−1( 1

|ω| ∑
i∈ωk

IM
i pM

i − µk pM
k )

bM
k = pM

k − (aM
k )

T
µk

qM
i = (aM

i )
T

IM
i + bM

i

, (14)

where ∑k is the C × C covariance matrix of IM in ωk, U is an C × C identity matrix, pM denotes a
filtering input image which is given beforehand according to the application, µk is the mean of IM in

ωk, pM
k is the mean of pM in ωk, and |ω| represents the number of pixels in ωk.
Then, the extending guided image filtering for multi-channel images will be applied to each band

group. For instance, each channel of the guidance image IM in Equation (14) for the k-th band group
Gk is the copy of the sample band gk selected previously.

After guided filtering for all groups is completed, the output bands are restored to a hyperspectral
image cube according to the band number. Finally, the reconstructed image data with enhanced texture
features are obtained through the aforementioned steps. Figure 5 demonstrates the procedure of
band grouping and TFE. We can see that, after sample bands with strongest textures are obtained,
the reconstructed image data with enhanced texture feature can be achieved through the GF process.
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3.3. DBN Classification Model

In this section, a DBN-based framework for hyperspectral classification with feature enhanced
data is developed.

Spectral information is the most significant and direct feature, and can be directly utilized for
classification. Architectures of existing methods, such as SVM and KNN, can extract spectral features
but not deep enough. Therefore, only a deep architecture can make full use of the texture enhanced
hyperspectral image characteristics. However, as the training samples are limited, the overfitting
problem often occurs if the network is too deep, so we advocate a novel DBN framework, which has
only two hidden layers (Figure 6).
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The input data consist of training samples that are one-dimensional (1-D) vectors, and each pixel
of a training sample is collected from the texture enhanced HSI data. For ease of description, the first
hidden layer is denoted as h1 and the second h2. The first layer is learned for extracting features from
the input data, and the learned features are preserved in h1. Then, to pursue refined and abstract
features, using the features contained in h1 as the visible data of the second layer, h2 keeps the refined
features. This procedure is generally called recursive greedy learning for pre-training a DBN.

In practice, learning each layer is often performed through the n-step CD, and the weights are
updated using Equations (6)–(8).

To fine-tune the DBN and accomplish classification, a Softmax layer is added to the end of
the network.

Now, let X = {x1, x2, . . . , xK} be a set of training samples and Y = {y1, y2, . . . , yK} be the
corresponding labels, where xk = [xk1, xk2, . . . , xkL]

T is the spectral signature of the k-th sample
with L bands. Utilizing the maximum likelihood method, the objective function can be written as

C(θ) = −
K

∑
k=1

log(P(yk|xk),θ) = −
K

∑
k=1

log(Syk (xk,θ)) (15)

where K is the number of training samples, (P(yk|xk),θ) means the distribution of yk when given xk
with the parameters θ of the Softmax layer, and Syk (xk,θ) denotes the output of the Softmax layer of
the k-th training sample, that is

Syk (xk,θ) =
exp{−

M
∑

m=1
δ(yk = m)θT

mhHL}

M
∑

n=1
exp{−θT

n hHL}
, (16)

where HL is the number of the hidden layers, which is set to 2 in our proposed framework, and M
is the number of the classes. θm and θn are the parameter vectors for the m-th and n-th unit of the
softmax layer, respectively. hHL is the output of the HL-th hidden layer, which is calculated via the
input data, the weights and bias from the first layer to the HL-th hidden layer. To optimize the objective
function, the stochastic gradient descent (SGD) algorithm is used. Finally, the label of each testing
pixel is determined via the weights and biases from aforementioned steps.

4. Experiments

4.1. Datasets

In this section, three typical hyperspectral datasets, namely Indian Pines, University of Pavia and
Salinas, are employed to compare the proposed DBN classification method with other state-of-the-art
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methods. In these experiments, we randomly select 300 labeled pixels per class for training, of which
20 samples are utilized for validation. The remaining pixels of labeled data are used for testing.
Furthermore, each pixel is uniformly scaled to the range of −1 to 1.

