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Abstract: Pre-visual detection of crop disease is critical for food security. Field-based spectroscopic
remote sensing offers a method to enable timely detection, but still requires appropriate
instrumentation and testing. Soybean plants were spectrally measured throughout a growing season
to assess the capacity of leaf and canopy level spectral measurements to detect non-visual foliage
symptoms induced by Fusarium virguliforme (Fv, which causes sudden death syndrome). Canopy
reflectance measurements were made using the Piccolo Doppio dual field-of-view, two-spectrometer
(400 to 1630 nm) system on a tractor. Leaf level measurements were obtained, in different plots,
using a handheld spectrometer (400 to 2500 nm). Partial least squares discriminant analysis (PLSDA)
was applied to the spectroscopic data to discriminate between Fv-inoculated and control plants.
Canopy and leaf spectral data allowed identification of Fv infection, prior to visual symptoms, with
classification accuracy of 88% and 91% for calibration, 79% and 87% for cross-validation, and 82% and
92% for validation, respectively. Differences in wavelengths important to prediction by canopy vs.
leaf data confirm that there are different bases for accurate predictions among methods. Partial least
square regression (PLSR) was used on a late-stage canopy level data to predict soybean seed yield,
with calibration, cross-validation and validation R2 values 0.71, 0.59 and 0.62 (p < 0.01), respectively,
and validation root mean square error of 0.31 t·ha−1. Spectral data from the tractor mounted system
are thus sensitive to the expression of Fv root infection at canopy scale prior to canopy symptoms,
suggesting such systems may be effective for precision agricultural research and management.

Keywords: hyperspectral; precision agriculture; diseases detection; Piccolo Doppio; partial least
squares; seed yield assessment; sudden death syndrome; soybeans

1. Introduction

Remote and proximal sensing are increasingly applied in agriculture [1] for diverse applications,
including estimation of yield [2], water content [3], crop nutrients [4–6], leaf area index (LAI; [7–10]),
disease [11,12], pest [13–16] and soil properties [1]. Here, we test the capacity of tractor-based proximal
spectral measurements to detect Fusarium virguliforme (Fv, which causes soybean sudden death syndrome)
root infection and assess seed yield of soybeans.

Soybean (Glycine max (L.) Merr.) is the fourth largest commodity crop in the world in terms of area
harvested and production. The anticipated increase in demand for soybean over the next 20 years is
expected to result in 50% expansion of soybean cultivated land area [17]. Sudden death syndrome (SDS)
was among the top yield-suppressing diseases of soybean in the United States from 1996 to 2007 [18],
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with average annual crop loss in the US assessed to be around $100 million US [19]. In individual
fields, yield losses of up to 80% have been attributed to SDS but yield losses of 5 to 15% are more
common [20]. Since its discovery in Arkansas in 1972 SDS has spread to much of the soybean growing
region of the US, and South America [19,21,22]. The SDS disease cycle starts shortly after planting
with infection of roots resulting in reduced root length, surface area, volume, and mass [23]. Fv has not
been isolated from aboveground portions of the soybean plant, therefore, assumed not to be present
above ground [24,25]. The primary field detection method for SDS is canopy symptoms. Canopy
symptoms are the result of fungal phytotoxins translocated from roots to leaves causing Rubisco and
chlorophyll degradation, initiation of chlorosis and necrosis in leaves [19,26,27]. Soil temperature and
moisture influence early season Fv infection, and canopy symptoms that are most common during the
reproductive (late) growth stages [23,28]. The balance between environmental conditions influence on
the pathogen and the host plays a role in the severity of the canopy symptoms [29] that can fluctuate
from very light chlorosis to necrosis and complete premature defoliation in a matter of days. In cases
of no apparent canopy symptoms, the pathogen can remain unnoticed in the soil, infected roots or
plant residue as a potential risk for subsequent growing seasons. When canopy symptoms are absent,
destructive sampling is used to assess Fv presence on roots [30], pulling the root to look for root rot
and cutting lower stems to distinguish from other disease [19,30] or quantitative real-time polymerase
chain reaction (qPCR)-based detection [20,31]. There is no in-season treatment for infected plants,
making it important to detect Fv infection to take preventive actions in the next planting cycle [32] and
consider impact on yield for the current season. Although risk of Fv infection has been studied [33],
a nondestructive method to identify Fv infected soybeans prior to visual symptoms is needed.

Field spectroscopy is routinely used to obtain proximal data for crop assessment and phenotyping.
Most commonly, one spectrometer obtains target and white reference measurements alternately, with
the frequency of white reference measurements dependent on the atmospheric stability. Under variable
atmospheric conditions white reference measurements may be difficult to detect at a suitable timing
with respect to target measurements to ensure high fidelity and repeatable reflectance spectra. A dual
field-of-view system, on the other hand, obtains target and white reference nearly simultaneously,
enabling calculation of relative reflectance from down- and up-welling measurements [34,35] that
minimize effects of atmospheric variability [36,37]. Referencing by downwelling radiation rather than
by white panel can make dual field of view systems mounted on moving measuring platforms more
easily applicable. This is important for agricultural applications, as growers may not have the flexibility
to await atmospherically clear days, and leaf level measurements using external light sources is time
consuming and inefficient.

