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Abstract: The intensive rice cultivation area in northwestern Italy hosts the largest surface of
rice paddies in Europe, and it is valued as a substantial habitat for aquatic biodiversity, with the
paddies acting as a surrogate for the lost natural wetlands. The extent of submerged paddies strictly
depends on crop management practices: in this framework, the recent diffusion of rice seeding in dry
conditions has led to a reduction of flooded surfaces during spring and could have contributed to
the observed decline of the populations of some waterbird species that exploit rice fields as foraging
habitat. In order to test the existence and magnitude of a decreasing trend in the extent of submerged
rice paddies during the rice-sowing period, MODIS remotely-sensed data were used to estimate
the extent of the average flooded surface and the proportion of flooded rice fields in the years
2000–2016 during the nesting period of waterbirds. A general reduction of flooded rice fields during
the rice-sowing season was observed, averaging −0.86± 0.20% per year (p-value < 0.01). Overall,
the loss in submerged surface area during the sowing season reached 44% of the original extent in
2016, with a peak of 78% in the sub-districts to the east of the Ticino River. Results highlight the
usefulness of remote sensing data and techniques to map and monitor water dynamics within rice
cropping systems. These techniques could be of key importance to analyze the effects at the regional
scale of the recent increase of dry-seeded rice cultivations on watershed recharge and water runoff
and to interpret the decline of breeding waterbirds via a loss of foraging habitat.

Keywords: rice monitoring; flooding fraction; water management; remote sensing; MODIS; NDFI;
waterbirds; water seeding

1. Introduction

Habitat loss is one of the most important threats to biodiversity and is regarded as the major cause
of species extinction [1]. This is especially true for freshwater environments, which host 6% of known
animal species despite covering only 0.8% of the Earth’s surface [2] and which suffered the most
pronounced decline in biodiversity in recent years [3]. In Mediterranean Europe, 80–90% of the natural
wetlands have disappeared during the last two centuries mainly due to land reclamation [4], making
artificial water surfaces—such as paddy rice fields—a valuable surrogate for the lost natural wetlands
as potential habitat for aquatic wildlife communities [5], and particularly for waterbirds [6–13].
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1.1. Agronomic Techniques for Water Management: Recent Changes

This study focuses on the largest district of intensive rice cultivation within Europe, located in
northwestern Italy over a surface area of 20,000 km2, and accounting for 93% and 46% of the total rice
paddy surface in Italy [14] and in Europe [15], respectively.

The traditional cultivation and flooding regime adopted throughout the study area until 1990
involved permanent flooding, which provided optimal thermal conditions for rice growth and helped
to control weeds. Water was obtained from rivers in the northern part of the study area and distributed
through a network of channels managed by local irrigation authorities (Consorzi d’irrigazione).
Flooding started in early April in the northern part of the rice district (closer to the irrigation sources)
and reached the southern part about the end of April. Rice was sown in water, and submersion lasted
until August when the paddies were gradually left to dry [16]. After 1990, farmers started however
to adopt a new cultivation technique—dry seeding with delayed flooding—over increasingly large
surfaces, with the objective of reducing the costs of both water purchase and farming equipment.
This technique involves sowing on dry soil, keeping the soil moist (but not flooded) by short irrigation
bouts until the unfolding of the first 2–4 leaves (approximately one month after germination), and then
flooding the fields. As demonstrated in Italy, Australia and Japan [17–19], it allows farmers to reduce
the water needs, to use less seeds [20] and to use standard machinery for rice seeding. It is worth
noting that, since dry-seeded rice is more subject to nocturnal thermal stress, implementation of this
practice in temperate areas was only made possible by the warmer temperatures observed in the last
few decades.

1.2. The Importance of Monitoring Standing Water Dynamics

During the last decades of the 20th Century, rice fields provided the main foraging habitat for
several species of waterbirds that nest in the study area, the most abundant of which were the herons
and egrets of the family Ardeidae.

The breeding populations of these herons and egrets have shown an increasing trend from
the 1970s to the end of the 20th Century, due to favorable climatic and environmental conditions
and to a diminished human-related mortality [21]. However, recent studies [22,23] showed that the
number of nests of the two most abundant species, the grey heron (Ardea cinerea) and the little egret
(Egretta garzetta), decreased in 2016 to about half of that of 2000. Their number continued instead
to increase in adjacent natural wetlands, or in the small streams of the uplands above 200 m a.s.l.
(Figure 1). The total surface of rice paddies in northwestern Italy remained fairly stable (2048 km2 in
2000, 2139 km2 in 2010, 1989 km2 in 2015; data from [15] and Ente Nazionale Risi, unpublished data; see
Section 2.3). Moreover, other possible negative impacts on heron populations such as human-induced
mortality and egg contamination by environmental pollutants had already declined sharply before
2000 [21]. The most probable cause of such a population decrease is therefore the above-described
drastic change in rice cultivation practices happening after 1990, which reduced the suitability of rice
paddies as foraging habitat for waterbirds.Remote Sens. 2018, xx, x 3 of 24
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Figure 1. Total number of nests of the two most abundant breeding waterbirds, the grey heron and the
little egret, in north-western Italy during the time window analysed in this study, compared to their
predominant foraging habitat [22,23].

In this context, the possibility to map how the adoption of the two main seeding practices changed
during the last years could be useful in the framework of studies concerning the population dynamics
of waterbird populations.

Geospatial information concerning the extent and changes in rice seeding practices is also
important for agronomic reasons and in relation to water management. Rice seeding under flooding,
while requiring a large amount of water availability (15,000–20,000 m3/ha [24]), allows for a better
soil drainage, since aquifers rise during flooding. On the contrary, dry seeding requires instead less
water and leads to lower evapotranspiration losses [25], but the water loss by percolation is higher,
especially during the first flooding events (beginning of summer), when water availability is generally
lower [16,17]. Moreover, a delayed maximum water requirement (at the beginning of June instead
than at the end of April) can cause a competition with other crops, with consequent problems for water
management at district scale [26]. The possibility to monitor the reductions in both extent and timing
of flooding would be crucial to monitor areas in which water availability could be problematic, and
eventually to address management actions by public stakeholders to prevent water stress problems.

1.3. Remote Sensing Contribution for Flooding Detection

Remote sensing data and techniques are widely used to map and monitor the extent of flooded
surfaces [27]. Most of the studies dealing with the detection of inundated areas use medium-resolution
optical imagery such as those acquired by the Landsat-series sensors [28], which is characterised by
a fairly high spatial resolution (30 m for TM, ETM+ and OLI sensors, working since 1982). This is
sufficient for mapping water bodies with few or seasonal variations in their extent like rivers [29–31],
coast lines [32–34], lakes [35], small water bodies [36] or natural stable wetlands [37–40]. However,
their 16-days revisiting time limits their usefulness for detecting rapid flooding events or fast water
dynamics: this is the case for example of disastrous inundations or agronomic flooding, which
persistence can be restricted to only a few days [41]. The recent availability of Sentinel-2 data [42] allows
detecting water bodies at fine spatial resolution (10 m) [43], including flooded rice paddies [44,45] with
a shorter revisiting time of 5 days (thanks to the joint use of Sentinel-2A and Sentinel-2B satellites).
However, due to their novelty, these data do not allow performing an analysis of recent multiannual
trends of the extent of agronomic flooding.