The first experiment is Indian Pines dataset, which was gathered by Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) sensor in northwestern Indiana. There are 220 spectral channels in 0.4
to 2.45 µm region with spatial resolution of 20 m. It consists of 145 × 145 pixels with 200 bands after
removing 20 noisy and water absorption bands. Here, we employ 8 large classes in this experiment.
The numbers of training and testing samples are listed in Table 2.

Table 2. Number of training and testing samples used in the Indian Pines dataset.

No. Classes Training Testing

1 Corn-notill 300 1160
2 Corn-mintill 300 534
3 Grass-pasture 300 197
4 Hay-windrowed 300 189
5 Soybean-notill 300 668
6 Soybean-mintill 300 2168
7 Soybean-clean 300 314
8 Woods 300 994

Total 2400 6224

The second dataset with 610 × 340 pixels is the University of Pavia, which was acquired by
the Reflective Optics System Imaging Spectrometer (ROSIS) during a flight campaign over Pavia,
northern Italy. The ROSIS sensor cover 115 spectral bands from 0.43 to 0.86 µm and the geometric
resolution is 1.3 m. Each pixel has 103 bands after discarding bad bands. There are 9 ground-truth
classes with the number of labeled samples shown in Table 3.

Table 3. Number of training and testing samples used in the Pavia University dataset.

No. Classes Training Testing

1 Asphalt 300 6331
2 Meadows 300 18,349
3 Gravel 300 1799
4 Trees 300 2764
5 Painted metal sheets 300 1045
6 Bare Soil 300 4729
7 Bitumen 300 1030
8 Self-Blocking Bricks 300 3382
9 Shadows 300 647

Total 2700 40,076

The third experiment is on Salinas dataset, which was also collected by the AVIRIS sensor,
capturing an area over Salinas Valley, California, with a spatial resolution of 3.7 m. The area comprises
512 × 217 pixels with 204 bands after removing noisy and water absorption bands. It mainly contains
vegetables, bare soils, and vineyard fields. There are 16 different ground-truth classes, and the numbers
of training and testing samples are listed in Table 4.

Our experiments are implemented using Matlab 2015b which is manufactured by Mathworks in
Massachusetts, US. The CPU we employed is Intel Core i5-3470. The basic frequency is 3.200 GHz.
The operation system is Win7 with 64 bits.
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Table 4. Number of training and testing samples used in the Salinas dataset.

No. Classes Training Testing

1 Brocoli_green_weeds_1 300 1709
2 Brocoli_green_weeds_2 300 3426
3 Fallow 300 1676
4 Fallow_rough_plow 300 1094
5 Fallow_smooth 300 2378
6 Stubble 300 3659
7 Celery 300 3279
8 Grapes_untrained 300 10,971
9 Soil_vinyard_develop 300 5903

10 Corn_senesced_green_weeds 300 2978
11 Lettuce_romaine_4wk 300 768
12 Lettuce_romaine_5wk 300 1627
13 Lettuce_romaine_6wk 300 616
14 Lettuce_romaine_7wk 300 770
15 Vinyard_untrained 300 6968
16 Vinyard_vertical_trellis 300 1507

Total 4800 49,329

4.2. Parameters Tuning and Analysis

In our proposed framework, we have several parameters that need to be adjusted: the number
of hidden units, the learning rate, the max epoch and the number of hidden layers. In this section,
some tuning experimental results are listed for selecting proper values. Both the number of hidden
layers and the number of hidden units in hidden layers play an important role in classification
performance. A suitable number of hidden layers and neurons can make full use of texture
enhanced hyperspectral data without over-training, and can support a fitting mapping from original
hyperspectral data to hyperspectral features. In the training process of DBN, the learning rate controls
the pace of learning. It implies that a too large learning rate will lead an unstable output of training,
and a too small learning rate will lead a longer training process. Therefore, an appropriate learning
rate can expedite our training procedure with satisfactory performance.

