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Abstract: Developing countries that intend to implement the United Nations REDD-plus (Reducing
Emissions from Deforestation and forest Degradation, and the role of forest conservation, sustainable
management of forests, and enhancement of forest carbon stocks) framework and obtain economic
incentives are required to estimate changes in forest carbon stocks based on the IPCC guidelines.
In this study, we developed a method to support REDD-plus implementation by estimating tropical
forest aboveground biomass (AGB) by combining airborne LiDAR with very-high-spatial-resolution
satellite data. We acquired QuickBird satellite images of Kampong Thom, Cambodia in 2011 and
airborne LiDAR measurements in some parts of the same area. After haze reduction and atmospheric
correction of the satellite data, we calibrated reflectance values from the mean reflectance of the
objects (obtained by segmentation from areas of overlap between dates) to reduce the effects of the
observation angle and solar elevation. Then, we performed object-based classification using the
satellite data (overall accuracy = 77.0%, versus 92.9% for distinguishing forest from non-forest
land). We used a two-step method to estimate AGB and map it in a tropical environment in
Cambodia. First, we created a multiple-regression model to estimate AGB from the LiDAR data
and plotted field-surveyed AGB values against AGB values predicted by the LiDAR-based model
(R2 = 0.90, RMSE = 38.7 Mg/ha), and calculated reflectance values in each band of the satellite data
for the analyzed objects. Then, we created a multiple-regression model using AGB predicted by the
LiDAR-based model as the dependent variable and the mean and standard deviation of the reflectance
values in each band of the satellite data as the explanatory variables (R2 = 0.73, RMSE = 42.8 Mg/ha).
We calculated AGB of all objects, divided the results into density classes, and mapped the resulting
AGB distribution. Our results suggest that this approach can provide the forest carbon stock per unit
area values required to support REDD-plus.
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1. Introduction

Current CO2 emissions from the forestry sector are mainly due to deforestation in developing
countries, exceeding 10% of total anthropogenic emissions, which is the major cause of climate
change [1]. In light of this, the REDD-plus (Reducing Emissions from Deforestation and forest
Degradation, and the role of forest conservation, sustainable management of forests, and enhancement
of forest carbon stocks) framework has been developed under the UN Framework Convention on
Climate Change (UNFCCC) to reduce emissions in developing countries. The basic concept is to
provide economic incentives to developing countries to support the implementation of REDD-plus
activities. The UNFCCC requests that forest monitoring at a national level should follow the IPCC
guidelines [2] to quantify the changes in the amount of carbon stored in forests [3]. At a national level,
remote sensing and ground-based inventory can be combined to effectively determine carbon stock
changes [3]. According to the IPCC guidelines, emissions can be estimated by multiplying the area of
land use change (activity data) by the corresponding change in carbon stock per unit area (emission
factor). It is expected that the area of land use change is identified from remote sensing data and
carbon stock per unit area is estimated from ground-based inventory data. However, a systematic field
inventory program to obtain the emission factors is difficult to implement for developing countries
because of limited resources and inaccessibility to forests. Accordingly, many developing countries
have insufficient national forest inventory systems, and even if they do have these systems, their
inventory data is often old or outdated. Due to the high cost of on-site monitoring at a national level,
many countries have not developed the institutional capacity for field surveys [4]. In addition, it is
difficult to establish the expertise required to design field surveys needed for reliable data. Thus,
these countries prefer to use an alternative method for obtaining the data required to estimate the
forest carbon stock per unit area so that they can use this data to calculate emission factors under the
REDD-plus framework.

Advanced remote sensing techniques can determine forest carbon stock per unit area. Overstory
height is an important factor in obtaining these estimates because of the power-law relationship
between the overstory height and biomass [5,6]. Moderate-spatial-resolution satellite imagery
(e.g., Landsat) is useful to identify land use changes, but is insensitive to canopy height variation
in forest stands [7]. LiDAR (light detection and ranging) is a particularly useful alternative to
field surveys because it provides detailed information on the three-dimensional structure of forests
to estimate biomass rapidly and, in some cases, at low cost (comparing with field surveys such
as national forest inventory). Therefore, forest carbon stock change can be estimated using the
moderate-spatial-resolution satellite imagery for the acquisition of activity data and airborne LiDAR
data to estimate emission factors [8]. Saarela et al. [9] showed model-based estimators for growing
stock volume and its uncertainty estimation, combining sparse samples of field plots, samples of laser
data, and wall-to-wall Landsat data for large-scale forest inventory development, and also indicated
that they have a potential to contribute to the development of new techniques for surveys in large area.
Ståhl at al. [10] reviewed studies on large-area forest surveys based on model-assisted, model-based,
and hybrid estimation using field inventory and remote sensing data, such as Landsat and airborne
LiDAR, and pointed out that they have advantages and disadvantages. Therefore, which approach to
choose depends on the purpose of the survey and the availability of appropriate data.

Previous studies of airborne LiDAR have been used in temperate and boreal forests to estimate
stand attributes such as tree height [11–14], the number of stems [13,15], and the stand volume [15,16],
as well as the attributes of individual trees [17–21]. These studies have demonstrated the high potential
of LiDAR in the forest monitoring. In recent years, researchers have begun to use LiDAR to estimate
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biomass and carbon density in tropical forests [22–25]. However, studies of LiDAR application in
tropical forests to estimate biomass and carbon density are limited and the potential has not been
appreciated over a wide range of forest types [22].

