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Abstract: In Moderate Resolution Imaging Spectroradiometer (MODIS) Collection (C6) aerosol
products, the Dark Target (DT) and Deep Blue (DB) algorithms provide aerosol optical depth (AOD)
observations at 3 km (DT3K) and 10 km (DT10K), and at 10 km resolution (DB10K), respectively. In this
study, the DB10K is resampled to 3 km grid (DB3K) using the nearest neighbor interpolation technique
and merged with DT3K to generate a new DT and DB merged aerosol product (DTB3K) on a 3 km
grid using Simplified Merge Scheme (SMS). The goal is to supplement DB10K with high-resolution
information over dense vegetation regions where DT3K is susceptible to error. SMS is defined as “an
average of the DT3K and DB3K AOD retrievals or the available one with the highest quality flag”.
The DT3K and DTB3K AOD retrievals are validated from 2008 to 2012 against cloud-screened and
quality-assured AOD from 19 AERONET sites located in Europe. Results show that the percentage
of DTB3K retrievals within the expected error (EE = ± (0.05 + 20%)) and data counts are increased
by 40% and 11%, respectively, and the root mean square error and the mean bias are decreased by
26% and 54%, respectively, compared to the DT3K retrievals. These results suggest that the DTB3K

product is a robust improvement over DT3K alone, and can be used operationally for air quality and
climate-related studies as a high-resolution supplement to the current MODIS product suite.
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1. Introduction

Atmospheric aerosols, small tiny particles suspended in the atmosphere, are emitted from
multiple sources by anthropogenic and natural activities, including smoke, volcanic ash, dust particles,
biomass burning, and particular matters. These particles are associated with uncertainties in the Earth’s
radiation budget and climatic system [1], degradation of atmospheric visibility [2,3], and public health
diseases and mortality [4–9]. A ground–based sunphotometer network [10–12] has been established for
regular monitoring of aerosol particles by providing high temporal and spectral information, but this
network is spatially limited, particularly over open oceans. Satellite remote sensing overcomes this
limitation and provides a spatial distribution of aerosol optical properties such as aerosol optical depth
(AOD) on the global scale. AOD can be obtained from geostationary and polar satellites at different
spatiotemporal resolutions over both land and ocean surfaces [13–26].
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The Moderate Resolution Imaging Spectroradiometer (MODIS) sensors onboard the Terra and
Aqua satellites provide geophysical observations at 36 channels ranging from 0.4 to 14.4 µm with a
temporal resolution of 1–2 days and spatial resolution of 250 m, 500 m, and 1000 m. In the MODIS
Collection 5.1 (C5.1) level-2 operational aerosol product, daily AOD observations at 10 km resolution
are available over dark surfaces from the Dark Target (DT10K) land algorithm [13,27,28], over ocean
surfaces from the DT ocean algorithm [13,29], and over bright surfaces from the Deep Blue (DB10K)
algorithm [16,30,31]. These AOD observations are unable to resolve many local-level aerosol features
due to their inherently coarse resolution. Therefore, the DT AOD product at 3 km resolution (DT3K) is
introduced in the Collection 6 (C6) operational AOD product [32], as a supplement to the DT10K [13]
and DB10K [16] AOD products. DT3K is generated using the same inversion method as used in DT10K,
the only difference being in the selection of the dark target pixels [32].