In Figure 7, we can see that our proposed framework achieves best classification accuracy with
200 hidden neurons in each hidden layer. It demonstrates that 200 is a suitable number of hidden
neurons. Figure 8 depicts the relationship between accuracies and the learning rates. It can be seen
that the values of learning rate from 0.15 to 0.2 can obtain better performance. Therefore, we select
0.15 for the first RBM, and 0.2 for the second RBM. To determine the max epoch, we set the range of
max epoch from 50 to 500. Figure 9 demonstrates that, when max epoch reaches 300, our proposed
framework can achieve best classification performance. Consequently, the max epoch is set to 300.
Table 5 lists the accuracies achieved with different numbers of hidden layers in DBN. When employing
two hidden layers, the classification performance of DBN can achieve superior results. Thus, in our
proposed framework, we set the number of hidden layers to 2.

In our paper, we utilize Graycomatrix function in Matlab to calculate the GLCM.
The parameters used in experiments are “NumLevels” and “Offset”, and they are set to 8 and
[0, 3; −3, 3; −3, 0; −3, −3], respectively.
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Table 5. The accuracies obtained via different numbers of hidden layers in DBN.

Datasets 1 Layer 2 Layers 3 Layers 4 Layers

Indian Pines 0.8919 0.8948 0.8892 0.8432
University of Pavia 0.9090 0.9123 0.9065 0.8994

Salinas 0.9123 0.9228 0.9104 0.9064

4.3. Evaluation Criteria

The evaluation criteria used in our paper are overall accuracy (OA), average accuracy (AA),
precision, and Kappa. Especially, OA, Precision and Kappa are highlighted for assessment of the
proposed framework.
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Figure 10 demonstrates a p-class confusion matrix. Based on Figure 10, AA and precision can be
derived as [35]

PAA =
1
p
(

p

∑
i=1

nii

∑
p
j=1 nji

) (17)

Pprecision =
1
p
(

p

∑
i=1

nii

∑
p
j=1 nij

) (18)

where p is the number of classes. N is the total number of the hyperspctral image data samples and
N = ∑

p
i=1 ni. nii is the number of hyperspectral image samples in the i-th class to be classified into the

i-th class, and nji is the number of hyperspectral image samples in the i-th class to be classified into the
j-th class.
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We also take the nonparametric McNemar’s test based on the standardized normal test statistic to
evaluate the statistical significance in the improvement of OA with different hyperspectral classification
algorithms. The McNemar’s test statistic for two different algorithms noted as Algorithm 1 and
Algorithm 2 can be calculated as [36]:

z = ( f12 − f21)/
√

f12 + f21, (19)

where f12 denotes the number of samples misclassified using Algorithm 2 but not Algorithm 1, and f21

means the number of samples misclassified using Algorithm 1 but not Algorithm 2. |z| is the absolute
value of z. For 5% level of significance, the |z| value is 1.96. If a |z| value is greater than this quantity,
the two classification algorithms have significant discrepancy.

5. Experimental Results and Discussion

In this section, the proposed TFE and the novel classification framework will be evaluated and
the relevant results will be summarized and discussed in detail.

5.1. Compared Methods and Band Groups

To analyze and evaluate our proposed algorithm, which combines the TFE and the optimal DBN
efficiently, existing algorithm, such as SVM with Radial Basis Function kernel (SVM-RBF), the Radical
Basis Function neural network (RBFNN) and CNN, are employed for comparison purpose. Besides,
we also compare with a state-of-the-art spectral–spatial algorithm called EPF-G-c [22]. All these
algorithms are widely used with excellent performance in hyperspectral image classification tasks,
especially EPF-G-c. In addition, for evaluating our proposed texture feature enhancement (TFE)
algorithm, we also applied TFE algorithm on the traditional SVM-RBF and RBFNN. All experiments
are repeated 10 times with the average classification results demonstrated for comparison.

According to our proposed band grouping solution, the bands of Indian Pines can be divided into
41 groups: 1, 2, 3, 4–17, 18, 19–33, 34, 35, 36, 37–56, 57, 58–60, 61, 62, 63–74, 75, 76, 77–82, 83, 84, 85, 86,
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87, 88, 89, 90, 91, 92–93, 94, 95, 96–97, 98–102, 103, 104, 105, 106–143, 144, 145, 146–198, 199 and 200.
The bands of University of Pavia can be divided into 19 groups: 1, 2, 3, 4, 5, 6, 7, 8–68, 69, 70, 71, 72, 73,
74, 75, 76, 77, 78–84 and 85–103. The bands of Salinas can be divided into 21 groups: 1, 2, 3, 4, 5–35, 36,
37, 38, 39, 40, 41–104, 105–106, 107, 108, 109–146, 147, 148, 149–201, 202, 203 and 204. All these band
groups are employed in the TFE algorithm.