These considerations make the use of coarse-resolution datasets preferable for the analysis of
temporal changes in water management dynamics e.g., [46–50]. In particular, MODIS data [51] appear
to be particularly suitable for these purposes, due to their fast revisiting time (daily), and the relatively
long period of data availability (since 2000). In a recent study, Ranghetti et al. [52] demonstrated that
their spatial resolution, whilst not allowing recognising flooding conditions in single rice paddies, is
sufficient for investigating the spatial and temporal variations of flooded surfaces at regional scale,

Figure 1. Total number of nests of the two most abundant breeding waterbirds, the grey heron and the
little egret, in northwestern Italy during the time window analyzed in this study, compared to their
predominant foraging habitat [22,23].
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In this context, the possibility to map how the adoption of the two main seeding practices changed
during the last few years could be useful in the framework of studies concerning the population
dynamics of waterbird populations.

Geospatial information concerning the extent and changes in rice seeding practices is also
important for agronomic reasons and in relation to water management. Rice seeding under flooding,
while requiring a large amount of water availability (15,000–20,000 m3/ha [24]), allows for a better
soil drainage, since aquifers rise during flooding. On the contrary, dry seeding requires instead
less water and leads to lower evapotranspiration losses [25], but the water loss by percolation is
higher, especially during the first flooding events (beginning of summer), when water availability is
generally lower [16,17]. Moreover, a delayed maximum water requirement (at the beginning of June
instead of at the end of April) can cause competition with other crops, with consequent problems
for water management at the district scale [26]. The possibility to monitor the reductions in both
extent and timing of flooding would be crucial to monitor areas in which water availability could be
problematic and eventually to address management actions by public stakeholders to prevent water
stress problems.

1.3. Remote Sensing Contribution for Flooding Detection

Remote sensing data and techniques are widely used to map and monitor the extent of flooded
surfaces [27]. Most of the studies dealing with the detection of inundated areas use medium-resolution
optical imagery such as those acquired by the Landsat series sensors [28], which is characterized by a
fairly high spatial resolution (30 m for sensors working since 1982). This is sufficient for mapping water
bodies with few or seasonal variations in their extent like rivers [29–31], coast lines [32–34], lakes [35],
small water bodies [36] or natural stable wetlands [37–40]. However, their 16-day revisiting time limits
their usefulness for detecting rapid flooding events or fast water dynamics: this is the case for example
of disastrous inundations or agronomic flooding, the persistence of which can be restricted to only
a few days [41]. The recent availability of Sentinel-2 data [42] allows detecting water bodies at fine
spatial resolution (10 m) [43], including flooded rice paddies [44,45] with a shorter revisiting time of
five days (thanks to the joint use of Sentinel-2A and Sentinel-2B satellites). However, due to their
novelty, these data do not allow performing an analysis of recent multiannual trends of the extent of
agronomic flooding.

These considerations make the use of coarse-resolution datasets preferable for the analysis of
temporal changes in water management dynamics, e.g., [46–50]. In particular, MODIS data [51] appear
to be particularly suitable for these purposes, due to their fast revisiting time (daily) and the relatively
long period of data availability (since 2000). In a recent study, Ranghetti et al. [52] demonstrated that
their spatial resolution, whilst not allowing recognizing flooding conditions in single rice paddies,
is sufficient for investigating the spatial and temporal variations of flooded surfaces at the regional
scale, at least in the first part of the rice growing period. In particular, they showed that multitemporal
MODIS-derived NDFI (Normalized Difference Flood Index [53]) images can be used to derive 1× 1 km
resolution maps of Flooding Fraction (FF: the percentage of flooded surface over the pixel area) within
rice paddies. These maps are characterized by satisfactory accuracy when compared against reference
ground information (R2 = 0.73, EF = 0.57 at 1× 1 km resolution), which makes them useful for
multitemporal regional mapping purposes.

1.4. Aims of the Work

This work aims to investigate the variation in irrigation dynamics occurring in the last 17 years in
the rice paddies of northwestern Italy for an area of about 210,000 ha, by applying the aforementioned
method of Ranghetti et al. [52] to generate seasonal FF maps. In particular, the objective is first to
verify the presence of a temporal trend in the seasonal flooding fraction at rice district and sub-district
levels and then to quantify the proportion of water-seeded rice area and its variations across years.
Such data are fundamental to understand hydrological dynamics and their impact on fresh water
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ecosystems in the study area. In particular, wide area maps of standing water presence are useful to
assess the potential effects of variations in water management practices at the regional scale on water
table recharge and channels’/rivers’ water runoff. Moreover, these data, together with information on
other aspects of the foraging ecology of waterbirds within the study area [54] could help shed light on
the factors determining the recent decrease of their breeding populations.

2. Methods and Materials

2.1. Study Area

The study area includes the whole main rice district of northwestern Italy, located between
Piedmont and Lombardy along the rivers Sesia, Ticino and Po (Figure 2).

The area was delimited using official municipality boundaries, in order to provide results that
can be compared with official statistics. Rice is by far the dominant crop in the northwestern portion
of this area (provinces of Novara and Vercelli), while in the southeastern one (Pavia and Milano),
rice fields are more mingled with other crops including both summer crops (e.g., corn, soybean),
winter crops (wheat and barley) and permanent meadows used for forage production. The area derives
the water required for rice paddy flooding from five main irrigation networks (for details, see Figure 2
and Table 1). To highlight local differences in terms of water management and their variations,
municipalities were therefore aggregated into seven sub-districts, based on the irrigation network to
which they belonged (Table 1). Due to their large dimensions, the Est Sesia and Est Ticino Villoresi
networks were further divided according to administrative boundaries (provinces). It is worth noting
that small areas belonging to other irrigation networks could be included in each sub-district, since the
municipalities’ boundaries used to delimit the sub-districts do not always exactly coincide with
boundaries of the irrigation network. However, this simplification does not affect the overall approach
devoted to regional analysis.
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Figure 2. Localization of the northwestern Italian rice district. The rice-cultivated surface is shown in
green, while non-arable land is shown in grey; thick lines and letters denote the sub-districts identified
for the analyses (see Table 1 for details); thin lines denote municipality boundaries.
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Table 1. Characteristics of the rice district and sub-districts. “Rice area” is the surface classified as “rice”
in the Corine Land Cover images (see Section 2.2.1).