Despite the high potential of LiDAR to estimate forest carbon stock per unit area, the cost can
be an obstacle to the application to REDD-plus implementation on a large scale, such as at a national
level. One of the most promising alternatives for the estimation of the emission factors at low cost is to
use LiDAR sampling rather than comprehensive surveys [26,27], although sampling at a national scale
in a large country can become costly. Multistage sampling using different instruments can reduce the
cost needed to estimate emission factors; that is, high-cost LiDAR surveys can be used to accurately
identify the characteristics of the specific forest type in surveys in small areas, and relatively low-cost
satellite data can be used to expand them. For example, currently very-high-spatial-resolution (VHSR)
satellite instruments, with a ground resolution finer than 1 m × 1 m, can be used for digital analysis
of forest stand attributes, including aboveground biomass (AGB) [28]. Access to the data from these
satellites is still costly. In addition, some parts of the target area are affected by clouds. Because of this,
the use of VHSR satellite sensors is not appropriate for mapping at the national scale. However, it is
possible to use it in the limited area for the multistage sampling for the estimation of the emission
factors. Hilker et al. [29] indicated the potential of combining VHSR satellite imagery and LiDAR to
update forest inventory data.

The VHSR of some sensors makes it possible to distinguish individual tree crowns, and the forest
stand can be regarded as an aggregation of individual trees [30–34]. In addition, VHSR satellite data has
a wide dynamic range. With these advantages, stands with different forest types and canopy conditions
can be distinguished. On the other hand, due to the irregularity of reflectance from the forest canopy,
it is difficult to apply conventional pixel-based classification to the data [35]. Couteron et al. [36]
indicated the possibility of obtaining texture features from VHSR images and the capability of the
Fourier-based textural ordination (FOTO) method to quantify them. Bastin et al. [37] showed the
availability of canopy texture by harmonizing FOTO indices of images acquired from two different
VHSR sensors with different sun-scene-sensor geometries. In addition, the development of object-based
image classification based on artificial neural networks, fuzzy sets, genetic algorithms, and support
vector machines can improve the representation of complex environments [30]. The object-based
approach is advantageous for changing scales [38], which makes it possible to develop classification
strategies that use the spatial relationships between objects in addition to spectral information [39].
A method to estimate AGB from the delineation of individual crowns using this approach for VHSR
image was developed [40]. The object-based approach can be also applied to LiDAR data for the
classification. In the previous studies, the object-based approach was used for land cover classification
using LiDAR data [41] and for forest species classification using a combination of VHSR satellite
images and LiDAR data [42].

In this study, we aim to develop a method of estimating AGB in seasonal tropical forests by
combining airborne LiDAR data with VHSR satellite data to obtain sampling data of forest carbon
stock per unit area as the emission factor at a national level. This method can be used as an alternative
of comprehensive field surveys to establish timely and reliable national forest inventory data. We used
a two-step method: first, we studied the relationship between field-surveyed AGB and AGB predicted
by the model derived from LiDAR data. Second, we created a multiple-regression model using AGB
predicted by the LiDAR-based model as a dependent variable and the mean and standard deviation of
the reflectance values of each band of the satellite data as the explanatory variables. This combination
of methods is practical, as the cost of field survey is high and the cost of LiDAR survey is also relatively
high. Thus, researchers and resource managers with limited budgets can estimate changes in the
forest carbon stock per unit area as an emission factor based on the IPCC method by reducing the
cost for forest inventory at a national level and compensating the lack of expertise necessary for
large-scale surveys.
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2. Materials and Methods

2.1. Study Area

The study area is located in Kampong Thom Province, central Cambodia, which is covered by
three QuickBird images (12◦34′57′′ N to 12◦46′54′′ N, 105◦14′22′′ E to 105◦30′24′′ E, WGS84; Figure 1a,b).
The area is 4.82 × 104 ha. The whole study area was generally flat, with slopes <5◦. In Cambodia,
deforestation and forest degradation is caused by conversion to agricultural land and other uses, forest
fires, and illegal logging, all of which result from local poverty and population growth. Forest cover
has been decreasing since 1990, faster than most other parts of Southeast Asia. In particular, only half of
the primary forests that existed in 1990 remain in 2010 [43]. This trend is the same in Kampong Thom.
Although all forests are owned by the state, exploitation is carried out under various concessions for
timber production, agribusiness (up to 10,000 ha), and homes and agricultural land for the poor [44].