5.2. Discussion on Effectiveness of the Proposed TFE

Figure 11 demonstrates the reconstructions of border and inner pixels of four classes after TFE
in Indian Pines dataset. The first image of each row depicts the locations of border and inner pixels.
The reconstruction and reconstructed error of the border pixel are demonstrated in the second image of
each row. Meanwhile, the reconstruction and reconstructed error of the inner pixel are demonstrated
in the third image.
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First row is the reconstruction information of Class 2, second row is the reconstruction information
of Class 4, third row is the reconstruction information of Class 6 and last row is the reconstruction
information of Class 8.

In hyperspectral classification, some spectra of the hyperspectral image are distorted through
imaging noise or low spatial resolution, especially border-pixels, therefore the difficulty of
hyperspectral classification primarily focuses on the correct classification of the border pixels.
In Figure 11, it can be seen that, by utilizing TFE, the reconstructed border pixels become different
from the original border pixels, and the reconstructed inner pixels are nearly the same as the original
inner pixels, which implies that TFE plays an important role for border pixels. TFE can make border
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pixels distinct with its characteristics and more similar to their original spectra. Hence, the texture
feature of the hyperspectral image become more obvious and clear. Consequently, the pixels that are
difficult to distinguish can be recognized more easily than before with clearer texture feature. In other
words, TFE has a positive effect for enhancing hyperspectral classification performance.

5.3. Discussion on Classification Results and Statistical Test

Table 6 provides the classification performance on Indian Pines achieved by different
classification algorithms: SVM, RBFNN, optimal DBN (O_DBN), SVM combined with TFE
(SVM_TFE), RBFNN combined with TFE (RBFNN_TFE), CNN, EFP-G-c and our proposed framework.
O_DBN denotes the optimal DBN we proposed but without TFE. The SVM_TFE and RBFNN_TFE
are two algorithms combined with the TFE method. The classification accuracy of each class is also
listed in this table. In Table 6, we can see that our proposed framework can obtain the superior
performance compared with other algorithms. Meanwhile, the optimal DBN has the best classification
accuracy compared to the other algorithms without TFE, such as SVM and RBFNN. Although EFP-G-c
is an outstanding spectral–spatial hyperspectral classification algorithm, our proposed framework
utilizing TFE still has slightly better classification accuracy. Besides, SVM_TFE and RBFNN_TFE
outperform SVM and RBFNN, respectively. The OA of SVM_TFE is 5.06% greater than SVM, and the
OA of RBFNN_TFE is 8.97% higher than RBFNN. Compared with O_DBN, the OA obtained via our
proposed framework improved by 8.08% and the Kappa increased by 9.98%. All these facts indicate
the successful effects of TFE and demonstrates that our proposed framework and TFE have good
influence on Indian Pines in hyperspectral classification.

Table 6. Classification accuracy of different algorithms on Indian Pines.

Class SVM RBFNN O_DBN SVM_TFE RBFNN_TFE CNN EPF-G-c Our Proposed

1 0.8578 0.8672 0.8562 0.9069 0.9638 0.9107 0.9757 0.9690
2 0.9251 0.9288 0.9532 0.9625 0.9944 0.7783 0.9736 0.9888
3 0.9391 0.9543 0.9594 0.9594 0.9949 0.8462 0.9314 0.9594
4 0.9841 1 0.9947 1 1 0.9793 0.9793 1
5 0.9162 0.9237 0.9172 0.9506 0.9910 0.7842 0.9268 0.9880
6 0.8054 0.7975 0.8189 0.8962 0.9553 0.9348 0.9855 0.9613
7 0.9363 0.9459 0.9490 0.9522 0.9809 0.8442 0.9873 0.9682
8 0.9940 0.9950 0.9909 1 1 0.9929 0.9881 1