ID Description Irrigation Area Elevation Total Area Rice Area % Rice on Total Crop

A Baragge Baraggia Biellese e Vercellese 200 m 442 km2 243± 8 km2 80%
B Novarese Est Sesia 146 m 750 km2 484± 2 km2 81%
C Grange vercellesi Ovest Sesia 144 m 850 km2 622± 11 km2 84%
D Oltrepo casalese Destra Po Casalese 107 m 206 km2 38± 6 km2 27%
E Lomellina Est Sesia 96 m 1269 km2 758± 8 km2 77%
F Sud Milano Est Ticino Villoresi 103 m 525 km2 134± 6 km2 39%
G Pavese Est Ticino Villoresi 77 m 661 km2 298± 3 km2 61%

all Rice district 113 m 4704 km2 2581± 47 km2 72%

2.2. Input Data

2.2.1. Land Cover Data

Land cover data were used both to mask pixels corresponding to non-arable land and to compute
the rice-cultivated area of each sub-district (see Section 2.4.2). In particular, detailed information about
the extent of arable land was obtained from two high spatial resolution land use maps: DUSAF 4
(Destinazione d’Uso dei Suoli Agricoli e Forestali, version 4) [55] for Lombardy and LCP (Land Cover
Piemonte) [56] for Piedmont (characterized by a spatial resolution of 20 m and 10 m, respectively).

The extent of rice paddies within each sub-district was computed from the Corine Land Cover
(CLC) maps [57], Version 18.5. Four CLC products are available: CLC1990 (data collected between
1986 and 1998), CLC2000 (1999–2001), CLC2006 (2005–2007) and CLC2012 (2011–2012). Since rice
extent in the different districts shows very limited variations among the four products (see values in
Table 1), the averaged values of the four products were considered representative and valid for the
whole temporal range of 2000–2016.

2.2.2. MODIS Satellite Data

MODIS TERRA Surface Reflectance data (MOD09A1 500 m dataset [58]) were used to produce
multitemporal maps of NDFI (Normalized Difference Flood Index [53]) and NDVI (Normalized
Difference Vegetation Index [59]) over the study area for the 2001–2016 period. This product provides
radiometrically-calibrated and atmospherically-corrected data composited using over 8-day periods.
It is characterized by a spatial resolution of 500 m, a spectral resolution of seven bands including
RED (red band, Band 1, 620–670 nm), NIR (near-infrared band, band 2, 841–846 nm) and SWIR-2
(short-wavelength infrared band, Band 7, 2105–2155 nm), and it is available from February 2000.
Information about the day of acquisition (DOY) and the acquisition quality (QA) of each pixel is also
available at the same resolution. The MOD09A1 compositing algorithm selects for each pixel the value
acquired in a 8-day period characterized by the lower atmospheric disturbance (see the MOD09 user
guide [58] for further details), making the presence of cloud-covered pixels much less frequent than in
daily data (e.g., MOD09GA dataset). For this reason, MOD09A1 time series are less affected by cloud
contamination with respect to daily imagery: this is useful for the analysis of aggregated values within
rice sub-districts (see Section 2.4.1), to avoid the possibility that the position and timing of clouds
unbalance the aggregation of data.

Images acquired between March and June of each analyzed year (15 composite images for each
year, for a total of 255 images) were downloaded for the study area and used to compute the NDVI
and NDFI indices using the MODIStspR package [60,61]. NDVI [59] and NDFI [53] are computed
as follows:

NDFI =
RED− SWIR
RED + SWIR

(1)

NDVI =
NIR− RED
NIR + RED

(2)
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where RED, NIR and SWIR are respectively the first, second and seventh MOD09A1 bands. The MODIS
Surface Reflectance Data State QA Descriptions layer was used to exclude pixels covered by clouds
and cirrus, or with a low data quality flag. In addition, only pixels including at least 50% of arable
land were considered, in order to limit the analysis to agricultural areas.

2.3. Official Data Concerning Rice Cultivation Practices

The Italian organization Ente Nazionale Risi (ENR) collects farmers’ declarations regarding the
surface cultivated with the different rice varieties (mandatory information) and the corresponding
sowing methods (voluntary information). These data are then processed by ENR to compute
aggregated values at the municipality level. Information for the 2004–2015 period was obtained
from ENR, compared with MODIS-derived estimates, and then used to calibrate a model for the
estimation of the proportion of dry-seeded rice fields starting from satellite data (see Section 2.4.2).

2.4. Data Processing and Analysis

Data processing and analysis were performed in three main steps:

1. creation of seasonal maps of average (FFavg) and maximum (FFmax) Flooding Fraction (FF) amount
and timing;

2. computation of the proportion of Water-Seeded rice fields (WS);
3. analysis of temporal trends of flooding extent and timing.

Details about these steps are given in Sections 2.4.1–2.4.3.
The retrieved variables are useful indicators for assessing different aspects related to water

use and standing water presence in the study area. In particular, FFavg is a proxy of the overall
flooding conditions during the sowing period, with higher values indicating a longer persistence of
standing water in the fields. FFmax is used instead as an indicator of the diffusion of water seeding.
Since dry-seeded rice is usually flooded only after rice plants are already grown (third to fourth leaf
development stage), when optical remote sensing data are no longer able to detect standing water,
the identification of a single flooding event during the sowing period can be assumed as a reasonable
indicator of water seeding management. Pixels with higher FFmax values indicate therefore areas with
a larger presence of water-seeded rice fields. Finally, the WS indicator was computed to assess the
proportion of water-seeded rice area with respect to the whole rice-cultivated area and to assess its
changes in the considered period.

All analyses were performed using free software: R 3.3.2 [62] with packages hydroGOF [63],
boot [64]; car [65] was used for statistical analysis; GDAL 2.1.1 [66], QGIS 2.18.1 [67] and R packages
sp [68], rgdal [69], gdalUtils [70], raster [71] and rgeos [72] for spatial preprocessing and processing;
R package data.table [73] for data management and spatial aggregation; R packages ggplot2 [74] and
gridExtra [75] for data visualization.

2.4.1. Creation of Seasonal FF Maps for the Sowing Period

For each available MODIS image (i.e., for each date), FF maps were computed from the NDFI
spectral index following Ranghetti et al. [52]. According to this method, FF estimates can be considered
reliable only when NDVI < 0.4 (i.e., during the first stages of rice growth; about up to the start of the
tillering phase) because later in the season, the presence of standing vegetation can mask the presence
of water. Moreover, aggregation at 1-km resolution helps to improve the correspondence between FF
estimates and ground observations. Therefore, FF predictions for pixels with an associated NDVI > 0.4
were removed from the analysis, and the NDVI-screened FF maps were resampled to 1-km resolution
(using average values for FF and NDVI and median values for DOY). For additional details about the
accuracy assessment of FF maps, see Ranghetti et al. [52].