Proximal measurements using the sun as illumination can be a challenge [36,38]. MacLellan and
Malthus [39] presented the concept of a two spectrometers system with dual field of view for each,
alternately obtaining upwelling (radiance) and downwelling (irradiance) measurements, using a cosine
response fore optic [40] in lieu of the standard white reference. MacArthur et al. [41] designed and
presented an operational system (Piccolo) that is lightweight, self-contained, and wirelessly controlled,
and similar in principle to dual field of view systems used at eddy covariance towers for canopy
reflectance observations [42,43]. Here, for the first time, the two spectrometers Piccolo system [41] is
mounted on a moving platform at ground level for a precision agriculture application. As a test of
its feasibility we assess the capacity to (1) detect disease status; and (2) predict yield in soybean from
proximal visible-near infrared-shortwave infrared spectra (400–1630 nm). Finally, we compare the
results from proximal methods to data collected at the leaf level using a handheld spectrometer and
external light source.
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2. Materials and Methods

2.1. Study Area and Experimental Design

Field experiments were conducted during April to October 2016 at the University of Wisconsin
Arlington Agriculture Research Station (43◦18′8′ ′N, 89◦20′8′ ′W) and in Hancock Research Station
(44◦7′10′ ′N, 89◦32′7′ ′W). Soils at Arlington are Plano fine-silty, mixed, super active, mesic Typic
Argiudoll, and Hancock are Plainfield sand, mixed, mesic Typic Udipsamment [23]. The Hancock site
was irrigated to mitigate water stress while the Arlington site was not. No fertilization treatments
were applied. The Arlington site included two adjacent experiments, one used for the canopy level
(proximal) analyses and the second for the leaf measurements used for comparison, with the leaf
study replicated at Hancock. The canopy level experiment was a split-split-plot arrangement with
four replications arranged in completely randomized blocks, with three planting dates (Table 1)
resulting in non-uniform development stages for most of the measuring dates. Fields were planted
with two soybean cultivars (i.e., RS213NR2 and AG2136) and three seed treatments (i.e., untreated
control, Poncho®/VOTiVO®, and Poncho®/VOTiVO®/ILeVO®) as detailed by Vosberg et al. [23] at
a uniform seed density of 346,000 seeds·ha−1. Each sub-subplot consisted of two inoculation treatments
(i.e., inoculated with Fv and untreated control) and encompassed two rows 7.6 m long spaced 76 cm
apart. The inoculation treatment in the sub-subplot was the experimental unit and from here on will be
designated as “plot”. The total number of plots was 144. The rows were in a north–south orientation
and each row had eight plots along it, with 18 plots in the east-west orientation. There were eight
alleys (four rows wide each) for the tractor mounted with Piccolo Doppio. To minimize border effects,
alleys and borders and any side of the experiment that did not have soy plants next to it and the
rest of the field was planted with filler soybean plants cultivar Channel 0906R2 with seed density of
346,000 seeds·ha−1.

Each of the two leaf level experiments (Arlington and Hancock) had four rows 7.6 m long spaced
76 cm apart. Two of the rows were inoculated [23] with Fv and two rows were not inoculated and
defined as untreated control. Both sites were planted with AG2136 cultivar and uniform seed density
of 346,000 seeds·ha−1. A total of 500 soybean plants were tagged to allow repeated measurements
through the growing season, with 125 plants per inoculation treatment per site.

2.2. Data Collection and Processing

2.2.1. Canopy Spectral Data Collection and Processing

The canopy spectral data were obtained through the growing season (Table 1) by a tractor mounted
Piccolo Doppio dual field-of-view two-spectrometer system [41] equipped with two spectrometers:
Flame and NIRQuest (Ocean Optics, Inc., Dunedin, FL, USA). The Flame had a spectral range of 340 to
1022 nm with an optical resolution of 1.33 nm full-width half-maximum (FWHM) interpolated to
1 nm spacing. The range of 400 to 900 nm was used due to noisy data at the longest and shortest
wavelengths. The NIRQuest has a spectral range of 900 to 1713 nm with an optical resolution of
6.6 nm FWHM interpolated to 1 nm resolution, with 900 to 1630 nm used due to noisy data at the
longest wavelengths. The ability to obtain upwelling and downwelling data almost simultaneously
derives from the use of two fiber optics with diameters of 400 µm and 600 µm, respectively, which
together completely cover the 1 mm long and 25 µm wide inlet slit of the Flame spectrometer (Figure 1).
An identical set of fiber optics was used for the NIRQuest that had a 1 mm long and 100 µm wide inlet
slit, also fully covered by the two fiber optics.