For the development of the DT3K algorithm over land [13,32], dark target pixels are selected
using the top-of-atmosphere (TOA) reflectance between 0.01 and 0.25 in the 2.11 µm channel. Then,
selected pixels are organized into retrieval windows of 6 pixels × 6 pixels (36 pixels) for subsequent
aerosol retrievals. Pixels in the retrieval windows are masked for clouds, snow/ice, and other bright
surfaces, and separated by land and water pixels. From the remaining pixels, the darkest 20% and
brightest 50% in the retrieval window are discarded using the 0.66 µm channel with, at most, 11 pixels
in the retrieval window being required to perform aerosol retrievals. In this process, pixels retained
at 3 km resolution might be discarded at 10 km resolution. With fewer pixels contributing to
the DT3K retrieval, it yields a noisier product than the DT10K retrieval [13,32]. The DT3K product
has been validated over several regions and exhibits larger errors than the DT10K product due to
underestimation of the estimated surface reflectance and incorrect use of the available “look-up”
aerosol models [13,32–36]. The expected error (EE) of the DT3K over land is ±(0.05 + 20%) [13,32] which
represents a one standard deviation confidence interval around the retrieved AOD (i.e., about 68% of
points should fall within ±EE from the true AOD).

Initially, the MODIS DB algorithm was developed to retrieve AOD over bright surfaces [30,31].
In C6, the Enhanced DB algorithm is used to retrieve AOD over both bright as well as dark
surfaces [16,37,38]. In developing the DB algorithm, pixels are masked for clouds and snow/ice
surfaces, and surface reflectance is estimated for the remaining pixels at 0.412, 0.47, and 0.65 µm.
Thus, AOD is retrieved at 1 km resolution by finding the best match between satellite TOA reflectance
and pre-calculated TOA reflectance stored in a look-up-table (LUT), and then all available pixels are
aggregated at 10 km resolution. The DB10K AOD product has been validated in previous studies,
which have reported better relative retrieval accuracy than the DT10K AOD product [35,38–40] with
some exceptions [41]. EE for Deep Blue is dependent on the viewing geometry, but is approximately
0.03 + 20% on average (i.e., the algorithms have different error characteristics).

MODIS-retrieved AOD [13,16,42–46] is the most frequently used parameter for mapping and
estimation of fine particulate matter (PM2.5) from local to global scales. The error in MODIS AOD may
cause under-/over-estimation in PM2.5 concentrations. Therefore, quality assessment of MODIS AOD
is crucial for local and global air quality applications. Studies have performed the quality assessment
of the MODIS AOD [35,36,41,42,47–50] and used it in statistical modeling based on the empirical linear
regression, land use regression model, and Geo-graphically Weighted Regression (GWR) model for
estimation of PM2.5 concentrations at regional and global scales [14,51–64]. These studies found that
an accurate estimation of the PM2.5 concentration depends on the quality of the satellite-retrieved
AOD observations. Therefore, accurate and robust satellite retrieved AOD retrievals are much needed
for solving environmental and air pollution problems.

Previous studies [33,34,36,40] have reported large uncertainty in the DT3K AOD product at
local-to-regional scales. For example, Nichol and Bilal [36] validated the DT3K AOD retrievals over
16 AERONET sites in Asia corresponding with urban and vegetated land surfaces, and they found
larger errors and overestimation in DT3K. In addition, the DT and DB algorithms have different
AOD spatial coverages over land due to differences in pixels selection criteria and their thresholds,
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the surface reflectance calculation method, and cloud mask. Therefore, a new product at higher
resolution with low errors and more spatial coverage is preferable to understanding aerosol behavior
at something approaching the level of an urban city center.

The main objective of this study is to describe and evaluate a new DT and DB-merged (DTB3K)
AOD product on a 3 km grid to improve the quality of AOD retrievals and spatial coverage over
vegetated and non-vegetated land surfaces (i.e., to retrieve AOD for those regions where the DT3K does
not retrieve AOD due to pixels selection criteria and cloud mask [13], and where DB10K does not retrieve
AOD due to errors in cloud mask that lead to removal of cloud free pixels [16,37]). This study validates
DT3K and DTB3K AOD products over European AERONET sites located over vegetated surfaces, as the
AOD product at 3 km resolution is only available for the DT algorithm which is supposed to retrieve
AOD accurately over vegetated surfaces. However, the proposed product can be used over other global
non-vegetated land surfaces since the product will weigh considerably more information from the DB
algorithm which is designed to retrieve AOD accurately over non-vegetated surfaces. To support this
hypothesis, one urban AERONET is also included in the validation experiment. Dataset and methods
are described in Sections 2 and 3, respectively, and Sections 4 and 5 are about results and discussion,
and conclusion, respectively.