OA 0.8837 0.8854 0.8948 0.9343 0.9751 0.8983 0.9754 0.9756
AA 0.9197 0.9265 0.9270 0.9535 0.9850 0.8838 0.9685 0.9793

Kappa 0.8559 0.8582 0.8617 0.9180 0.9688 0.8736 0.9692 0.9694

Table 7 lists the classification precision achieved via these different classification algorithms.
In Table 7, we can see that the precision of our proposed algorithm outperforms SVM, RBFNN,
O_DBN, SVM_TFE, RBFNN_TEF, CNN and EPF-G-c. In addition, the methods associated with TFE
have better classification precision than without TFE.

Table 7. Classification precision of different algorithms on Indian Pines.

Class SVM RBFNN O_DBN SVM_TFE RBFNN_TFE CNN EPF-G-c Our Proposed

1 0.8585 0.8643 0.8563 0.9132 0.9646 0.8440 0.9474 0.9571
2 0.7577 0.7631 0.7496 0.8877 0.9620 0.9270 0.9606 0.9661
3 0.9113 0.9353 0.8400 0.8873 0.9849 0.9492 0.9645 0.9692
4 0.9688 0.9844 0.9495 0.9895 1 1.0000 1 1
5 0.7917 0.7434 0.8037 0.8675 0.9272 0.9087 0.965 0.9396
6 0.9307 0.9341 0.9417 0.9643 0.9862 0.8538 0.9686 0.9836
7 0.7861 0.8710 0.8466 0.8617 0.9716 0.9490 0.9936 0.9882
8 0.9930 0.9940 0.9970 0.9990 1 0.9909 1 1

Precision 0.8747 0.8862 0.8731 0.9213 0.9746 0.9278 0.9750 0.9755



Remote Sens. 2018, 10, 396 15 of 20

Tables 8 and 10 present the classification accuracy acquired via different algorithms for University
of Pavia and Salinas datasets. Meanwhile, Tables 9 and 11 also list the precisions obtained through our
proposed model and other classification algorithms on different datasets. It is obvious in Tables 8 and 10
that our proposed framework has better performance than other classification methods. Especially,
we can see that all algorithms that integrate TFE outperform those without TFE. By employing the TFE,
the performance of SVM increased by 5.78% in University of Pavia and 1.75% in Salinas, while the
performance of RBFNN improved by 6.8% in University of Pavia and 1.55% in Salinas. The OA
achieved by the proposed framework is 6.55% higher than the OA achieved via optimal DBN in
University of Pavia and 3.94% larger than the OA achieved via optimal DBN in Salinas. Furthermore,
the proposed classification framework has better performance than CNN and EPF-G-c. As for kappa
coefficients, we can see that our proposed framework has better consistency. The possible reason is
the ability of our proposed framework, as a deep network, to extract high-level features of data is
stronger than the RBFN and the SVM, as shallow networks, thus the description ability of our proposed
framework is more stable. In Tables 9 and 11, the precisions obtained through our proposed model on
different datasets are better than precisions achieved via other algorithms. Furthermore, our proposed
TFE has a positive effect on classification accuracy.

Table 8. Classification accuracy of different algorithms on University of Pavia.

Class SVM RBFNN O_DBN SVM_TFE RBFNN_TFE CNN EPF-G-c Our Proposed

1 0.7466 0.7733 0.8650 0.8534 0.9029 0.9758 0.9579 0.9458
2 0.8442 0.8980 0.9281 0.9058 0.9601 0.9832 0.9993 0.9728
3 0.8533 0.8377 0.8410 0.8922 0.9305 0.7795 0.9511 0.9550
4 0.9801 0.9602 0.9765 0.9772 0.9787 0.9096 0.9677 0.9881
5 0.9990 0.9990 0.9990 0.9981 0.9971 0.9830 0.9372 0.9990
6 0.9108 0.9492 0.9125 0.9558 0.9903 0.8153 0.9263 0.9873
7 0.9456 0.9583 0.8990 0.9544 0.9932 0.6680 0.9885 0.9893
8 0.8430 0.8628 0.8613 0.9101 0.9571 0.8562 0.9421 0.9438
9 1 1 0.9985 1 1 0.9985 0.9895 1.0000

OA 0.8555 0.8888 0.9123 0.9133 0.9568 0.9211 0.9671 0.9696
AA 0.9025 0.9154 0.9201 0.9385 0.9678 0.8855 0.9622 0.9757

Kappa 0.8103 0.8525 0.8824 0.8845 0.9418 0.8943 0.9590 0.9590

Table 9. Classification precision of different algorithms on University of Pavia.