The upward and downward facing fibers were attached to a custom two-axis gimbal fitted onto
the boom to maintain nadir orientation. As detailed by [41], the downwelling (upward looking)
fiber viewed the sky through a cosine corrected polytetrafluoroethylene fore-optic and glass dome,
while the upwelling (downward looking) bare fiber (view angle was 25 degrees) was fit with only
an optical glass dome (Figure 1). Each optic was fitted with a shutter to obtain data via one of
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the fibers at a time. Synchronizing shutter activity and integration times of the spectrometer was
controlled by a Raspberry Pi (Raspberry Pi Foundation, Cambridge, UK) single-board computer [41].
The Raspberry Pi time-stamped each spectral measurement. For spectra geo-referencing location
and time every second, a GPS receiver (Geo 7x, Trimble, Sunnyvale, CA, USA) in the tractor’s cabin
connected to a GNSS antenna mounted on the boom, behind the shutter tube (Figure 1). The GPS
data were differentially corrected in Pathfinder software (Trimble Inc., Sunnyvale, CA, USA) using
the reference base UNAVCO, Iowa County, WI located at 42◦54′51′ ′N, 90◦14′53′ ′W, 294 m above sea
level. The estimated accuracy ranged from 5 to 15 cm for 99.96% of the corrected positions. Spectral
data were collected within two hours of solar noon from a single row per pass with a total of two
passes (i.e., two rows) per plot and collection date. The upwelling fiber was centered on the soybean
row 25 cm above the top of the canopy resulting in ~12 cm diameter at top of canopy. The system
was on for at least 40 min prior to starting measurements. The Flame integration times were 5 and
15 ms and the NIRQuest integration times were 700 and 1000 ms for downwelling and upwelling,
respectively. The integration times were set based on visual examination of the obtained spectral
reflectance to maximize the signal while avoiding saturation under variable sky conditions (defined as
75% of maximum DN count). To minimize the time gap between upwelling and downwelling data
collection and between spectrometers, the eight-measurement sequence was: (1) Flame upwelling
dark current; (2) NIRQuest upwelling dark current; (3) upwelling radiance by Flame; (4) upwelling
radiance by NIRQuest; (5) downwelling irradiance by Flame; (6) downwelling irradiance by NIRQuest;
(7) downwelling dark current by Flame; and (8) downwelling dark current by NIRQuest. Tractor speed
was set to 0.22 m s−1 and actual time between the starting point of each set of eight measurements was
approximately ~6.7 s resulting in potential of five spectra collected per plot row.
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Scheme of the fiber optics orientation and connection (c). The inside of the spectrometer box (d) the
other spectrometer is under the black plate and the fiber optics enter the box from the upper left side.
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Table 1. Key dates for agronomical activities and spectral data collection for canopy and
leaf experiments.

Date Site Development
Stage * Activity Number of

Samples ** Comments

Canopy experiment

30 April 2016 Arlington - Planting I -

18 May 2016 Arlington - Planting II -

8 June 2016 Arlington Vc V1 Spectra 96 Planting dates I and II

10 June 2016 Arlington - Planting III -

28 June 2016 Arlington V1 V3 V4 Spectra 144

18 July 2016 Arlington V5 R3 R4 Spectra 144

26 July 2016 Arlington R2 R4 R5 Spectra 144

15 August 2016 Arlington R5 R6 Spectra 144

22 August 2016 Arlington R6 Spectra 144

2 September 2016 Arlington R6 Spectra 144 Early senescence visual
for planting dates I and II

12 September 2016 Arlington R6 Spectra 48 Planting date III

18 October 2016 Arlington R8 Harvest - All planting dates

Leaf experiment

2 May 2016 Hancock - Planting -

3 May 2016 Arlington - Planting -

9 May 2016 Arlington
fill - Planting -

13 Jun 2016 Arlington V3 Spectra 245

14 and 15 Jun 2016 Hancock V3 Spectra 238 Weather did not allow to
obtain all data in one day

20 June 2016 Hancock V4 Spectra 242

21 June 2016 Arlington V4 Spectra 250

27 June 2016 Hancock V5 Spectra 249

28 June 2016 Arlington V5 Spectra 248

1 July 2016 Hancock V6 Leaf tagging -

5 July 2016 Arlington V6 Spectra 250

6 July 2016 Arlington V6 Leaf tagging -

6 July 2016 Hancock R1 Spectra 250

11 July 2016 Arlington R1 Spectra 247

12 July 2016 Hancock R2 Spectra 248

18 Jul 2016 Hancock R3 Spectra 250

19 July 2016 Arlington R3 Spectra 249

26 July 2016 Arlington R4 Spectra 248

29 July 2016 Hancock R4 Spectra 250

1 August 2016 Arlington R5 Spectra 189 Weather did not allow to
obtain all data

8 August 2016 Hancock R5 Spectra 244

18 August 2016 Arlington
fill R6 Spectra 197

22 August 2016 Arlington
fill R6

Root
sampling 195 (6)

25 August 2016 Hancock R6 Spectra 225

26 August 2016 Hancock R6
Root

sampling 248 (37)

30 August 2016 Arlington R6 Spectra 231

1 September 2016 Arlington R6
Root

sampling 250 (36)

* V stands for vegetative; R stands for reproductive; numerical subscripts of V and R indicates the development stage.
** A sample for canopy is defined as a plot and for leaf is a plant. Parentheses indicates number of samples for qPCR.
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ArcGIS 10.3 (Environmental System Research Institute, Redlands, CA, USA) was used to spatially
relate each 1 s GPS time stamp to a plot relying on plots polygon shape file. Time stamps with distances
less than 0.22 m from the border of the plot were excluded to assure that both Flame and NIRQuest
obtained targets within the experimental plot setup. Relative reflectance values for each plot were
obtained using a custom Python script (https://github.com/prabu-github/tracolo). Dark current was
subtracted from the upwelling radiance and downwelling irradiance spectra, and then the radiance
was divided by the irradiance, while accounting for fiber diameter, integration time and field of view:

R =

(
DNup − DNdark

up

)
[ITup(πr2

up)(
πFOVup

180 )](
DNdo − DNdark

do
)
[ITdo(πr2

do)(
πFOVdo

180 )2π]
(1)

where R is relative reflectance; DN is the spectral data of one sample (vector) and the units are digital
number; dark stands for dark current spectral data; up and do stands for upwelling and downwelling,
respectively; IT stands for integration time in ms; r stands for the radius of the fiber optic in µm; and
FOV stands for field of view of the fiber optic in degrees. The process presented in Equation (1) was
applied for spectral data from each of the spectrometers separately. The 1 nm relative reflectance data
were averaged per plot, smoothed by using the Savitzky and Golay [44] filter with a 5 nm window and
polynomial degree of 2 for the 1 nm resolution, then, the reflectance were resampled to 5 nm resolution
for each of the spectrometers separately. Resampling resulted for the Flame in reflectance values for
101 bands ranging from 400 to 900 nm and for the NIRQuest in reflectance values for 147 bands ranging
from 900 to 1630 nm. Spectral data, from each of the spectrometers, were then vector normalized by
instrument to minimize the disparity in intensity levels [45]. The vector normalized spectra from the
same plot and measuring date of both spectrometers were merged at 900 nm. Merging was performed
by subtracting the NIRQuest reflectance value in 900 nm from the averaged reflectance of 880–900 nm
and adding this scalar to the normalized reflectance values of all NIRQuest wavelengths, resulting in
merged spectra with 247 bands in 5 nm resolution in the range of 400 to 1630 nm.

2.2.2. Leaf Spectral Data Collection and Processing

The leaf spectral data were acquired in vivo throughout the growing season (Table 1) using an
ASD FieldSpec3 full-range (350 to 2500 nm) spectrometer with leaf clip (Analytical Spectral Devices,
Boulder, CO, USA) and a tungsten halogen light source. The spectrometer and light source were on for
at least 40 min prior to measuring and white reference measurements were obtained every 10 min using
a spectralon panel. The adaxial side of the terminal leaflet of each trifoliate leaf was measured three
times: right side, left side and far from the petiole at the center (where the leaf vein is relatively thin),
with each measurement consisting of an average of 10 spectra. For the vegetative stages, the newest
fully developed leaf was measured, until 5 July 2016. During the reproductive stages that followed, the
same terminal leaflet was tagged and remeasured (Table 1) each date, until 8 August 2016. The newest
fully developed leaf was measured again in the last measuring date for each of the sites because of
damage to the relatively old leaves. In case the middle leaflet was missing or damaged, one of the other
two leaflets was measured. To avoid time of day biasing in sampling, measurements were alternated
between rows of different treatments. Near the end of the growing season, outburst natural outbreak of
SDS occurred in hundreds of plants ~100 m north of the Arlington experiment, in the filler of the same
field, and were also measured to get example spectra of symptomatic plants (Table 1), including both
chlorotic and green areas on the leaflet. These leaves measured at the top of the canopy. Leaf spectral
data were processed using the SpecDAL python package (https://github.com/EnSpec/SpecDAL),
with the final data set using 400 to 2500 nm at 5 nm spacing.

https://github.com/prabu-github/tracolo
https://github.com/EnSpec/SpecDAL
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2.2.3. Root Samples for Quantitative Real-Time Polymerase Chain Reaction (qPCR)

Root samples were collected from the leaf level experimental plots to determine the absolute
abundance of Fv (Table 1). Root samples were separated from the plant, washed, and dried at 65 ◦C for
at least 48 h. Samples were homogenized to pass through a 0.5 mm sieve and stored at 4 ◦C until DNA
extraction. DNA was extracted, quantified and qPCR was conducted to obtain absolute quantity of Fv
DNA in root samples, resulting in Fv DNA (pg) per root DNA (ng) as conducted by Wang et al. [31].
A total of 79 root samples analyzed included: 16 Fv-inoculated samples from Arlington with, 20 control
samples from Arlington, 6 samples from Arlington fill, 21 Fv-inoculated samples from Hancock, and
16 control samples from Hancock.

2.3. Data Analyses

2.3.1. Normalized Difference Spectral Indices

Normalized difference spectral index (NDSI) is the normalized difference of all possible two-band
combinations in a defined spectral range (Equation (2); [46]). The NDSIs were calculated to assess the
relation between two bands combinations of canopy spectral data to discriminate inoculation status
and to assess Fv root abundance by leaf spectral data. NDSI values can range from −1 to 1 while the
normalization is effective in standardizing the spectral response to observed targets [46].

NDSI =
Ri − Rj

Ri + Rj
(2)

where R is reflectance in the subscripted wavelength i or j that represents all possible wavelengths
between 400–1630 nm for the Piccolo (247 bands at 5 nm resolution; 30,381 combinations) and
400–2500 nm for the ASD (421 bands; 88,410 combinations). Regression was used to identify the
NDSI’s best correlated with Fv root abundance, with the coefficient of determination (R2) and root
mean square error (RMSE) used as quality metrics. The t-Test was used to identify NDSI’s that
discriminated inoculation status (i.e., 0 for untreated control and 1 for inoculated). The analyses were
conducted in R 3.4.1.

2.3.2. Partial Least Squares

Partial least squares regression (PLSR; [47–49]) was applied to assess the ability of canopy spectral
data to predict soybean seed yield, and to assess Fv abundance based on qPCR of soybean root powder.
PLS discriminant analysis (PLSDA; [50]) was implemented to classify Fv inoculation status of soybean
plants on each of the canopy and leaf level by measurement date and site.