The time window considered for this computation was the period between mid-April and the
end of May (corresponding to MODIS DOYs of composite between 105 and 145). This was selected
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based on expert knowledge about typical crop calendars and agro-practices in the area [16], as well as
on results of previous studies at regional scale on rice phenology [47,76,77]. A preliminary analysis of
MODIS data was also conducted to confirm this choice and to test screening criteria allowing unreliable
observations to be discarded in the computation of FFavg (see Section 3.1).

Maps of flooding conditions within the sowing season of each year were successively created
starting from the multitemporal FF maps. Two different maps with the same spatial resolution
(1× 1 km) were then created for each year:

FFavg(y) =
1
n

n

∑
i=1

FFi (3)

FFmax(y) = max
i∈[n]

(FFi) (4)

where i is indexing the n MODIS composite images available in the sowing period (composite DOY
from 105–145), in year y.

Both FFavg and FFmax maps were finally aggregated at sub-district and district level, by averaging
FF values respectively within sub-districts and in the whole rice district.

Finally, maps with the DOY (Day Of the Year) of maximum seasonal FF (DOY(FFmax)) were
generated to check if the seasonal dynamics of FF had been changing since 2000 (see Section 2.4.3).

2.4.2. Computation of the Proportion of Water-Seeded Rice Fields

The proportion of Water-Seeded rice-cultivated area for each year (WS) was computed at district
and sub-district levels, in order to analyze how this cropping practice has been changing since 2000.

Raw WS values for each year and sub-district were first computed as:

WSraw(y, s) = FFmax(y, s) · Aarable(s)
Arice(s)

(5)

where Aarable(s) is the total arable area of the considered sub-district s (or of the whole district),
while Arice(s) is the rice area in sub-district s, computed as described in Section 2.2.1.

WSraw(y, s) values were then fitted against official data provided by Ente Nazionale Risi
(see Section 2.3) using a logistic regression analysis (the regression equation is expressed with the
modified Wilkinson–Rogers notation for linear models [78], here and in the following):

logit(WSENR) ∼ logit(WSraw) (6)

The official proportion of water-seeded rice fields (WSENR; see Section 2.3) was obtained from
official statistics as the ratio between the total extent of parcels declared as water-seeded within each
sub-district, and the corresponding total rice area (Arice).

The logit transformation was chosen to constrain WS = 0 to 0 and WS = 1 to 1, correcting only
for underestimations or overestimations of intermediate values. The accuracy of the regression model
logistic was tested performing a Leave-One-Out Cross-Validation (LOOCV) analysis.

2.4.3. Analysis of Temporal Trends of DOY(FFmax), FFavg and WS

The presence of temporal trends of DOY(FFmax), FFavg and WS values were finally tested. In order
to avoid problems of spatial autocorrelation and to depict easily the changes occurring in the analyzed
period, the trend analysis was performed using the values averaged at sub-district and district values.
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At the rice district scale, univariate linear regressions were used:

DOY(FFmax) ∼ year (7)

FFavg ∼ year (8)

WS ∼ year (9)

while, at the sub-district level, the effects of sub-district and of its interaction with year were also
assessed by performing a multivariate ANOVA analysis:

DOY(FFmax) ∼ year× sub-district (10)

FFavg ∼ year× sub-district (11)

WS ∼ year× sub-district (12)

Finally, univariate regressions were performed to identify the multi-annual trends (magnitude
and significance of the slope coefficient) for each sub-district considered by fitting 7 separate models:

FFavg(s) ∼ year (13)

WS(s) ∼ year (14)

where s is the sub-district considered in each regression.
To evaluate the existence of statistically-significant trends in the fitted regressions, standard

statistical metrics were computed. The value and the standard error of the temporal regressor (year)
were used to evaluate the magnitude of the trend in the univariate regressions. The significance
(p-value) of the t-value of this regressor (estimate divided by standard error) was considered in order
to verify the statistical significance of the trend, using p = 0.05 as the threshold value to identify
significant trends. The effect of the regressors in the multivariate analysis is analyzed with a standard
Analysis of Variance (ANOVA Type II), using the F-value of the Fisher test to check which regressors
explain more variance and the related p-value to verify the statistical significance of their effect. Finally,
a qualitative analysis of the variation of the trend slopes was performed by graphically comparing the
fitted linear regressions (Equations (13) and (14)) with smoothed tendencies; for this purpose, LOESS
(LOcally-weighted scatterplot smoothing regrESSion) curves were fitted using a span value of 0.75.

3. Results and Discussion

3.1. Analysis of the Seasonal Distribution of Flooding Conditions

The seasonal analysis of flooding fraction and NDVI variations allowed detecting the time window
during which flooding events are mainly concentrated, and the period in which their detection can be
considered reliable (NDVI < 0.4) and related to the sowing phase.

Figure 3 shows the temporal variations of the distribution of NDVI and FF values obtained from
MODIS in the analyzed period. Water presence was low in March and at the beginning of April
(first three composite boxes), confirming that flooding generally starts after the 10th of April. Moreover,
NDVI distributions highlight that, after the end of May, the number of unreliable pixels (NDVI > 0.4,
following results reported in Ranghetti et al. [52]) exceeds that of the reliable ones. This indicates the
presence of already grown rice plants, making the FF estimates highly uncertain.

Therefore, analyses of FF and WS temporal trends were based only on images acquired within
composite DOYs 105 and 145 (see Section 2.4.1). It is however important to remind that the aim of this
study is to assess variations in flooding conditions during rice-sowing, when the crop is not yet well
developed and NDVI is generally low.
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Figure 4. Temporal distribution of DOY(FFmax) over the whole rice district, with smoothed line
tendency.

changed from about 120–130 (first ten days of May) during 2000–2009 to about 130–140 (mid-May) in262

the last 7 years (Figure 4); the univariate linear regression between DOY(FFmax) and year (equation 7)263
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3.2. Analysis of the spatial distribution of flooding conditions273

The spatial distribution of overall flooding conditions during the sowing phase (FFavg) was274
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south-eastern one.276

This difference is also highlighted by Figure 7, where two groups of sub-districts can be easily277

identified. While in the entire rice district FFavg and FFmax averages are 0.22 and 0.35 respectively,278

Figure 3. Seasonal NDVI (top panel) and FF (bottom panel) distribution of pixels of the MODIS images
(2000–2016) grouped by DOY composite period. NDVI distributions include all the pixels (the red
dashed line is the proportion of values with NDVI < 0.4), while FF distributions include only selected
pixels (NDVI < 0.4). Yellow boxes (grey in the printed version) represent the composites selected for
the analysis (see Section 2.4.1).