In the study area, the annual average temperature is 27 ◦C, with relatively little monthly variation,
and the annual precipitation is 1570 mm, with a dry season from November through March. The area
features primary dry evergreen forest, secondary dry evergreen forest, deciduous dipterocarp forest, and
regenerating forest. The primary dry evergreen forest has a canopy that can reach 40 m, with emergent,
canopy, and lower-canopy layers. The basal area reaches 32.0 m2/ha and the forest is rich in species
(Fisher’s α = 15.4). The dominant species are Dipterocarpus costatus, Vatica odorata subsp. brevipetiolata,
and Anisoptera costata. In the secondary dry evergreen forest, some tall trees (with heights of about
40 m) remain, but the height range is wider than that of the primary forest. The basal area (38.9 m2/ha)
and species diversity (α = 14.3) are as high as those of the primary dry evergreen forest. The dominant
species is Irvingia malayana, but Goniothalamus multiovulatus and Sandoricum koetjape are also present.
In the deciduous dipterocarp forest, which is characterized by a low basal area (9.7 m2/ha) and a low
canopy height (<20 m), Dipterocarpus obtusifolius is the only tree species (α = 2.9) [45]. The regenerating
forest is in the early stage of regeneration and is characterized by the very low basal area and the low
canopy height (<10 m).
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Figure 1. (a) The location of the study area in Cambodia (dark areas), (b) the coverage by the Quickbird
images and the locations of the aerial survey areas within them (ASA 1 to 8, airborne LiDAR and aerial
photographs), and (c) the relative sizes and shapes of the sample plots.

2.2. Remotely Sensed Data

We acquired VHSR satellite data, airborne LiDAR data, and digital aerial photographs to support
our analysis.

2.2.1. VHSR Satellite Data

To cover the study area, we acquired three sets of overlapping QuickBird panchromatic and
multispectral data, with respective ground resolutions of 0.61 and 2.44 m at nadir, collected on 27 and
30 November and 19 December 2011 (Figure 1b; Table 1). We selected the data in a short period
of interval to reduce the risk of land cover changes and the influence of seasonality on reflectance
from the canopy surface. The data were georegistered to the WGS 84 zone 51 datum with ground
resolutions of 0.6 and 2.4 m using the nearest-neighbor method for resampling to maintain the original
reflectance properties. Haze reduction and atmospheric correction were conducted using the ATCOR-2
(https://www.rese-apps.com/software/atcor/index.html) for ERDAS Imagine, and the grey-level
values of all bands in each image were converted into reflectance values.

Table 1. Information on the acquired satellite data. Pan, panchromatic; MS, multispectral.

Spacecraft No. of Imaging Bands Acquisition Date Max. Off-Nadir Angle (◦) Min. Solar Elevation (◦) Cloud Cover (%)

QB02 1 pan & 4 MS 27 November 2011 21.12 46.53 0
QB02 1 pan & 4 MS 30 November 2011 9.02 46.95 0
QB02 1 pan & 4 MS 19 December 2011 3.08 44.36 0

2.2.2. Airborne LiDAR Data

Airborne LiDAR data were acquired in January 2012 using the ALTM 3100 airborne laser terrain
mapper (Teledyne Optech Inc., Vaughan, ON, Canada) in eight areas within the study area, which
included all forest types (Figure 1c). The altitude of the helicopter was about 500 m, and the average
flight speed was approximately 25 m/s. The frequency of the laser pulses was 100 kHz, and the
scan frequency was 53 Hz. The maximum off-nadir scan angle was 12◦. The beam divergence was
0.25 mrad. The sampling density of the laser scanning was about 26 pulses/m2. The density was very
high in comparison with those used in other studies of LiDAR application, because we used the data

https://www.rese-apps.com/software/atcor/index.html
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to assess the effect of sampling density on the accurate estimation of forest carbon density in other
studies [25]. The total area of the aerial survey was about 23.4 km2.

Though the sampling density of the laser scanning was high, the distribution of the last returns of
the laser pulses from the ground was uneven, particularly in the evergreen forest, due to the large and
dense crowns of some canopy trees. Our preliminary analysis using the point-cloud data (data not
shown) suggested that it is not suitable to use a cell size smaller than 1 m for the DEM generated
from the airborne LiDAR data. In addition, it is generally difficult for developing countries to acquire
high-density LiDAR data due to its cost. Therefore, the DEM and the DSM were generated from the
airborne LiDAR data of 1 m cell size in this study. The DEM was generated from the last returns of the
laser pulses, and the DSM was generated by assigning the highest first-return value of the laser pulses
for each cell as the cell’s value [46,47]. A digital canopy model (DCM) with a 1 m cell size, which
shows the canopy height above the ground level, was then calculated by subtracting the DEM from
the DSM.

2.2.3. Digital Aerial Photographs

True-color digital aerial photographs were obtained at the same time and in the same areas as
the LiDAR measurements. Orthophotographs were generated from stereo-pair photos with a 0.5 m
ground resolution. These orthophotographs were used to obtain training data for object-based land
cover classification of the satellite data and to evaluate the classification results. The land cover
type was interpreted from these orthophotographs by object, which includes the intersection of a
250 m × 250 m grid (total points = 766), which were produced by segmentation of the images in the
Section 2.4.2 (Figure 2). Interpretation results of the objects at nearly half of the grid intersection points
(384 points) were used as the training data for the object-based classification, and those of the objects
at the remaining 382 points were used for verification. The training and verification points alternated
in selection. Thus, the validation points were independent from the training dataset.
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2.3. Field Survey

We established a total of 57 sample plots that measured either 30 m× 30 m (38) or 50 m× 50 m (19)
in all forest types to create a LiDAR-based model for estimating AGB and determined the coordinates
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at the center of each plot using a global positioning system receiver (Germin eTrex 30) (Figure 1c).
The average positioning accuracy of more than 30 min at each center was less than 5 m. We measured
the diameter at breast height (DBH) of standing trees (DBH > 5 cm) in each plot and recorded their
species. AGB of each tree was obtained from the allometric equation [48] based on the site conditions
in the study area [49].