The canopy data had four replicates, one of them was set aside for independent validation.
The samples from the other three replicates were internally cross-validated on 100 permutations of
the data, using a random 70%/30% split, resulting with 100 calibration and cross-validation models.
These 100 calibration models were implemented on the set aside independent validation data resulting
in 100 independent validations. The calibration, cross-validation and independent validation results
were each presenting averaged quality evaluation means. For the PLSR models the quality evaluation
was by R2 and RMSE were obtained to evaluate the models. For the PLSDA models the quality
evaluation was by full confusion matrices, total accuracies and Cohen’s Kappa. For both model
types, PLSR and PLSDA, the accuracy of quality evaluators was assessed by standard deviation, over
the 100 permutations. The leaf data had 25% of the samples randomly set aside for independent
validation. The rest of the samples were internally cross-validated on 100 permutations of the data,
using a random 70%/30% split, resulting with 100 calibration and cross-validation models. These
100 calibration models were implemented on the set aside independent validation data resulting in
100 independent validations. The calibration, cross-validation and independent validation results
were each presenting averaged quality evaluation means and their standard deviation as done for
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the canopy data. The only exception is the PLSR, leaf data, analysis for Fv root content that did not
have independent validation. The standardized coefficients and variable importance in projection
(VIP; [48]) statistic of the PLSDA and PLSR models were to determine the relative importance of
different wavelength regions to prediction, and as a basis to interpret chemical and physical traits
driving the empirical models. Canopy symptoms were identified for the first time on 10 August and
a total of 25 of the 144 plots had visual symptoms during the rest of the season. Therefore, canopy level
PLSDA models for 15, 22 August, and 2 September were calibrated, cross-validated and validated
exclusively using non-canopy symptomatic plots. For the PLSDA models in cases where models
performed similarly for the same (or nearly the same) growth stage, data were merged (leaf and
canopy were not mixed) and analyzed to test whether general predictive models could be obtained.
For all classification analyses using PLSDA we also implemented randomized models in which the
classification variable was assigned randomly to the actual spectra. Classification were run on these
with 100 permutations and in no cases, did the accuracies of these randomized datasets generate
spurious accurate classifications (data not shown). All PLSR and PLSDA analyses were conducted
in R 3.4.1. [51].

3. Results and Discussion

3.1. Spectral Identification of Inoculation—Canopy Level

Data from all canopy level measuring dates (Table 1) were analyzed per date as well as pooled in
several combinations. The relevant dates and combinations are presented in Table 2. The confusion
matrices indicate reasonable and consistent performance across all treatments, suggesting stable
spectral models. The full confusion matrix for all canopy measuring dates in Table 1 and models in
Table 2 are in Supplementary Materials S1. The validation total accuracies seasonal trend is discussed
in Section 3.3. The best PLSDA classification of inoculation status overall was for plants during all
vegetative stages resulting in 77% validation total accuracy (Table 2). The top PLSDA classification of
inoculation status for specific dates was based on canopy spectra utilized data from 18 July and 26 July
both prior to appearance of canopy symptoms, producing 82% validation accuracy (Table 2). Of note,
the two models (18 and 26 July) show very similar patterns (Figure 2), with the red-edge, in 745 and
750 nm in particular having similar VIP scores (Figure 3). The model presenting the data from 18 and
26 July together (Table 2) shows similar validation total accuracy of 75% and similar standardized
coefficients as well as VIP scores (not presented). By the quality of classification, the best stages to
obtain spectral data for inoculation analysis are late vegetative and early reproductive.

Averaged canopy spectra for inoculated and control plants (Figure 2) show higher reflectance
for inoculated plants starting around 860 nm and to the longer wavelengths, especially in the
1400 nm water absorption band. This is related to lower water content in the inoculated plants.
From 750–860 nm, the inoculation treatment generally has lower reflectance values which we attribute
to a smaller, less green, canopy caused by Fv [52]. The standardized PLSDA coefficients (Figure 2)
corroborate the importance of red-edge and near infrared (NIR) wavelengths (750–900 nm) to the
prediction of inoculation status, also evident in the VIP statistic (Figure 3). In support with the
NIR importance, NDSI t-Test of all 2-band combinations between inoculated and control treatments
was applied for spectral data from all dates together (Table 1). The highest t values, significant
at p < 0.05, were for band combinations using the NIR at wavelengths between 755 to 1100 nm
(summarized in supplemental Figure S2). The NIR importance was expected, at the canopy level, the
NIR is influenced primarily by cumulative plant biomass [53] and Fv root infection was negatively
affecting root and aboveground biomass development [52,54]. The variability in the standardized
coefficients indicates the importance of narrow spectral sampling. At the canopy level, the red-edge
provides indication of plant condition that might be related to a variety of traits such as chlorophyll
content, water content, leaf area index, seasonal patterns and canopy biomass [55–58]. The averaged
spectrum of non-symptomatic plants in inoculated plots show higher relative reflectance values in
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the chlorophyll absorption band [59] which is explained to a lesser extent by chlorophyll content as
a result of chlorophyll reduction by root infection and possibly phytotoxins in the canopy [27,60].
The vegetative model might be the correct stage, with multiple measuring dates, to assess Fv infection
if the pathogen is already established and affecting the root and canopy systems and other canopy
influences (e.g., disease, insect damage and senescence) have lesser chance to reduce accuracy of the
model than in later stages.

Table 2. Total accuracies and Cohen’s Kappa of canopy level partial least squares discriminant analysis
(PLSDA) calibration, cross-validation and validation classification models. These results are average of
100 iterations.