2. Dataset

In this study, Terra–MODIS C6 level-2 operational aerosol products at 3 km (MOD04_3K) and
10 km (MOD04) spatial resolutions were downloaded from Level-1 and Atmosphere Archive &
Distribution System (LAADS) Distributed Active Archive Center (DAAC) (https://ladsweb.nascom.
nasa.gov/) to obtain DT3K and DB10K AOD retrievals, respectively, for evaluation and development
of the proposed merged 3 km DT and DB aerosol product (DTB3K). The Terra–MODIS monthly level
3 Normalized Difference Vegetation Index (NDVI) product (MOD13A3) was downloaded to obtain
the parameter “1 km NDVI” to derive average NDVI values for each corresponding validation site
(Table 1). Aerosol Robotic Network (AERONET) [10,11] cloud-screened and quality-assured (Level 2.0
Version 2) AOD data [12] were downloaded from http://aeronet.gsfc.nasa.gov for 19 European sites
from 2008 to 2012.

Table 1. Summary of the AERONET sites used in this study from 2008 to 2012.

Site Latitude (◦N) Longitude (◦E) Elevation (m) Avg. NDVI Country

Aubiere LAMP 45.76096 3.11107 423.0 0.36 France
Avignon 43.93275 4.87807 32.0 0.54 France
Brussels 50.78333 4.35000 120.0 0.59 Belgium
Cabauw 51.97100 4.92700 −0.7 0.72 Netherlands

Carpentras 44.08333 5.05833 100.0 0.45 France
Chilbolton 51.14446 1.43698 88.0 0.60 UK
Hamburg 53.56833 9.97333 105.0 0.37 Germany

Ispra 45.80305 8.62670 235.0 0.57 Italy
Kanzelhohe Obs. 46.67800 13.90700 1526.0 0.65 Austria

Leipzig 51.35250 12.43528 125.0 0.44 Germany
Lille 50.61167 3.14167 60.0 0.45 France

Minsk 53.92000 27.60100 200.0 0.32 Belarus
Moscow MSU MO 55.70000 37.51000 192.0 0.31 Russia
Munich University 48.14800 11.57300 533.0 0.37 Germany

OHP OBSERVATOIRE 43.93500 5.71000 680.0 0.55 France
Palaiseau 48.70000 2.20833 156.0 0.57 France

Paris 48.86667 2.33333 50.0 0.15 France
Rome Tor Vergata 41.83955 12.64733 130.0 0.48 Italy

Toravere 58.25500 26.46000 70.0 0.50 Estonia

https://ladsweb.nascom.nasa.gov/
https://ladsweb.nascom.nasa.gov/
http://aeronet.gsfc.nasa.gov
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3. Methods

DT3K and merged DTB3K AOD retrievals were validated from 2008 to 2012 against the 19 European
AERONET sites. As the MODIS DT algorithm is designed to retrieve AOD over vegetated surfaces
(NDVI > 0.3) [13], the AERONET sites selected for validation correspond with adjacent surfaces
exhibiting NDVI values between 0.31 and 0.75, except one (Paris) with NDVI of 0.15 that is an urban
site (Table 1). The methodology of this study is based on the following steps:

(i) Only those DT3K and DB10K AOD retrievals at 0.55 µm passing recommended quality assurance
(AQ) checks [13,16,37] were used (for DT, this corresponds to retrievals flagged QA = 3, and,
for DB, retrievals flagged QA = 2 or QA = 3). Therefore, the DT3K and DB10K highest-quality
retrievals were obtained from the Scientific Data Set (SDS) “Optical_Depth_Land_And_Ocean”
and “Deep_Blue_Aerosol_Optical_Depth_550_Land_Best_Estimate”, respectively.