AGB = exp (−2.134 + 2.530 × ln (DBH)) (1)

AGB in the field sample plots (hereafter, AGBF) was estimated using the field-surveyed DBH
values as inputs for Equation (1). Table 2 shows the summary statistics of the four main forest types in
the field sample plots.

Table 2. Summary statistics for the four main forest types in the field sample plots.

Forest Type and Characteristics Mean Max. Min. S.D.

Primary dry evergreen forest (n = 11)
Number of stems per ha 1341 1578 1133 152

Average DBH (cm) 12.1 14.0 9.1 1.5
Basal area (m2/ha) 29.4 41.6 15.9 8.2

Average tree height (m) 12.7 14.0 10.5 1.2
AGB (Mg/ha) 316.3 546.1 130.6 130.3

Secondary dry evergreen forest (n = 16)
Number of stems per ha 1649 2156 1222 285

Average DBH (cm) 10.9 12.2 8.9 1.0
Basal area (m2/ha) 21.9 27.4 17.1 3.1

Average tree height (m) 11.8 14.0 10.1 1.1
AGB (Mg/ha) 174.3 262.9 105.2 47.1

Dry dipterocarp forest (n = 15)
Number of stems per ha 711 1132 333 235

Average DBH (cm) 10.5 15.8 8.1 1.8
Basal area (m2/ha) 8.5 13.5 4.9 2.9

Average tree height (m) 7.3 9.3 5.9 0.9
AGB (Mg/ha) 64.4 134.4 26.8 32.9

Regenerating forest (n = 15)
Number of stems per ha 607 1752 48 575

Average DBH (cm) 9.7 14.7 7.2 2.3
Basal area (m2/ha) 4.5 12.0 0.3 3.6

Average tree height (m) 8.5 11.8 6.6 1.4
AGB (Mg/ha) 27.1 70.2 1.5 21.1

2.4. Data Analysis

Figure 3 shows the workflow of object-based mapping of AGB in tropical forests in Cambodia by
combining satellite data and aerial LiDAR data as reference data.
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Figure 3. The workflow of the data analysis used for object-based mapping of AGB in tropical forests
by combining VHSR satellite data with LiDAR data as the reference data.

2.4.1. Calibration of Satellite Data

After atmospheric correction, the digital number of the data in each band was converted to
a reflectance value. The interval of acquisition of the images was less than 3 weeks, therefore,
we considered that the influences of land use conversion and seasonal change was small. However,
due to the difference between the angles of the observation and the solar elevation, the shadows of
crowns on the canopy surface varied. Accordingly, we calibrated the satellite data to reduce this effect,
as explained in the latter part of this section.

In the analysis of satellite data, it is difficult to match pixels of different dates due to the
complicated relationship between the geometry of each crown and the observation angle. To solve
this problem, we calibrated the reflectance values from the mean reflectance of the objects obtained
by segmenting the data extracted from the overlapping areas in the different dates of the images.
Satellite data were extracted from two overlap areas (Figure 1b). Both datasets were segmented
using version 9.0.1 of eCognition software (http://www.ecognition.com/) using the multiresolution
segmentation algorithm of Baatz and Schäpe [50]. The scale parameter for the segmentation was
determined by comparing the statistics of the object size (mean and standard deviation) obtained from
the segmentation results with different scale parameters to adjust to the minimum area of 1 ha used
in the definition of forest by the Cambodian Forest Administration (scale parameter = 1000, shape
parameter = 0.1, and compactness parameter = 0.5). We confirmed the results by using the digital
aerial orthophotographs.

http://www.ecognition.com/
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The mean reflectance of each object in each spectral band was calculated, and the values of the
objects obtained from the data of 27 November and 19 December were linearly regressed by the
normal least squares respectively, which served as the origin of the regression graph. The central
image on 30 November was used as a reference images since it overlapped with the two other images.
The regression equations obtained for each band were used to calibrate each pixel’s value from the
satellite data on 27 November and 19 December. All data from the three dates were merged by band
after the calibration.

2.4.2. Object-Based Classification of Satellite Data

Segmentation of the calibrated satellite data was conducted in the study area using the same
scale parameters (scale parameter = 1000, shape parameter = 0.1, and compactness parameter = 0.5)
used for the calibration of data to explain the minimum area of 1 ha used in the definition of
forest by the Cambodian Forest Administration. Segmentation involves partitioning of an array
of measurements based on their degree of homogeneity [51]. Multispectral pan-sharpened images of
the four bands, which were prepared using ERDAS IMAGINE, and panchromatic image were used for
the segmentation.