Class SVM RBFNN O_DBN SVM_TFE RBFNN_TFE CNN EPF-G-c Our Proposed

1 0.9795 0.9798 0.9675 0.9836 0.9877 0.8531 0.9822 0.9837
2 0.9720 0.9841 0.9763 0.9869 0.9980 0.9341 0.9756 0.9978
3 0.6657 0.6905 0.7568 0.7803 0.8876 0.8766 0.9711 0.9261
4 0.7657 0.8906 0.8207 0.9122 0.9808 0.9678 0.9642 0.9437
5 0.9831 0.9981 0.9849 0.9943 1 0.9981 0.9900 0.9877
6 0.6714 0.7388 0.7735 0.7456 0.8639 0.9484 0.9450 0.9189
7 0.5084 0.5583 0.6515 0.7567 0.8575 0.9592 0.9157 0.9586
8 0.8312 0.8028 0.8645 0.8394 0.8772 0.8752 0.9864 0.9117
9 1 1 0.9985 0.9985 1 0.9985 0.8779 0.9969

Precision 0.8197 0.8492 0.8660 0.8886 0.9392 0.9345 0.9565 0.9583
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Table 10. Classification accuracy of different algorithms on Salinas Dataset.

Class SVM RBFNN O_DBN SVM_TFE RBFNN_TFE CNN EPF-G-c Our Proposed

1 0.9965 0.9971 0.9947 0.9982 0.9988 1.0000 1.0000 0.9947
2 0.9947 0.9947 1 0.9956 0.9950 0.9933 0.9994 0.9962
3 0.9976 0.9988 0.9976 0.9976 0.9982 0.9589 0.9994 0.9976
4 0.9963 0.9963 0.9963 0.9954 0.9954 0.9838 0.9973 0.9973
5 0.9886 0.9849 0.9811 0.9874 0.9899 0.9898 0.9992 0.9853
6 0.9981 0.9986 0.9978 0.9981 0.9981 0.9995 0.9984 0.9973
7 0.9970 0.9963 0.9957 0.9960 0.9966 0.9988 0.9989 0.9963
8 0.8606 0.8567 0.8315 0.8761 0.8893 0.8379 0.8690 0.9085
9 0.9934 0.9985 0.9939 0.9942 0.9966 0.9896 0.9911 0.9949
10 0.9661 0.9758 0.9426 0.9698 0.9775 0.8848 0.9715 0.9614
11 0.9987 0.9961 0.9961 0.9987 0.9987 0.8919 1 1
12 0.9994 1 1 0.9994 1 0.9685 0.9992 0.9994
13 0.9968 0.9951 0.9984 0.9951 0.9951 0.9534 0.9987 0.9968
14 0.9792 0.9857 0.9948 0.9857 0.9805 0.9159 0.9978 0.9948
15 0.6972 0.7336 0.7646 0.7941 0.7916 0.7673 0.8856 0.9127
16 0.9920 0.9900 0.9854 0.9920 0.9914 0.9695 1 0.9887

OA 0.9212 0.9266 0.9228 0.9387 0.9421 0.9155 0.9543 0.9622
AA 0.9658 0.9687 0.9669 0.9733 0.9746 0.9439 0.9816 0.9826

Kappa 0.9114 0.9175 0.9133 0.9312 0.9350 0.9051 0.9486 0.9575

Table 11. Classification precision of different algorithms on Salinas Dataset.