(ii) DB10K AOD retrievals were resampled to 3 km spatial grid (DB3k) onto the DT3K grid using
the nearest neighbor interpolation algorithm [65,66] to match and overlap pixels of DB3K with
the pixels of DT3K. As the DB algorithm first retrieves AOD at 1 km resolution, by finding the
best match between satellite TOA reflectance and pre-calculated TOA reflectance stored in a
LUT, all available pixels are then aggregated to 10 km resolution [16,37,38]. It is expected that
resampling from 10 to 3 km will not affect the accuracy and quality of the DB AOD retrievals.

(iii) To reduce errors in DT3K, the DTB3k product is generated using the Simplified Merge Scheme
(SMS) (DTBM1 in [39]). This technique is selected as it increases the number of collocations and
decreases the errors, and is defined as “an average of the DT3K and DB3K AOD retrievals or
the available one with highest quality assurance flag” independent of the NDVI values [39].
This proposed technique differs from the operational DTB10K technique [13], which uses “an
average of the DT10K and DB10K AOD retrievals or available one for only 0.2 < NDVI < 0.3”.
Instead, the proposed technique uses “an average the DT10K and DB10K AOD retrievals or
available one” for all available NDVI values.

(iv) AERONET AOD is interpolated to 0.55 µm using a standard Ångström exponent (α)
extrapolation [37], as the project does not provide AOD measurements directly at this common
MODIS wavelength.

(v) To increase the number of samples for validation, collocations are defined as the average of at
least two AERONET AOD measurements between 10:00 and 12:00 local solar time and at least
two pixels of MODIS AOD observations within a sampling window of 3 pixels × 3 pixels (average
of 9 pixels) centered on the AERONET site. (i.e., an average within a 9 km × 9 km region).

(vi) Retrieval errors are reported using the expected error (EE) of the DT algorithm at 3 km resolution
over land [32], root mean square error (RMSE), and mean bias (MB). To compare DT3K and
DTB3K statistically, the percent relative differences in N, EE Equation (1), RMSE Equation (2),
MB Equation (3), and R Equation (4) are calculated using Equation (5). These relationships are
defined as

EE = ±
(

0.05 + 0.20 × AOD(AERONET)

)
(1)

RMSE =

√
1
n

n

∑
i=1

(
AOD(MODIS)i − AOD(AERONET)i

)2
(2)

MB = AOD(MODIS) − AOD(AERONET) (3)

R =
n ∑ AERONETi × MODISi − ∑ AERONETi × ∑ MODISi√[

n ∑(AERONETi)
2 − (∑ AERONETi)

2
]
×
[
n ∑(MODISi)

2 − (∑ MODISi)
2
] (4)

and

% Relative Di f f erence =
(

DT3K − DTB3K
DT3K

)
× 100 (5)
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4. Results and Discussion

4.1. Validation of the DT3K and DTB3K AOD Products at Regional Scale

DT3K and DTB3K AOD retrievals were validated from 2008 to 2012 (Figure 1 and Table 2) against
AERONET. In Figure 1, red and black colors represent the coincident DT3K and DTB3K observations,
respectively (dashed lines = EE envelopes, and the black solid line = 1:1 line). Figure 1 shows that the
DT3K AOD retrievals, in general, overestimate at all of the sites, although large variance was observed
between them overall. This overestimation of AOD retrievals by DT3K was observed at 13 out of
19 sites, while AOD retrievals at only six sites meet the requirement of the EE (>68% or 69% to 88% of
the retrievals were within the EE). The greatest uncertainties were observed at Paris (NDVI = 0.15),
Moscow_MU_MO (NDVI = 0.31), Leipzig (NDVI = 0.44), and Minsk (NDVI = 0.32), with only 8%, 14%,
26% and 27% of the retrievals, respectively, being within EE (Figure 1 and Table 2). This overestimation,
occurring for both low and high aerosol loadings, probably implies an underestimation of the surface
reflectance by the VIS vs. 2.11 µm relationship, and potentially an error in the aerosol schemes used in
the LUT. Previous studies reported similar errors in the DT3K AOD retrievals over different parts of
the globe [32–34,36]. This is also similar to the DT C6 algorithm at 10 km, which overestimates with
positive offset [34–36,67,68].