The objects obtained by this analysis were classified using a nearest neighbor algorithm in
eCognition into primary dry evergreen forest, secondary dry evergreen forest, deciduous dipterocarp
forest, regenerating forest, agricultural land, and bare land; the latter included built-up areas,
clearcut sites, and unpaved roads. The classification used the mean and standard deviation of the
reflectance value in each spectral band within an object and training data interpreted from the aerial
orthophotographs. In general, it is considered that the mean of the reflectance value within an object
is strongly related to land-cover type and that the standard deviation shows surface inhomogeneity.
In this study, we use the generic allometric equation of Brown [48] to estimate AGB of individual
tree. Ideally, local allometric equations should be developed for each forest type to improve the
accuracy of the estimated AGB. However, we could not prepare local allometric equations for each
forest type because of the cost and time requirements of such an exercise; we therefore used one generic
allometric equation for all forest types, and the allometry was based on a single variable, namely DBH.
In addition, we developed a single model to estimate AGB instead of models for the four main forest
types in the next step, because the values of AGB by each forest type except the primary dry evergreen
forest have a narrow range and it is difficult to develop four reliable models for all forest types. Then,
we treat the forest area as one class in this study. The consequence of this approach was that in our final
analysis, it was necessary to classify the area into forest versus non-forest types to extract the forest
area, but initially, we classified the four forest types separately because they have different canopy
characteristics and ground conditions. The mean and standard deviation of the reflectance in each
spectral band of satellite data within an object were calculated to create the model for the estimation
of AGB.

2.4.3. LiDAR-Based Model for AGB Estimation

Various linear and non-linear models have been developed for AGB estimation [16,27,52–55].
Some previous studies showed a good fitting of the linear model for biomass estimation [52,54,55].
In this study, we developed a linear model by means of multiple regression using LiDAR-derived
height variables, namely the maximum (hmax), minimum (hmin), and mean (hmean) values of the sample
plots from the DCM to estimate AGB (Mg/ha):

AGBF = β0 + β1 hmax + β2 hmin + β3 hmean (2)

where β0, β1, β2, and β3 are regression coefficients. Here, we used variables in conjunction with
the height in this study. They are very simple and basic variables in the LiDAR application to the
estimation of AGB, and they have been used for various types and conditions of forests. We selected
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these simple variables while assuming that we use this model for REDD-plus. Ota et al. [25] indicated
the mean value from the DCM was the most important variable to estimate AGB and canopy density
was also significant. In this study, we used the mean value from the DCM and also the maximum and
minimum values instead of canopy density. The mean DCM height was calculated from the DCM for
each sample plot, and AGBF was obtained from the field data. Using these variables, we determined
the coefficients by means of multiple regression.

Next, we calculated the maximum, minimum, and mean DCM heights using the objects obtained
from the segmentation of the satellite data for the aerial survey area and used Equation (2) to estimate
AGB for each object.

2.4.4. Development of a Model for AGB Estimation and Mapping Based on the Satellite Images

An object-based model to estimate AGB from the satellite data was developed by means of
multiple regression using the LiDAR-derived AGB estimate (hereafter, AGBL) for each object as the
dependent variable and the satellite data as the explanatory variables:

AGBL = α0+∑5
k=1(βkmk + γksk) (3)

where k corresponds to the image band (k = 5 is the panchromatic data); α0, βk, and γk are the
regression coefficients for band k; and mk and sk are the mean and standard deviation of the reflectance
values by the object in band k. Because the mean and standard deviation are frequently used for
the classification and extraction of stand attributes by means of object-based approach for VHSR
images [56–58], we used these variables to develop the model. With this model, we calculated the AGB
of all objects and the sample plots in the study area (hereafter, the two-step method), then evaluated
the results by comparing the AGBF with the AGB of the sample plots predicted by the model based on
the satellite image (hereafter, AGBS) by the two-step method. We also developed a regression model
using the AGBF as the dependent variable, and the mean and standard deviation of the reflectance
values by the object and the sample plot from satellite data as the explanatory variables (hereafter,
the direct method), and evaluated the results by comparing the AGBF with the AGBS of the sample
plots predicted by the direct method. Finally, we divided the results by density classes (in multiples of
50 Mg/ha), then mapped them.

3. Results

3.1. Calibration of the Satellite Data

Linear regression of the mean reflectance values of the objects obtained from the overlapping data
of 30 November and 19 December (hereafter, the eastern overlap) and 30 November and 27 November
(hereafter, the western overlap) gave regression equations with coefficients of determination of R2 = 0.75
to 0.93 and R2 = 0.96 to 0.99, respectively, and slopes of 1.08 to 1.19 and 0.95 to 0.98, respectively
(Figure 4). After the calibration using these regression equations, the regression lines passed through the
origin and the slopes were all 1.00 (data not shown). The calibration corrects the mean radiometry of the
objects but not the radiometric variability when changes in observation conditions are likely to affect
the degree of radiometric heterogeneity. Thus, we should recognize that the effect of the difference of
the radiometric variability in the overlapped area between two images still remains after the calibration.
The calibrated data for the three dates were merged by means of mosaic processing for each band.