PLSDA Model
% Total Accuracy (Number of Samples; Kappa)

Calibration Cross-Validation Validation

All dates 62 (527; 0.25) 58 (228; 0.17) 63 (252; 0.26)
All vegetative stages 76 (200; 0.52) 70 (88; 0.40) 77 (96; 0.55)

All reproductive stages 65 (326; 0.30) 59 (141; 0.17) 61 (156;0.21)
18 July 2016 88 (74; 0.77) 79 (34; 0.57) 82 (36; 0.66)
26 July 2016 86 (74; 0.72) 71 (34; 0.43) 82 (36; 0.65)

18 and 26 July 2016 78 (150; 0.56) 67 (66; 0.35) 75 (72; 0.50)
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3.2. Leaf Level Spectral Analyses

3.2.1. Spectral Identification of Inoculation—Leaf Level

Data from all leaf level measuring dates and both sites (Table 1) were analyzed to classify
inoculated and control treatments per date and site, as well as pooled across several combinations.
The confusion matrices indicate reasonable and consistent performance across treatments, suggesting
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stable spectral models. The full confusion matrix for all leaf measuring dates in Table 1 and models
in Table 3 are in Supplementary Materials S3. PLSDA models based on leaf level data were able to
discriminate inoculated plants with high level of accuracy on individual dates across sites starting at
late vegetative stages to the end of the season in Arlington and to mid-development stages in Hancock.
The validation total accuracies seasonal trend is discussed in Section 3.3.
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The PLSDA VIP values (Figure 4e) for the Arlington and Hancock models have similar trends,
although the standardized coefficients do not (Figure 4a,c). Therefore, data of the same development
stages from the two sites were pooled together and analyzed, resulting in total accuracies of ~50% to
classify the two Fv inoculation status (data not presented), likely because of fundamental differences
between the two field sites that affected overall phenotype of the plants. For example, water and soil
dynamics are dramatically different between Hancock (sandy soils, therefore, irrigated) and Arlington
(fine silty and not irrigated). To test this, we used PLSDA to discriminate between plants at Arlington
and Hancock, resulting in total accuracies that are all higher than 91% for calibration, cross-validation
and validation models. The important VIP bands are mainly in the visible, red-edge and SWIR water
absorptions, showing the influence of environmental conditions including Fv abundance in soybean
roots (full confusion matrices and VIP values in Supplementary Materials S4). As such, under different
environmental conditions, phenotypic variation within the same genotype can obscure the ability
to implement a general algorithm for disease detection [61,62]. Some of the phenotypic variation in
spectral response and resulting equations likely also related to the Hancock plants are irrigated while
Arlington plants are rain fed. Although there is no visual change in reflectance values in 670 nm,
chlorophyll reduction by phytotoxins translocated to the canopy [27] or by root infection affecting the
plant health [52] may explain the difference between the reflectance values of the inoculation status
around 550 nm and of the slope between 550 to 670 nm. Gitelson and Merzlyak [59] reported higher
reflectance in the 550 to 670 nm slope for minor chlorophyll reduction and changes in 670 nm reflectance
only after relatively high changes in chlorophyll. These distinctions in the visible wavelengths were
apparent despite no visual SDS canopy symptoms present at the time of sampling, and no visual
differences between the treatments in the field. Examining the presented models in Figure 4e, the visible
blue and red and red-edge spectral regions were most important in all the cases. The water bands at
1400, 1900 and 2500 nm also show minor relevance. The leaf level analyses in general result in different
models by date and study site, using VIP and standardized coefficients as diagnostics. The models
show general similarities in the regions that are important, and the analyses indicate sensitivity of leaf
spectra to Fv inoculation status. In order to obtain the highest quality of classification there is a need to
analyze specific and sequential development stages for specific site induced environmental conditions.
One of the differences between sites is also Fv natural abundance.
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Table 3. Total accuracies and Cohen’s Kappa of leaf-level PLSDA calibration, cross-validation and
validation classification models (100 iterations per model). Accuracies for individual dates are in
Supplementary Materials S3.

PLSDA Model Development Stage * % Total Accuracy (Number of Samples; Kappa)
Calibration Cross-Validation Validation

Arlington and Hancock

All dates V and R 67 (2531; 0.33) 63 (1086; 0.25) 61 (1227; 0.21)
Vegetative stages V 58 (903; 0.16) 56 (389; 0.12) 55 (430; 0.10)

Reproductive
stages R 76 (1626; 0.48) 70 (699; 0.40) 66 (797; 0.33)

Arlington

All dates V and R 76 (1255; 0.52) 71 (539; 0.43) 72 (589; 0.43)
Vegetative stages V 74 (525; 0.48) 70 (226; 0.39) 67 (242; 0.34)

Reproductive
stages R 83 (729; 0.66) 77 (314; 0.53) 77 (347; 0.55)

Late vegetative
stages V5 V6 91 (263; 0.82) 87 (115; 0.74) 92 (120; 0.83)

Early reproductive
stages R1 R3 89 (254; 0.79) 81 (111; 0.63) 81 (131; 0.61)

Hancock

All dates V and R 78 (1275; 0.55) 74 (548; 0.46) 68 (616; 0.36)
Vegetative stages V 71 (378; 0.42) 64 (163; 0.28) 63 (188; 0.26)

Reproductive
stages R 78 (897; 0.55) 75 (385; 0.48) 67 (428; 0.35)

Late vegetative
stages V5 V6 98 (265; 0.97) 90 (111; 0.81) 91 (132; 0.82)

Early reproductive
stages R2 R3 92 (263; 0.84) 82 (114; 0.64) 75 (121; 0.49)