The analysis of the temporal changes of maximum FF occurrence (DOY(FFmax); see Section 2.4.3)
highlighted a general delay throughout the whole rice district. The DOY of maximum flooding extent
changed from about 120–130 (first ten days of May) during 2000–2009 to about 130–140 (mid-May)
in the last seven years (Figure 4); the univariate linear regression between DOY(FFmax) and year
(Equation (7)) confirms a global change of 0.75 ± 0.31 days per year (t = 2.39, p-value = 0.03).
As shown in Figure 5, the flooding period in the northwestern sub-districts is generally slightly
anticipated with respect to the southeastern ones (higher DOY value, although this is not evident in all
years), consistent with the fact that northwestern sub-districts, being nearer to rivers, can be the first to
receive water when it becomes available in spring. This is confirmed by the ANOVA (Table 2) of the
multivariate regression (Equation (10)), which points out that most of the variance is explained by the
“year” variable (F = 28.29) and only slightly by the sub-district (F = 2.61). No difference in the trend
between sub-districts resulted from the analysis (interaction between year and sub-district: F = 0.29,
p-value = 0.94), even if the southeast ones revealed a slightly bigger change (Figure 5, panel of the
standard deviation).

Table 2. ANOVA table (type II tests) of the multivariate linear regression (Equation (10)) of DOY(FFmax)

over years and sub-districts (with the interaction term).

Sum Sq Df F Value Pr(>F)

year 1356.10 1 28.29 0.0000
sub-district 751.73 6 2.61 0.0211

year:sub-district 83.27 6 0.29 0.9408
residuals 5033.22 105
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Figure 3. Seasonal FF and NDVI distribution of pixels of the MODIS images (2000–2016) grouped by
DOY composite period. NDVI distributions include all the pixels (red dashed line is the proportion
of values with NDVI < 0.4), while FF distributions include only selected pixels (NDVI < 0.4).
Yellow boxes (grey in the printed version) represent the composites selected for the analysis (see
paragraph 2.4.1).
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Figure 4. Temporal distribution of DOY(FFmax) over the whole rice district, with smoothed line
tendency.
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Figure 5. Top panels: seasonal DOY(FFmax) maps; bottom panels: 2000–2016 average (left) and
standard deviation (right) maps.

3.2. Analysis of the Spatial Distribution of Flooding Conditions

The spatial distribution of overall flooding conditions during the sowing phase (FFavg) was
not uniform, with higher values detected in the northwestern parts of the study area than in the
southeastern one.

This difference is also highlighted by Figure 6, where two groups of sub-districts can be easily
identified. While in the entire rice district FFavg and FFmax, the averages are 0.22 and 0.35, respectively,
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the values between Sub-districts A-B-C (northwestern part, FFavg = 0.34 and FFmax = 0.53) and
D-E-F-G (southeastern part, FFavg = 0.10 and FFmax = 0.18) differ considerably.

This is due to various causes, among which: (i) the proportion of rice-cultivated area, which is
considerably higher in the northwestern parts, leading to higher FFavg (see Table 1); (ii) the greater
and earlier adoption of dry seeding in the eastern part, leading to lower FFmax values. Considering
the altitudinal gradient of this area, which decreases from northwest to southeast, it is also evident
how the averaged flooding fraction decreases from the higher, northwestern sub-districts towards the
lower, southeastern ones, in accordance with our knowledge about the geographical distribution of
water availability in the study area. Northwestern sub-districts, being nearer to rivers, have higher
water availability with respect to the southeastern ones. This probably led to a greater spread of dry
seeding in the southeastern sub-districts, as already pointed out in Ranghetti et al. [52]. The map
of the coefficient of variation of seasonal FFavg values (Figure 7, last panel) also highlights that the
interannual variation of standing water presence is higher in the eastern sub-districts, where water is
less available.
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2000–2016 study period within each sub-district and the whole district.

values between sub-districts A-B-C (north-western part, FFavg = 0.34 and FFmax = 0.53) and D-E-F-G279

(south-eastern part, FFavg = 0.10 and FFmax = 0.18) differ considerably.280

This is due to various causes, among which: i) the proportion of rice-cultivated area, which is281

considerably higher in the north-western parts, leading to higher FFavg (see Table 1); ii) the greater282

and earlier adoption of dry seeding in the eastern part, leading to lower FFmax values. Considering283

the altitudinal gradient of this area, which decreases from north-west to south-east, it is also evident284

how the averaged Flooding Fraction decreases from the higher, north-western sub-districts towards285

the lower, south-eastern ones, in accordance with our knowledge about geographical distribution of286

water availability in the study area. north-western sub-districts, being nearer to rivers, have higher287

water availability with respect to the south-eastern ones. This probably led to a greater spread of dry288

seeding in the south-eastern sub-districts, as already pointed out in Ranghetti et al. [52]. The map289

of the coefficient of variation of seasonal FFavg values (Figure 6, last panel) also highlights that the290

interannual variation of standing water presence is higher in the eastern sub-districts, where water is291

less available.292

Figure 6 finally highlights that sub-district E (Lomellina) exhibits differences between its293

north-western (higher flooding fractions), north-eastern (lower values) and southern (intermediate294

values) parts. This is due to differences in crop fractional cover (rice is dominant in the north-western295

and southern parts, while in the north-eastern one other spring crops prevail) and rice practices296

(water availability is higher in north-western part, particularly in the area between Vigevano and297

Trecate), which make this sub-district fairly heterogeneous. Nevertheless, it was considered as a unique298

sub-district to simplify interpretation of the results aggregated on administrative boundaries.299

3.3. Analysis of temporal trends in flooding conditions in 2000–2016300

The temporal analysis of the seasonal average flooding fraction (FFavg) allows identifying and301

quantifying a decreasing trend in overall flooding conditions during the sowing period (both globally302

and within each sub-district), and also identifying differences between sub-districts.303

Figure 6. Distribution of seasonal FF aggregated values (values with NDVI < 0.4) during the entire
2000–2016 study period within each sub-district and the whole district.

Figure 7 finally highlights that Sub-district E (Lomellina) exhibits differences between its
northwestern (higher flooding fractions), northeastern (lower values) and southern (intermediate
values) parts. This is due to differences in crop fractional cover (rice is dominant in the northwestern
and southern parts, while in the northeastern one, other spring crops prevail) and rice practices
(water availability is higher in the northwestern part, particularly in the area between Vigevano and
Trecate), which make this sub-district fairly heterogeneous. Nevertheless, it was considered as a unique
sub-district to simplify interpretation of the results aggregated on administrative boundaries.

3.3. Analysis of Temporal Trends in Flooding Conditions in 2000–2016

The temporal analysis of the seasonal average Flooding Fraction (FFavg) allows identifying and
quantifying a decreasing trend in overall flooding conditions during the sowing period (both globally
and within each sub-district), as well as identifying differences between sub-districts.