Although the image dates were close together, differences in reflectance were evident. The images,
which spanned an east–west width of about 10 km, were acquired on non-consecutive dates due to
the satellite’s orbital pattern. In addition, the view angle difference of the sensor between the dates
might lead to image differences. Thus, in large-scale biomass mapping using VHSR satellite data, it is
necessary to account for discontinuity of data between dates. Land use change might cause further
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discontinuity, but the present study used a sufficiently short period, so this seems unlikely to have
caused a problem.Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 21 
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3.2. Object-Based Classification of Satellite Data

Table 3 provides the error matrix for classification of the six land cover types with the 382 validation
points. The overall classification accuracy for the six land cover classes was 77.0%. The primary dry
evergreen forest had high accuracies with both user and producer accuracies of approximately 90%.
In this type of forest, the satellite sensor observes only reflectance from the canopy surface due to the
dense closed canopy, and this leads to high accuracies. The secondary dry evergreen forest had user
and producer accuracies of 88.4% and 69.4%, respectively. This forest type was more often misclassified
into one of the three other forest classes (i.e., omitted from the correct class) because its canopy was
more heterogeneous. The dry dipterocarp forest had low user and producer accuracies (both less than
60%). The canopy of this forest type is open during the dry season (when our data were obtained) and
the forest sometimes includes evergreen shrubs that further complicate identification of the tree canopy.
The regenerating forest had relatively high user and producer accuracies (both >80%). Omission errors
in this class tended to result from confusion with non-forest classes, and commission errors tended
to result from the object being misclassified as secondary dry evergreen forest or dry dipterocarp
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forest. Agricultural land had user and producer accuracies that were both less than 60%. Although the
user accuracy for bare land was also less than 60%, the producer accuracy was 74%. Omission and
commission errors in these classes occurred as a result of confusion with almost all land cover classes
except for the primary dry evergreen forest. In both classes, the object may include vegetation such
as shrubs, crops, and any remaining trees. The relative proportions of such vegetation influence the
classification result.

Overall classification accuracy improved to 92.9% when the primary dry evergreen forest,
the secondary dry evergreen forest, the dry dipterocarp forest, and the regenerating forest were
merged into a single forest category and the agricultural land and bare land were merged into a single
non-forest category (Table 4). The forest class had user and producer accuracies of 98.4 and 93.5%,
respectively. The non-forest class had user and producer accuracies of 65.1 and 89.1%, respectively.

Table 3. Error matrix for classification of the six land cover types. The 382 validation points were used.

Reference Data (no. of Validation Points)

Classified Image PDEF SDEF DDF RF AL BL Total User Accuracy (%)

PDEF 77 11 0 0 0 0 88 87.5
SDEF 4 84 4 1 0 2 95 88.4
DDF 2 12 24 3 1 1 43 55.8
RF 0 9 7 76 1 0 93 81.7
AL 0 2 5 4 16 3 30 53.3
BL 0 3 2 6 5 17 33 51.5

Total no. of points 83 121 42 90 23 23 382
Producer accuracy (%) 92.8 69.4 57.1 84.4 69.6 73.9 77.0

Overall accuracy = 77.0%, Kappa coefficient = 0.709. PDEF, primary dry evergreen forest; SDEF, secondary dry
evergreen forest; DDF, dry dipterocarp forest; RF, regenerating forest; AL, Agricultural land; BL, bare land.

Table 4. Error matrix for classification of the forest and non-forest land cover types. The 382 validation
points were used.

Reference Data (no. of Validation Points)

Classified Image Forest Non-Forest Total User Accuracy (%)

Forest 314 5 319 98.4
Non-forest 22 41 63 65.1

Total no. of points 336 46 382
Producer accuracy (%) 93.5 89.1 92.9

Overall accuracy = 92.9%, Kappa coefficient = 0.712.

3.3. LiDAR-Based Model for AGB Estimation

Table 5 summarizes the results of the multiple-regression analysis for the model in Equation (2)
using the AGBF obtained from the field survey as the dependent variable and the LiDAR-derived
variables (i.e., the maximum, minimum, and mean DCM heights) in each sample plot as the explanatory
variables. The R2 and adjusted R2 values were both 0.90 (p < 0.001). Table 5 shows that the parameter
estimate was greatest for the maximum and minimum DCM heights. The minimum DCM height is
strongly related to the degree of closure of the forest canopy: it becomes nearly zero in an open-canopy
forest, but is similar to the maximum DCM height in a closed-canopy forest. Therefore, AGB is
affected both by the degree of closure of the forest canopy and by the size of the tallest trees in a forest.
Minimum tree height should be 5 m according to the forest definition by the Cambodian government,
therefore, the height of the trees in each plot is more than 8 m. Thus, the large negative intercept in the
model was offset even in the open-canopy forest with small AGB.

AGBF values in the sample plots obtained from the field survey were plotted against the AGBL

values of the sample plots predicted by the LiDAR-based model (Figure 5). The line passing through
the origin to this relationship by least-squares regression analysis had a slope of 1.00 (R2 = 0.90,
p < 0.001). The root-mean-square error (RMSE) was 38.7 Mg/ha.
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Table 5. The results of multiple-regression analysis for the model in Equation (2) using the AGBF

obtained from a field survey and the LiDAR-derived variables, namely the intercept (β0) and the
maximum (β1), minimum (β2), and mean (β3) DCM heights for the sample plots.

Parameter Variable Name Estimate Standard Error

β0 Intercept −137.13 21.07
β1 Maximum DCM height 16.68 4.44
β2 Minimum DCM height 10.85 2.09
β3 Mean DCM height 0.28 2.79
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3.4. The Model for AGB Estimation and Mapping Based on the Satellite Images

Table 6 shows the results of the multiple-regression analysis in Equation (3) using the AGBL

predicted by the LiDAR-based model as the dependent variable and the mean and standard deviation
of the reflectance values in each band of the satellite data for each object as the explanatory variables.
R2 and adjusted R2 were 0.73 and 0.72, respectively (p < 0.001). AGBL values of the objects predicted
by the LiDAR-based model were plotted against AGBS of the objects (Figure 6). With the regression
line fitted through the origin using least-squares regression analysis, the slope was 1.00, and the RMSE
was 42.8 Mg/ha (p < 0.001).