* V stands for vegetative; R stands for reproductive; numerical subscripts of V and R indicates the development stage.
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Figure 4. The partial least squares discriminant analysis (PLSDA) standardized coefficient and averaged
spectra of inoculated and control for Arlington late vegetative model (a) and zooming to visible range
(b); Hancock late vegetative model (c) and zooming to visible range (d). Variable importance in
projection (VIP) values obtained from PLSDA classification models for some of the models in Table 3 (e).
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3.2.2. Spectral Assessment of Fv Abundance in Root by Leaf Measurement

We further analyzed the qPCR results to assess whether disease abundance in the root system
expressed a range of response in foliar spectra, using PLSR. Spectra appear to show some sensitivity to
degree of infection, with a cross-validation R2 of 0.47 and RMSE of 3.2 pg/ng (calibration R2 of 0.53 and
RMSE of 2.8 pg/ng; Figure 5a). The highest standardized PLSR coefficients of the model (Figure 5b)
were in the visible wavelengths, peaking around the chlorophyll absorption band at 670 nm [59].
The standardized coefficients in the visible range were mainly positive, indicating that reflectance in
the red wavelengths correlated positively with Fv abundance, meaning higher reflectance values are
related to lower chlorophyll content and higher Fv in roots. The NDSI analysis (Figure 5e) identified
the index with the highest relation to Fv root abundance at 690 and 1390 nm, wavelengths strongly
influenced by chlorophyll and water absorption [63], respectively. The differences in Fv abundance
between Arlington and Hancock (Figure 5d) are suggested to be partly related to a larger difference
between the inoculated and control averaged spectra for Arlington than for Hancock (Figure 4b,d) as
seen in the 550 to 670 nm slope. The area of the natural outbreak of Fv 100 m from our experimental
plots had much higher qPCR detected disease in the roots (Figure 5c), so it is likely that larger ranges
of infection than shown in our experiment would yield even greater spectral responses due to effects
on foliage. Of note, the presence of a natural infection near our experiment makes it possible that Fv
infection was present at a low level in the control plants (see Figure 5c), which makes our results more
remarkable that were able to discriminate and validate treatments.
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Figure 5. (a) Absolute abundance of Fv in soybean root samples by Fv DNA (pg) per root DNA (ng) sample
quantitative real-time polymerase chain reaction (qPCR) predicted vs. measured. (b) The standardized
PLSR coefficients and averaged spectra of all samples presented in Figure 5a. The analysis is based on
79 samples cross-validated by PLSR model of leaf spectral data obtained at the end of the growing season:
Arlington leaf plot (30 August); Hancock leaf plot (18 August) and Arlington fill (25 August). (c) The mean
of Fv DNA (pg) per root DNA (ng) per inoculation status and site and (d) for site, excluding Arlington fill
different letters stand for significant difference (p < 0.05) between classes by t-Test. (e) All possible two
band combinations by NDSI map with R2 values (p < 0.05) for regression with Fv values.
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To the best of our knowledge this is the first study showing quantitative assessment of Fv
abundance in soybean roots by leaf full range (400 to 2500 nm) hyperspectral data. This is one of the
few studies to detect Fv infection via foliage measurements prior to visual sudden death syndrome
foliar symptoms [60,64]. Roth et al. [60] demonstrated reduced chlorophyll content in soybean leaves
prior to visual sudden death syndrome symptoms, using the newly developed MultispeQ sensor [64],
which provides credence to our findings. Using hyperspectral sensor and MultispeQ data together,
there is the potential to improve the ability to detect Fv abundance prior to visual symptoms.

3.3. Piccolo Performance

The ability to spectrally discriminate between Fv inoculated and control soybean plants varies
during the growing season (Figure 6). However, the time of season with the best discrimination
quality is consistent. The season starts with low discrimination accuracy likely because Fv had not yet
established itself on the root system sufficiently to affect detectable aboveground properties [52]. As Fv
establishes itself in the root system, its effect becomes detectable, perhaps at the leaf level a bit sooner
than the canopy. Later in the season in late reproductive stages the total accuracies of Arlington canopy
and Hancock leaf plots drop, as the Fv effect on the canopy is masked by processes affecting both
control and inoculated plants, such as general senescence, other diseases, pests or physical damage
to the foliage. Interestingly, the Arlington canopy models excluding plots with canopy symptoms
had higher accuracies than the models including symptomatic plots. This supports the ability to
discriminate prior to visual canopy symptoms using NIR bands (Figures 2 and 3), and due to the
differences in the models that this capacity for detection is a consequence of the non-visual cues.
Processes affecting both control and inoculated plants can affect the leaf level as well. For example,
the Hancock leaf plot suffered from white mold (Sclerotinia sclerotiorum) infection starting late in
the season, while the Arlington leaf plot maintained relatively high total accuracies through the
last measuring date. As well, the qPCR analyses showed Fv abundance significantly higher for the
Arlington compared to Hancock plot (Figure 5d), suggesting that it was much less likely that the Fv
effect was not masked and, thus, was spectrally detected at Arlington in late reproductive stage. Both
measurement strategies, leaf and canopy, have resulted in high quality of discrimination between
inoculated and control plots. Discrimination by each strategy was based on different biophysical
properties and captured by different spectral features. The canopy level captures differences in above
ground canopy biomass. The leaf level is capturing the non-visual differences in pigmentation that are
not detected by canopy level data. Both strategies capture some relative importance of bands related
to water content. Leaf level measurements can readily be used for specific locations or to predict level
of root Fv infection, while the Piccolo is spectrally suitable for Fv infection detection in field and being
tractor mounted made it a potential tool also for other precision agriculture applications.