Table 2. Validation summary of the DT3K and DTB3K AOD retrievals.

Site N % Above/Within/Below EE RMSE MB R

DT3K AOD Product

Aubiere LAMP 232 40/60/00 0.116 0.073 0.731
Avignon 783 34/66/00 0.092 0.064 0.853
Brussels 211 33/67/00 0.104 0.063 0.817
Cabauw 219 19/78/03 0.093 0.040 0.837

Carpentras 258 31/69/00 0.078 0.057 0.861
Chilbolton 241 24/75/01 0.101 0.041 0.728
Hamburg 149 66/34/00 0.154 0.127 0.835

Ispra 183 09/88/03 0.078 0.012 0.913
Kanzelhohe Obs. 96 43/53/00 0.092 0.067 0.623

Leipzig 293 74/26/00 0.164 0.137 0.832
Lille 303 58/40/02 0.139 0.107 0.793

Minsk 161 73/27/00 0.163 0.135 0.828
Moscow MSU MO 173 86/14/00 0.200 0.179 0.888
Munich University 257 59/40/01 0.128 0.104 0.794

OHP OBSERVATOIRE 765 24/76/00 0.070 0.045 0.834
Palaiseau 354 38/61/01 0.102 0.066 0.787

Paris 212 92/08/00 0.362 0.311 0.533
Rome Tor Vergata 675 54/45/01 0.122 0.096 0.778

Toravere 261 25/74/01 0.098 0.053 0.811
All sites 5826 43/56/01 0.131 0.085 0.769

DTB3K AOD Product

Aubiere LAMP 240 20/79/01 0.100 0.043 0.724
Avignon 897 15/84/01 0.068 0.023 0.809
Brussels 223 23/77/00 0.095 0.048 0.802
Cabauw 266 14/82/04 0.088 0.019 0.817

Carpentras 268 20/80/00 0.067 0.037 0.828
Chilbolton 254 15/83/02 0.095 0.022 0.717
Hamburg 188 19/80/01 0.094 0.036 0.804

Ispra 276 04/85/11 0.076 −0.019 0.897
Kanzelhohe Obs. 120 24/73/03 0.084 0.027 0.552

Leipzig 324 24/74/02 0.120 0.063 0.760
Lille 325 31/68/01 0.107 0.063 0.787

Minsk 178 34/65/01 0.122 0.066 0.767
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Table 2. Cont.

Site N % Above/Within/Below EE RMSE MB R

DT3K AOD Product

Moscow MSU MO 202 30/68/02 0.151 0.072 0.932
Munich University 286 19/79/02 0.082 0.022 0.768

OHP OBSERVATOIRE 779 17/83/00 0.062 0.030 0.803
Palaiseau 369 18/79/03 0.083 0.025 0.751

Paris 304 34/63/03 0.188 0.083 0.495
Rome Tor Vergata 717 28/71/01 0.097 0.052 0.734

Toravere 276 26/73/01 0.094 0.051 0.802
All sites 6492 21/77/02 0.097 0.039 0.801
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The aggregated results of all sites show a large and significant overestimation in the DT3K AOD
retrievals, as 43% of the retrievals were above EE (Table 2). All these sites have different surface
characteristics. For example, Paris is a pure urban site, whereas Leipzig is dominated by vegetated
surfaces. For Paris and Leipzig, the slope between DT3K and AERONET was significantly greater
than one (Paris = 1.99 and Leipzig = 1.47), which probably suggests too much absorption in the
aerosol model used in the LUT [38,69]. However, both generally experience a wide range of aerosol
loading conditions. Thus, selection of an accurate aerosol model is important for accurate high AOD
retrievals [13]. Overall, the performance of DT3K was relatively poor over the vegetated surfaces
(NDVI > 0.30), as only 56% of the retrievals were within EE with RMSE of 0.131 and MB of 0.085.
This is an important distinction, though, as the point of designing the retrieval was ultimately more
accurate AOD over such surfaces.