When the whole rice district is considered, the univariate linear regression between FFavg and
year (Equation (8)) shows a decrease of −0.86 ± 0.20% per year (t = −4.33, p-value = 0.00059).
This metric confirms that flooding practice, hence water diffusion, has been steadily decreasing within
the study area.

Results of the ANOVA analysis, reported in Table 3, allow ascertaining the effect and significance
of the different factors (years and sub-districts) and of their interaction. Although most of the variance is
explained by the sub-districts (an expected result considering the differences in rice cover and irrigation
regimes among sub-districts; see Figure 6), the effect of year is highly significant. This confirms that
the decrease in flooding occurrence highlighted by the previous univariate regression analysis is a
common pattern for all sub-districts and was not conveyed by the effect of averaging values from
different sub-districts.
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Figure 7. Top panels: yearly maps of average flooding presence FFavg maps; bottom panels: 2000–2016
average (left) and coefficient of variation (right) maps.

Table 3. ANOVA table (type II tests) of the multivariate linear regression (Equation (11)) of FFavg over
years and sub-districts (with their multiplicative effect).

Sum Sq Df F Value Pr(>F)

year 0.15 1 73.53 0.0000
sub-district 2.43 6 198.97 0.0000

year:sub-district 0.05 6 3.69 0.0023
residuals 0.21 105

The significant sub-district × year interaction, even if low, also suggests that the rate of FFavg

decrease varied between sub-districts. This is however influenced by the fact that southeastern
sub-districts are characterized by a generally lower FFavg: the slope of the trend line can therefore be
expected to be lower even if a similar relative interannual decrease is observed.

Results of the regression analysis conducted at the sub-district level (Figure 8 and Table 4)
confirm that sub-districts can be split into two groups according to their mean flooding fraction,
as already pointed out in the descriptive analysis. In the first group (Districts A, B and C,
i.e., the northwestern ones) FFavg were considerably greater than in the second group (Districts D,
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E, F and G, i.e., the southeastern part), in accordance with the large amount of variance explained
by the sub-district predictor in the multivariate regression (12). Table 3 also highlights the presence
of a statistically-significant decreasing trend for all of the sub-districts. In summary, even if overall
flooding conditions are spatially heterogeneous, their decreasing trend is widespread over the whole
rice cultivation area, with a minimum decrease of −0.21± 0.09% per year in Sub-district D and a
maximum decrease of −1.46± 0.28% per year in Sub-district C.
Version February 16, 2018 submitted to Remote Sens. 13 of 23
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Figure 8. Temporal distribution of FFavg pixel values along year and sub-districts (white boxplots) or
the whole district (yellow boxplots). Solid blue lines represent the linear regression of equation 11,
while red dashed lines are smoothed tendencies, both performed on sub-district based averaged values.
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Figure 8. Temporal distribution of FFavg pixel values along the year and sub-districts (panels “A” to
“G”) or the whole district (panel “all”). Solid blue lines represent the linear regression of Equation (11),
while red dashed lines are smoothed tendencies, both performed on sub-district-based averaged values.

Table 4. Summary of the univariate linear regressions of FFavg over years (each line refers to an
independent regression). Intercepts refer to year = 2000 instead of year = 0 to be more intelligible.
Stars beside p-values identify significant values (p-value < 0.05).

Sub-District Intercept (2000) Slope (year) t-Value Pr(>(|t|)
A 0.482± 0.037 −0.0104± 0.0039 −2.65 0.0182 *
B 0.360± 0.024 −0.0071± 0.0025 −2.83 0.0126 *
C 0.463± 0.026 −0.0146± 0.0028 −5.24 0.0001 *
D 0.075± 0.008 −0.0021± 0.0009 −2.44 0.0273 *
E 0.194± 0.014 −0.0073± 0.0015 −4.75 0.0003 *
F 0.113± 0.013 −0.0064± 0.0014 −4.69 0.0003 *
G 0.053± 0.007 −0.0028± 0.0007 −4.02 0.0011 *

all 0.286± 0.019 −0.0086± 0.0020 −4.33 0.0006 *
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Values of FFmax multiplied by the rice area of each sub-district can be used to quantify the surface
that was flooded at least once per year during sowing, a measure that can be considered a proxy of the
water-seeded area (Table 5). Estimated flooded surface has reduced from 2000–2016 in all sub-districts,
with a global reduction of 44% and a reduction within sub-districts varying from 24% in Sub-district
A to 80% in Sub-district G. This finding is particularly interesting from an ecological point of view:
the higher relative flooding decrease, i.e., the loss of foraging habitats for herons and egrets, appears
in fact to be located within the eastern sub-districts where also landscape fragmentation is more
pronounced, with a potential combined negative effect for waterbird populations.

Table 5. Quantification of the surface (in km2) of flooded surfaces over years and sub-districts.

Year A B C D E F G all

2000 149 277 440 10.94 273 39.75 40.97 1231
2001 154 258 415 18.70 247 42.37 48.43 1185
2002 172 293 470 15.73 292 46.66 43.51 1333
2003 139 235 426 13.68 205 19.78 16.30 1055
2004 191 313 467 12.90 269 44.34 31.94 1329
2005 174 272 452 11.22 218 27.51 22.94 1178
2006 190 251 504 23.96 236 25.10 17.62 1248
2007 167 235 419 8.98 168 31.56 28.08 1058
2008 194 307 484 15.61 242 31.08 22.18 1295
2009 190 312 457 17.88 274 28.19 26.31 1306
2010 194 297 441 12.04 210 21.34 20.03 1195
2011 130 214 335 11.86 149 10.87 10.79 862
2012 159 291 373 9.07 184 21.56 11.91 1051
2013 159 307 451 19.15 301 28.26 37.93 1303
2014 120 215 333 18.19 212 20.43 25.12 943
2015 100 178 263 6.66 109 4.99 4.92 668
2016 113 199 237 5.39 113 9.45 8.03 685

3.4. Relationships between Raw WS Data and Official Statistics

Results of the logistic regression analysis (see Section 2.4.2) showed that the estimates of the
proportion of water-seeded rice fields within each sub-district obtained from FFmax (WSraw) are
highly correlated (R2 = 0.94) with Ente Nazionale Risi official data (WSENR) for the period 2004–2015
(Figure 9). Thanks to this finding, it was possible to use the resulting regression equation as a means to
calibrate the WSraw estimates, thus allowing one to provide unbiased seasonal WS estimates for the
different sub-districts for the whole analyzed time period.
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Figure 9. Logistic regression between WSENR and WSraw: calibration points, regression curve with
95% confidence interval, validation metrics and equation.