The major effect of disease on crops is reduced yield, so we tested whether the spectral data
also could predict the concomitant effects of Fv on yield. Seed yield ranged from 2.02 to 5.21 t·ha−1,
with the average seed yield of the inoculated (3.68 t·ha−1) 6% smaller than control (3.91 t·ha−1)
treatment (statistically significant at p < 0.05; [23]). Canopy spectral data from each of the measurement
dates were used to calibrate, cross-validate and validate PLSR models of seed yield (Supplementary
Materials S5), with the best model based on the 15 August data having a reasonable R2 values of 0.71,
0.59 and 0.62 and RMSE of 0.35, 0.41 and 0.31 t·ha−1 for calibration, cross-validation and validation,
respectively (Figure 7a). The important spectral wavelengths for prediction were at the red-edge
(Figure 7b,c), supporting observations by Christenson [65]. The red-edge was also important for
predicting inoculation status, but the NIR bands were more prominent for disease detection, whereas
yield prediction was driven largely by red-edge reflectance (Figure 7b,c). There is a long history
of field spectroscopy use for yield detection. In soy, Ma et al. [66] used a handheld multispectral
spectrometer to correlate vegetation indices to soybean seed yield, with R2 from 0.44 to 0.80 on a range
of yield 1 t·ha−1 to > 4 t·ha−1 (but no cross-validation or validation were applied, nor RMSE reported).
Yu et al. [67], resulted in correlation coefficient (r) of 0.82 for airborne multispectral imagery data and
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soybean seed yield correlation. Christenson [65] obtained canopy spectral data and resulted in R2 of
0.58 with RMSE of 0.7 t·ha−1 for a yield ranging from less than 1 t·ha−1 to > 5 t·ha−1. The smallest
RMSE of validation obtained for the best PLSR model (Supplementary Materials S5) in the current
study is 0.31 t·ha−1 less than half of presented by Christenson [65]. These and other studies show that
spectral data are effective for reliable and rapid yield assessments, with reasonable results here in the
context of disease infestation. The tractor mounted Piccolo system provides the spectral range needed
to feasibly detect Fv root infection and predict seed yield.
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Figure 7. Seed yield assessment by PLSR for 15 August 2016. The quality of seed yield prediction
by validation model (a). The standardized coefficients of the yield model and of PLSDA inoculation
classification for 18 July 2016 (b). VIP values of the yield prediction and inoculation classification from
18 July 2016 (c).

There is some remaining noise in canopy spectral data (Figures 2 and 4b) the effect it has on the
PLS models is visual in the VIP data (Figures 3 and 4c). This effect is assumed not to interfere with the
importance of the spectral regions of the discrimination and prediction models but to have more of
an effect on the importance of specific narrow bands as for the NDSI selection. Therefore, for future
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reflectance data preprocessing, the Whittaker smoother [68,69] will be explored for its build in filter
optimization. It is expected that the Whittaker smoothing algorithm will improve analyses accuracy.

The Piccolo system provided an efficient method for the collection of plant reflectance by
eliminating the need for frequent reference standard measurements. The ability to obtain relative
reflectance under changing atmospheric conditions makes the Piccolo system a reasonable approach for
field sampling, especially in a research setting. The system utilized in this study collected reflectance
from a single row during each pass; additional efforts to streamline the system for more rapid data
acquisition would be required to make this practical in a commercial application. For example, future
modifications and deploying more than one system would enable the measurement of plant reflectance
from a larger area such as the entire width of a ground sprayer. Alternately, deployment from an
unmanned aerial vehicle would also expand the utility of the system. Simultaneous acquisition from
both spectrometers would also reduce the minimum time between data acquisition.

4. Conclusions

Crop phenotyping is a bottleneck in plant research, and rapid methods to assess disease, yield and
other traits for large numbers of samples are needed. Seed yield is one of the most critical traits that
can be spectrally assessed [2,70], although—unlike disease which is detectable due to physiological
effects on foliage—detection of yield is based on indirect correlations with physiology. Our study
showed promising results for use of spectral sensing of the canopy and leaves to identify Fv infection
on soybean roots where no canopy symptoms are visually present. To the best of our knowledge this is
the first publication that documents ability to discriminate Fv-inoculated soybean plants from control
plants by visible, NIR and SWIR hyperspectral data in canopy and leaf level prior to canopy symptoms.
We conclude:

• Fv inoculation that accrues in the roots can be spectrally detected in the soybean foliage at the
canopy and leaf scales as demonstrated by distinguishing between inoculated and control plots
and plants, respectively.

• Early reproductive stage is the recommended timing for canopy level measurements to distinguish
between inoculated and control plots.

• Late vegetative and early reproductive stages are the recommended timings to distinguish
between inoculated and control plants at the leaf level.

• Fv abundance in soybean roots can be spectrally assessed by leaf hyperspectral data.
• The dual field-of-view system produced canopy spectral data resulting in our ability to spectrally

distinguish between Fv inoculation treatments and assess seed yield, thus, showing feasibility of
operation for precision agriculture research and potential commercial applications.

For future work, qPCR samples should be collected over the course of the growing season to
provide a better understanding of the spectral discrimination over time.

Supplementary Materials: Spectral data and associated metadata for this project can be downloaded from
EcoSIS.org (https://ecosis.org/#result/2a9d952a-5a28-47b3-9f85-8aa6e6808991; DOI in progress).
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