Class SVM RBFNN O_DBN SVM_TFE RBFNN_TFE CNN EPF-G-c Our Proposed

1 0.9988 0.9994 0.9971 0.9994 1 0.9801 1 1
2 0.9985 0.9985 0.9980 0.9994 0.9994 0.9947 0.9995 0.9991
3 0.9744 0.9721 0.9489 0.9830 0.9824 0.9976 0.9782 0.9682
4 0.9909 0.9864 0.9847 0.9918 0.9900 0.9973 0.9991 0.9900
5 0.9941 0.9970 0.9978 0.9920 0.9895 0.9315 0.9987 0.9924
6 0.9995 0.9997 0.9884 0.9992 0.9995 0.9978 0.9997 0.9940
7 0.9966 1 1 0.9951 1 0.9957 0.9991 0.9973
8 0.8209 0.8372 0.8592 0.8729 0.8726 0.8952 0.9162 0.9415
9 0.9956 0.9916 0.9898 0.9931 0.9927 0.9810 0.9475 0.9926
10 0.9517 0.9735 0.8699 0.9534 0.9674 0.9325 0.9627 0.9487
11 0.9808 0.9922 0.8242 0.9935 0.9948 0.9831 0.9994 0.9785
12 0.9909 0.9897 0.9748 0.9933 0.9921 1.0000 0.9987 0.9933
13 0.9777 0.9919 0.9935 0.9871 0.9839 0.9968 0.9920 0.9731
14 0.8737 0.9245 0.8235 0.9256 0.8945 0.9506 0.9359 0.8899
15 0.7803 0.7747 0.7344 0.8187 0.8341 0.5128 0.7777 0.8559
16 0.9701 0.9920 0.9861 0.9658 0.9953 0.9854 0.9946 0.9900

Precision 0.9559 0.9638 0.9356 0.9665 0.9680 0.9458 0.9687 0.9690

Figures 12–14 demonstrate the classification maps obtained in Indian Pines, University of Pavia
and Salinas, respectively. Clearly, the classification maps shown in Figures 12–14 achieved by our
proposed framework are the smoothest and clearest. The classification accuracy of border pixels in these
datasets is improved greatly and the boundaries of different classes are more distinct. Compared to
other classification algorithms, the results of our proposed framework are better because they contain
less salt-and-pepper noise.
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truth, (b) SVM, (c) RBFNN, (d) O_DBN, (e) SVM_TFE, (f) RBFNN_TFE, (g) CNN, (h) EFP-G-c and
(i) the proposed framework.

Table 12 presents the average |z| values achieved from Indian Pines, Pavia University and Salinas
of the proposed classification framework as well as other classification algorithms. A “yes” here
denotes the two classification algorithms in McNemar’s test have significant performance discrepancy.
Obviously, the proposed classification framework is statistically different from its counterparts with
5% significance level.

Table 12. (|z| values/Siginificant?) in the McNemar’s Test.

Algorithms Indian Pines Pavia University Salinas

SVM 31.16/Yes 68.33/Yes 41.19/Yes
RBFNN 31.34/Yes 69.27/Yes 41.39/Yes
O_DBN 2.78/Yes 3.74/Yes 3.32/Yes

SVM_TFE 31.95/Yes 73.29/Yes 41.21/Yes
RBFNN_TFE 32.82/Yes 74.84/Yes 42.49/Yes

CNN 3.50/Yes 3.00/Yes 4.49/Yes
EPF_G_c 32.16/Yes 75.13/Yes 41.21/Yes

Note: 5% significance level is selected.

6. Conclusions

In this paper, we investigate a novel hyperspectral classification framework based on an optimal
DBN algorithm. In our proposed framework, we develop a new TFE algorithm that employs
multi-texture features and band grouping method. The resulting classification framework can offer
better classification accuracy than other classic algorithms. To further test our proposed TFE algorithm,
a series of experiments based on the combination of the state-of-the-art algorithms and the TFE
algorithm are applied on the three classic hyperspectral datasets. Experimental results demonstrate
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that the algorithms with TFE outperform those without TFE, which implies that our proposed TFE
can play an important role in improving hyperspectral classification performance. We believe that the
proposed hyperspectral classification framework based on the optimal DBN and TFE is more suitable
to process hyperspectral data in practical applications when training samples are limited.
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