Table 6. ANOVA table (type II tests) of the multivariate linear regression (equation 12) of WS over
years and sub-districts (with their multiplicative effect).

Sum Sq Df F value Pr(>F)

year 0.30 1 51.10 0.0000
subdistrict 4.66 6 132.71 0.0000
year:subdistrict 0.04 6 1.19 0.3151
Residuals 0.61 105

Results of the ANOVA analysis on the proportion of water-seeded rice fields (Table 6) shows366

that, similarly to what observed for FFavg, sub-district is the most important factor in explaining WS367

variance, but year also has a statistically significant effect. However, differently from what observed for368

FFavg, the interaction between district and year is not statistically significant (F = 1.19, p-value = 0.32).369

The univariate linear regression over years showed a significant WS decreasing trend of −0.91±370

0.28% per year (t = −3.27, p-value = 0.0051). This decrease is similar to that of FFavg (−0.86± 0.20%371

per year), and corresponds to a reduction of −14.6± 4.5% (−376.8± 1.6 km2) throughout the whole372

study period. The analysis within sub-districts (see Table 7 and Figure 10) shows that, also in the case373

of WS, a general decreasing trend is observed in all sub-districts, although some are not statistically374

significant (i.e. sub-districts A, B and D).375

However, comparing slope coefficients reported in Tables 4 and 7, it can be observed that, while376

in the case of FFavg the greater decrease occurred in the north-western sub-districts, in the case of WS377

the situation is opposite. This apparent contradiction is justified by the fact that the slope of FFavg378

reduction depends also on the different rice fractional cover. A similar relative reduction of FFavg379

leads in fact to a larger slope of the regression for sub-districts characterised by a higher FFavg at the380

beginning of the period (as in the north-western sub-district). WS trends do not present this problem381

and makes possible directly analyse the relative variation of the water use within actual rice-cultivated382

areas.383

Figure 10 also shows that in sub-districts A, B and C the decreasing trend is clearly not constant.384

The smoothed trends (red dashed lines), show in fact that a marked reduction of WS is evident only385

Figure 9. Logistic regression between WSENR and WSraw: calibration points, regression curve with
95% confidence interval, validation metrics and equation.

WSraw resulted in being quite underestimated with respect to ENR statistics, likely because a
single pixel can contain several paddy fields (more than 20, as the area of one pixel is 86 ha, while
rice paddies have an average size of 3 ha [52]). Therefore, if paddies included in a single pixel are
not flooded simultaneously, FFmax may underestimate the fraction of paddies flooded at least once
during sowing. In fact, being Fj(t) the flooding status (zero for dry, one for flooded) of a single paddy
j (j ∈ {1, ..., m}) in a composite image t (t ∈ {1, ..., n}), the real maximum total extent of flooded
surface during sowing should be computed as:

FF′max =
m

∑
j=1

max
t∈[n]

(
Fj(t)

)
(15)

while FFmax was computed as:

FFmax = max
t∈[n]

(
m

∑
j=1

Fj(t)

)
(16)

where ∑m
j=1 Fj(t) = FF(t), connecting Equation (16) to Equation (3). From this different computation

method, it follows that FFmax ≤ FF′max on all possible conditions.
However, FF′max is not directly calculable from input 1× 1 km maps, since single paddies are not

discernible; this consideration justifies the use of an empirical correction of WSraw values to balance
the observed bias between FFmax and FF′max.

ENR statistics were essential to obtain unbiased WS measures. Nevertheless, the possibility to
estimate this variable from satellite data rather than from farmer declarations is important for several
reasons: (i) remote sensing provides impartial and spatialized measures, while a map of the paddies is
needed to compute the surface area of declared water- and dry-seeded fields (in this case, the area
of cadastral parcels was used, which is often not updated and does not correspond to the actual
extent of farming parcels); (ii) remote sensing data allow performing retrospective analysis up to
early 2000, hence extending the temporal span of the trend analysis; (iii) estimations from remote
data can be automatically updated every year (this will allow further extension of the analysis of the
detected changes in the future, without requiring additional field/official data); (iv) the satellite-based
estimation can be provided earlier in the season instead of waiting for the collection of farmers
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declaration, since input MODIS products are freely available two weeks after they are collected by the
sensor. In conclusion, satellite data allow providing a near-real-time seasonal view of the water extent
and easily broaden the analysis of the flooding condition trends in future years.

3.5. Analysis of Changes in the Proportion of Water-Seeded Area

The analysis conducted on the temporal variations of the estimated proportion of Water-Seeded
rice (WS) (globally and among sub-districts) provided results quite similar to the ones described for
FFavg trends, but with some interesting differences in terms of changes over time.

Results of the ANOVA analysis on the proportion of water-seeded rice fields (Table 6) show that,
similarly to what was observed for FFavg, the sub-district is the most important factor in explaining
WS variance, but year also has a statistically-significant effect. However, differently from what was
observed for FFavg, the interaction between district and year is not statistically significant (F = 1.19,
p-value = 0.32).

Table 6. ANOVA table (type II tests) of the multivariate linear regression (Equation (12)) of WS over
years and sub-districts (with their multiplicative effect).

Sum Sq Df F Value Pr(>F)

year 0.30 1 51.10 0.0000
sub-district 4.66 6 132.71 0.0000

year:sub-district 0.04 6 1.19 0.3151
residuals 0.61 105

The univariate linear regression over years showed a significant WS decreasing trend of
−0.91± 0.28% per year (t = −3.27, p-value = 0.0051). This decrease is similar to that of FFavg

(−0.86± 0.20% per year) and corresponds to a reduction of−14.6± 4.5% (−376.8± 1.6 km2) throughout
the whole study period. The analysis within sub-districts (see Table 7 and Figure 10) shows that, also in
the case of WS, a general decreasing trend is observed in all sub-districts, although some are not
statistically significant (i.e., Sub-districts A, B and D).

However, comparing slope coefficients reported in Tables 4 and 7, it can be observed that, while in
the case of FFavg, the greater decrease occurred in the northwestern sub-districts, in the case of
WS, the situation is the opposite. This apparent contradiction is justified by the fact that the slope
of FFavg reduction depends also on the different rice fractional cover. A similar relative reduction
of FFavg leads in fact to a larger slope of the regression for sub-districts characterized by a higher
FFavg at the beginning of the period (as in the northwestern sub-district). WS trends do not present
this problem and make it possible to analyze the relative variation of the water use within actual
rice-cultivated areas directly.