The comparison result between AGBF and AGBS in the sample plots determined by the two-step
method is shown in Figure 7a. With the regression line fitted through the origin using least-squares
regression analysis, the slope was 0.90 (R2 = 0.72). The RMSE was 69.4 Mg/ha. The AGBS model
determined by the two-step method underestimated AGBF at high biomass and overestimated AGBF

at low biomass. We also compared AGBF with AGBS in the sample plots determined by the direct
method (Figure 7b). With the regression line fitted through the origin using least-squares regression
analysis, the slope was 1.00 (R2 = 0.34). The RMSE was 99.6 Mg/ha. Figure 7b shows the weak
correlation between AGBF and the AGBS derived from the direct method. These results indicated that
the two-step method was more suitable than the direct method for estimating AGB.

We classified the AGBs of all objects of the forest by density (in multiples of 50 Mg/ha) and
mapped them (Figure 8). It is clear from Figure 8 that relatively mature forest with high AGB is present
in the eastern part of the study area. A flux tower has been established to measure carbon exchange
and meteorological parameters in a tropical forest in this area [59,60], and the Cambodian Forestry
Administration protects the area as experimental forest. However, conversion of forest into other
land-use has occurred around the edges of the experimental forest. In the western part of the study
area, there are residential areas where local people use the land for agriculture and use the forest as a
source of fuel and construction wood. They also use forested areas to extend the area of agricultural
land. As a result, the forest degrades continuously, and forests with low AGB are found in this area.
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Figure 8 clearly shows that most of the forests in this area have low AGB and that fragmentation of the
forest dominates. AGB maps such as this one provide detailed information that can be used to support
sustainable forest management at a local level.

Table 6. The results of the multiple-regression analysis in the model in Equation (3) using the AGBL

values predicted by the LiDAR model and the mean and standard deviation of the reflectance values
in each band of satellite data for all objects. α0 represents the intercept; βk and γk are the regression
coefficients for the mean and standard deviation (SD) (respectively) for band k, with k = 5 representing
the panchromatic data.

Parameter Variable Name Estimate Standard Error

α0 Intercept 415.50 86.54
β1 Mean for band 1 17.46 19.31
β2 Mean for band 2 −40.02 12.92
β3 Mean for band 3 22.10 10.00
β4 Mean for band 4 −0.26 2.39
β5 Mean for panchromatic band 7.39 3.38
γ1 SD for band 1 −185.31 35.70
γ2 SD for band 2 88.76 18.05
γ3 SD for band 3 −28.46 6.12
γ4 SD for band 4 12.98 3.37
γ5 SD for panchromatic band −9.51 5.69
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plot, and (b) the relationship between the AGBF and the AGBS derived by the direct method for
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4. Discussion

In this study, we assessed the viability of the two-step method for estimating AGB in tropical
forests using LiDAR data and VHSR satellite data as the emission factor based on the IPCC method.
When systematically obtaining such data from multistage sampling at a national level, the sampling
rate must be taken into account, as the data depends largely on environmental and forest conditions.
Multiple satellite images are occasionally needed to cover the area of interest for the mosaic processing
to avoid the cloud problem or the east–west width of about 10 km covered by the satellite during
each orbit. In this study, we used three satellite images that were acquired on close days, but not
the same day. However, such images are not always available. When multiple satellite images are
used, it is necessary to take account of the influences of the season and solar elevation, the difference
in observation angles, and change in land use that occurred during the interval between images.
The calibration method proposed in this study is not applicable when the images are acquired in
different seasons or when there is a rapid change in land use. Changes in reflectance values caused by
the seasonal influence in Landsat data were identified from the data with high temporal resolution
such as MODIS [61,62]. In future research, it is necessary to confirm the applicability of the methods
to the VHSR satellite images. Methods of detecting the change in land use were developed using
time-series data from satellites such as Landsat in the previous studies [63–65]. Occurrences of land
cover change need to be confirmed using such methods when multiple satellite images are used.
There is the same problem in acquiring of LiDAR data. In the seasonal forest, the condition of the
canopy changes in the dry season. Some cell values of the LiDAR-based DCM in the deciduous forest
can be underestimated due to fallen leaves. The laser pulses return back only from the branches of the
canopy. The tendency of this underestimate becomes stronger when the small size of cell is used for
the DCM. Therefore, the beginning of the dry season is the best timing to acquire the LiDAR data in
tropical seasonal forests, as leaves still remain in the trees. It is also necessary to consider the influences
of changes in land use that occur in the interval between the image and the acquisition days of LiDAR.