Validation of the DTB3K AOD retrievals show significant improvement in retrieval quality, as the
percentage of retrievals within EE increased and RMSE and MB decreased at each site (Figure 1 and
Table 2). For the Paris, Moscow_MU_MO, Leipzig, and Minsk sites, for instance, the percentage of
retrievals within EE increased remarkably from 8% to 63%, 14% to 68%, 26% to 73%, and 27% to
65%, respectively; RMSE decreased from 0.362 to 0.188, 0.200 to 0.151, 0.164 to 0.120, and 0.163 to
0.122, respectively; and MB decreased from 0.311 to 0.083, 0.179 to 0.072, 0.137 to 0.063, and 0.135 to
0.066 (Table 2), respectively. These results suggest that the DB algorithm performs better at these sites
compared with DT and the contribution of the DB AOD retrievals in the DTB3K retrievals significantly
improves the retrieval quality and reduces error. Again, the advantage of using the average of both DT
and DB AOD retrievals is to minimize the error in the DT C6 algorithm [39].

For all sites, 77% of the DTB3K AOD retrievals were within EE, which is 38% higher than the DT3K

AOD retrievals, RMSE and MB decreased from 0.131 to 0.097 and 0.087 to 0.039, which are 26% and
54%, respectively, lower than the DT3K. These results suggest that a merged DTB3K AOD product
exhibits better retrieval quality than the DT3K and can thus be applied with greater confidence for air
quality studies at the relatively finer scales.

4.2. Validation of the DT3K and DTB3K AOD Products at Local Scales

The performance of the DT3K and DTB3K AOD products was further evaluated in terms of
improvement in percentage of retrievals within EE, spatiotemporal data coverage, RMSE and MB and
R at each AERONET site based on the following criteria [39]: if the relative difference using Equation
(5) is (a) within 10% for the percentage of retrievals within EE; (b) within 20% for the data count (N);
(c) within 5% for RMSE; (d) within 5% for MB; and (e) within 10% for R, then the DT3K and DTB3K

are considered to perform equally well at that site, and these sites are denoted by a “plus” symbol in
Figure 2. In Figure 2, DT3K and DTB3K are represented by “triangle” and “circle” symbols, respectively,
when they performed better over the individual sites, and color variations represent the magnitude
of the relative difference (%) between the DT3K and DTB3K AOD products. The point of this analysis
is to highlight the robustness of the AOD product with respect to each statistical parameter for each
individual site.

For the percentage of AOD retrievals within EE, the DTB3K AOD product performed well, as 15
out of 19 sites showed improvement and the percentage of AOD retrievals within EE was increased by
11% to >100% compared with the DT3K AOD product (Figure 2a). There were only four sites where
DT3K and DTB3K performed equally, as the relative difference of the percentage of retrievals within
EE is less than 10%. Overall, the DTB3K method performed well and significantly improved retrieval
quality, as the percentage of AOD retrievals within EE increased due to the contribution of the DB
AOD retrievals.

For the data count, or number of collocations, the DT3K and DTB3K methods performed equally
at 14 out of 19 sites, as the relative difference of data counts is within 20% (Figure 2b). For the
remaining five sites, DTB3K performed well compared with DT3K as the data count increased by 21%
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to 60%. This indicates that the DTB3K method is likely more skillful than the DT3K method in terms of
spatiotemporal data coverage.Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 12 
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statistics: (a) percentage within the EE; (b) data count (N); (c) root mean square error (RMSE); (d) mean
bias (MB); and (e) correlation coefficient (R).