Figure 10 also shows that in Sub-districts A, B and C, the decreasing trend is clearly not constant.
The smoothed trends (red dashed lines) show in fact that a marked reduction of WS is evident only
in the later years (i.e., 2009 onwards), while in the first ten years, no particular trends are evident.
On the contrary, Sub-districts E, F and G show constant decreasing trends, as underlined by the almost
coincident smoothed and linear trends.
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Figure 10. Temporal distribution of WS values along year and sub-districts. Points are predicted values
(equation 12), blue lines represent the linear trends (Table 7), while red dashed lines are smoothed
tendencies.
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Figure 10. Temporal distribution of WS values along year and sub-districts. Points are predicted
values (Equation (12)); blue lines represent the linear trends (Table 7); while red dashed lines are
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Table 7. Summary of the univariate linear regressions of WS over years (each line refers to an
independent regression). Intercepts refer to year = 2000 instead of year = 0 to be more intelligible.
Stars beside p-values identify significant values (p-value < 0.05).

Sub-District Intercept (2000) Slope (year) t Value Pr(>(|t|)
A 0.83± 0.03 −0.008± 0.004 −2.10 0.0530
B 0.74± 0.03 −0.005± 0.003 −1.81 0.0905
C 0.86± 0.03 −0.011± 0.003 −3.64 0.0024 *
D 0.61± 0.05 −0.008± 0.006 −1.41 0.1783
E 0.56± 0.03 −0.010± 0.003 −2.93 0.0104 *
F 0.52± 0.04 −0.018± 0.004 −4.81 0.0002 *
G 0.29± 0.03 −0.011± 0.003 −3.50 0.0032 *

all 0.69± 0.03 −0.009± 0.003 −3.27 0.0051 *

Moreover, WS values in the first years of the analyzed period are close to one in Sub-districts A, B
and C, while they are already close to 0.5 in the other ones (D, E and F), or even lower (G).

This evidence suggests that the lower decrease ratio of WS proportion in the northwestern
sub-districts is due to a delayed adoption of the dry seeding practice. Further investigations on WS
trends during future years are certainly needed to confirm this qualitative finding and to monitor if
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the WS proportion reduction will progress in the northwestern area with the same intensity already
detected for the southeastern one.

It is also interesting to highlight the anomalous behavior of 2013 in all sub-districts (more evident
in the southern ones). This is due to the atypically strong and continuous spring rain occurred during
sowing in that year [79], which forced farmers to sow rice in flooded conditions. This finding is
confirmed by ENR statistics (see also Figure 1 of Ranghetti et al. [52]).

Monitoring the trends of FFavg in the next few years will be crucial both to: (i) detect cases
of extreme reduction of flooded surfaces in the southeastern sub-districts (east of the Ticino river),
where the flooding extent is already low and a further reduction could lead to a critical shrinking of
feeding habitats for herons and egrets; and (ii) prevent that the spread of dry seeding in northwestern
sub-districts reaches the intensities already observed on the southeastern ones.

Comparing Figure 10 (panel “all”) with Figure 1 suggests in fact that the temporal trend
of flooded surfaces could be associated with the observed reduction in the population size of
waterbirds. The number of nests within rice fields (orange line in Figure 1) showed a decrease
between 2000 and 2016 and, similarly to what was observed for WS, which decreased speeded-up
since 2010. Nevertheless, in order to understand if there is indeed a causality between the reduction of
water-seeded rice area and the number of nests, it would be necessary to study the population dynamics
of herons and egrets in combination with other environmental and biological factors. This topic
is currently under investigation, and the results of the present study are among the bulk of data
under analysis.

4. Conclusions

This study applied a method to estimate the Flooding Fraction (FF) from MODIS data [52]
with the aim to investigate the spatial and temporal trend of flooding within rice fields in the
Italian rice district from 2000–2016. Results highlighted that the seasonal averaged flood intensity
(FFavg) and the proportion of water-seeded rice-cultivated area (WS) decreased by −0.86± 0.20%
and −0.91± 0.28% per year, respectively. Moreover, the seasonality of flooding events within the
rice-sowing period changed, with a delay in the date of maximum flooding of 0.75± 0.31 days per
year, suggests a modification in agro-practices and/or cultivated varieties. These changes were found
to be widespread throughout the study area, but with strong differences among sub-districts for both
FFavg and WS. Analysis of WS trends showed that the spread of dry seeding was already in progress
in 2000 in the southeastern parts of the rice district, while it began only recently (about 2009) in the
northwestern ones.

During the study period, the rice-cropped area was not reduced, so that the diminution of the
standing water areas is to be attributed to the adoption of dry seeding. According to the described
results, the adoption of this technique produced a loss of 44% in the surface of paddies where herons
and egrets could forage compared to 2000. The loss is greater in the southeastern part of the rice
district, reaching up to 76% and 80% in the two eastern sub-districts. Such a reduction may explain the
decreasing trend of heron and egret populations observed in the last few years.

These results, and those of concomitant studies on the foraging ecology of the breeding herons
and egrets [54,80], will be used in order to assess the effect of environmental and biological factors
involved in the recent decrease of these waterbirds.

To limit the massive spread of rice dry seeding, the 2014–2020 Common Agricultural Policy
(CAP) already adopted redistributive payments for farmers who implement ecological mitigation
(Action 214). This can be done both in Piedmont (Sub-districts A, B, C and D), where Actions 8.2.9.3.2
of the local Programma di Sviluppo Rurale (rural development program) [81] provide support for
an anticipated stropping of droughts and for maintaining a partial flooded surface within drought
paddies, and in Lombardy (Sub-districts E, F and G), where the attention is focused on the creation of
a ditch along each paddy [82] (see Action 10.1.c) to maintain a minimum water reserve without losing
efficiency in water management.



Remote Sens. 2018, 10, 416 19 of 23

Acknowledgments: We wish to thank Bruno Marabelli from Ente Nazionale Risi for providing us unpublished
data about sowing practices in the Italian rice district (Section 2.3). We are grateful to the NASA/MODIS Land
Discipline Group and to the U.S. Geological Survey for producing and sharing of the MODIS dataset. This project
was partially supported by the European Union’s Seventh Framework Programme for research, technological
development and demonstration (FP7 2007-2013, ERMESproject, Grant Agreement No. 606983) and by the Italian
Ministry of Education, University and Research (PRIN 2010–2011, 20108 TZKHC).

Author Contributions: M.F., M.B. and L.R. conceived of and designed the experiments. L.R. analyzed the data
and wrote the paper. M.F. and E.C. wrote the ecological aspects in the paper. L.B. and M.B. reviewed the data
analysis. M.B., M.F., E.C. and L.B. reviewed the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ANOVA ANalysis Of VAriance
DOY Day Of the Year
ENR Italian Ente Nazionale Risi
FF Flooding Fraction
FFavg Averaged Flooding Fraction value in the sowing season
FFmax Maximum Flooding Fraction value in the sowing season
MODIS MODerate-resolution Imaging Spectroradiometer
NDFI Normalized Difference Flood Index
NDVI Normalized Difference Vegetation Index
WS Proportion of cultivated area of water-seeded rice during each year
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