Point-cloud data or percentiles from LiDAR data have often been used to estimate AGB [24,66],
but we used DCM in the raster format. There was little difference between the DCM obtained from
the raster format and that obtained from the point-cloud data. Ota et al. [25] developed a model to
estimate aboveground carbon using point-cloud data in the same study area and the same LiDAR
data, and showed that R2 was 0.92. The RMSE was slightly smaller than that of the model in this
study. As a result, by simplifying using the DCM with 1 m cell size in place of the original point cloud
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data, the decrease in accuracy was small, so it is applicable to estimating forest carbon stock per unit
area as an emission factor. In the tropics, with LiDAR, RMSEs ranging from 17 to 40 Mg/ha in forest
carbon estimation or 10% of total carbon stock are reported [67]. Biomass is about twice as much as
forest carbon stock. According to the analysis, AGB can be predicted with reasonable accuracy using
the variables derived from LiDAR. Raster data has an advantage of estimating AGB in multistage
sampling at a national level for REDD-plus implementation, because it is easier to process raster data
than point-cloud data. However, the estimation accuracy depends on the cell size in the DCM, which
in turn depends on the laser pulse density. When forests degrade due to the selective logging of large
trees and other processes, the AGB will decrease and the gaps in the forest canopy will increase. In that
case, the minimum DCM takes a small value when the value of the laser pulse density is larger than
the reciprocal of the area of each gap, and the AGB of degraded forest is correctly estimated from the
model. If the laser pulse density is lower than the above value, some gaps cannot be identified from
the DCM and the AGB can be overestimated from the model. Optimal point density in the LiDAR
measurement of various forest types and conditions need to be studied in future research.

In this study, we used the DCM in raster format, and the value of each cell showed the highest
value in the cell. Therefore, we also needed to take account of the cell size when we used the raster
data. When part of the crown is included in a given cell around the rim of a gap, that cell takes the
value of the crown height even if the ground occupies most of the cell. Since the frequency of such
cells increases when the cell size is large, some gaps cannot be identified in the DCM and the estimates
of the mean and minimum DCM increase. However, the number of such cells is usually very small
compared to the total number of cells. Therefore, the influence of cell size of the model is considered to
be relatively small. As the DCM represents only the canopy surface, information from understorey
strata is lost. Thus, it is a concern that this will lead to underestimation of the AGB, because it is not
enough to estimate the AGB of standing trees in the understorey strata. However, the RMSE of our
model was almost the same as that of the model developed using point-cloud data. It is suggested
that standing trees in the understorey strata account for a small ratio in AGB. It should also be noted
that information on the understorey strata obtained from point-cloud data is limited when the canopy
layer is closed.

When developing a model to estimate AGB in tropical forests, it is necessary to consider the
problem of the plot size. In LiDAR measurement, we retrieved the three-dimensional structure of the
canopy and estimated AGB mainly from the canopy height. Generally, a part of crown of the tree
which stands outside of the plot is included in the plot, and that of the tree which stands inside of the
plot sometimes exists outside of the plot. This leads to overestimation or underestimation of the AGB.
In addition, problems can arise from the combination of small plots with imperfect positioning with a
low-end GPS device. When plot size is small, the influence is large. Establishing large plots can reduce
the influence, but it is difficult to establish the required number of plots for developing the model with
accurate differential positioning, particularly in tropical forests.

We showed that the satellite-based model for the AGB estimation using the two-step method
was superior to that using the direct method, when compared the RSMEs. However, the saturation
of the AGB values of about 330 Mg/ha in the two-step method and about 200 Mg/ha in the direct
method occurred. In general, the optical satellite sensor observes the canopy surface of forest areas.
Therefore, it is thought that the difference in individual tree sizes becomes unclear when the forest
canopy is closed.

AGB maps produced using the method in the present study provide a clear picture of forest
conditions at a local level. Object-based classification facilitates the creation of such maps using
geographic information system software, and the data directly supports the planning of forest
management activities. The object-based approach is used in the expectation that it will divide
the image into relatively uniform and thematically significant groups of pixels [30]. In recent years,
an automated parameterization method for multi-scale image segmentation on multiple layers has
been developed [68]. Advances in object-based approaches have potential to expand the use of
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VHSR satellite images for land cover classification. On the other hand, the problem of the land use
not being the same as the land cover means it is difficult to apply fully automatic method in the
object-based approach. In addition, the minimum mapping unit differs greatly from the area used
to define a patch of forest in many developing countries. Due to the difference between the two
scales, it is difficult to distinguish forest degradation from land cover change cutting the small area of
the forests [69]. In particular, the land use pattern around residential areas is complicated, and two
land cover classes are frequently mixed. For example, when crops are cultivated in an open forest,
the land use is considered to agriculture. However, satellite sensors simultaneously observe a mixture
of reflectance from tree crowns, crops, and soil, which causes misclassification. It should be noted that
such misclassification often occurs in highly populated areas.

5. Conclusions

REDD-plus is considered an important measure for the mitigation of climate change, and a
reliable monitoring method is essential to establish a reference emission level to evaluate the emission
reductions achieved by REDD-plus activities. At a national level, a combination of remote sensing
and ground-based inventory data can effectively determine carbon stock changes. However, due to
inaccessibility to forests and lack of expertise required for large-scale surveys, it is occasionally difficult
to design and implement field surveys. In this study, we developed a method of estimating AGB
in seasonal tropical forests by combining airborne LiDAR data with VHSR satellite data to obtain
sampling data of forest carbon stock per unit area as the emission factor at a national level. This method
can be used as an alternative to comprehensive field surveys to establish timely and reliable national
forest inventory data. Our results suggest that this approach can provide the forest carbon stock per
unit area values required to support REDD-plus.
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