For RMSE and MB, the DTB3K method significantly reduced the errors at 16 (Figure 2c) and 18
(Figure 2d) sites, respectively, compared with DT3K. The RMSE and MB reduced by 6 to 60% and
21 to >100%, respectively. There were only three (one) sites where both methods exhibit the same
RMSE (MB). These results suggest that DTB3K is robust, with lower RMSE and MB errors than the
DT3K retrievals.

For correlation, the DT3K and DTB3K methods performed equally at 18 out of 19 sites, as the
relative difference was within 10% (Figure 2e). There was only one site where the DT3K AOD retrievals
have a better correlation with the AERONET AOD retrievals than the DTB3K AOD retrievals as the
relative difference was between 11% and 20%. Overall, both methods performed equally in terms
of correlation.

In full, these results suggest that the DTB3K method is robust, more efficient and performed better
at relatively finer scales, with larger data count percentages within EE, greater data counts overall,
and lower RMSE and MB than DT3K.

5. Summary and Conclusions

The Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 aerosol product
provides global aerosol optical depth (AOD) observations over land at 3 km and 10 km spatial
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resolutions based on the Dark Target (DT) algorithms, and at 10 km resolution based on the Deep Blue
(DB) algorithm. The DT and DB algorithms have different spatial coverage of AOD observations over
land due to differences in their retrieval approaches (i.e. pixel selection, cloud screening and surface
reflectance estimation method). DT3K exhibits large errors over urban or non-vegetated surfaces, as the
DT algorithm is designed to retrieve AOD over vegetated surfaces. Therefore, the objectives of this
study included developing a new DT and DB merged aerosol product on a 3 km grid, which can reduce
the errors and increase the spatiotemporal coverage by providing AOD observations for those surface
types and regions where either of each (DT and DB) were unable to provide due to pixel selection
criteria and cloud mask.

For this analysis: (i) only high quality-assured AOD observations were obtained
from the Scientific Data Sets (SDS), including “Optical_Depth_Land_And_Ocean” and
“Deep_Blue_Aerosol_Optical_Depth_550_Land_Best_Estimate” for DT3K and DB10K, respectively;
(ii) the DB10K AOD retrievals were resampled to 3 km grid using nearest neighbor interpolation
algorithm; and (iii) they were merged with DT3K AOD retrievals using Simplified Merge Scheme
(SMS) defined as “an average of the DT3K and DB3K AOD retrievals or the available one with highest
quality assurance flag”. DT3K and DTB3K AOD retrievals were validated from 2008 to 2012 against
cloud-screened and quality-assured (Level 2.0 Version 2) AOD measurements obtained from the
19 AERONET sites in Europe located over the vegetated and non-vegetated surfaces.

Our primary conclusions are:

(i) DT3K AOD retrievals were overestimated over vegetated surfaces for both low and high
aerosol loadings.

(ii) The overestimation might be caused by the underestimation of the surface reflectance and
inappropriate aerosol model.

(iii) Only 56% retrievals of the DT3K were within the EE which indicates that the DT3K product does
not meet the requirements of the EE.

(iv) The DTB3K method significantly improved the retrieval quality as the percentage of the retrievals
and data counts were increased, and RMSE and MB were decreased.

(v) The contribution of DB AOD retrievals in the DTB3K helped to reduce the overestimation in the
DT3K AOD retrievals for both low and high aerosol loadings.

(vi) The percentage within the EE for the DTB3K retrievals increased up to 77% which indicates that
the DTB3K product meets the requirements of the EE, and this is a 38% relative increase over the
DT3K AOD retrievals.

(vii) The DBT3K method reduced the RMSE and MB errors by 26% and 54%, respectively, for all sites.

Overall, the DTB3K merged method is robust and performed better over vegetated and
non-vegetated land surfaces than the DT3K algorithm, and is recommended for air quality and
climate-related studies in such land–surface regions.
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