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Abstract: Many coherent lidars are used today with aerosol targets for detailed studies of e.g., local
wind speed and turbulence. Fibre-optic lidars operating near 1.5 µm dominate the wind energy
market, with hundreds now installed worldwide. Here, we review some of the beam/target physics
for these lidars and discuss practical problems. In a monostatic Doppler lidar with matched local
oscillator and transmit beams, focusing of the beam gives rise to a spatial sensitivity along the
beam direction that depends on the inverse of beam area; for Gaussian beams, this sensitivity
follows a Lorentzian function. At short range, the associated probe volume can be extremely small
and contain very few scatterers; we describe predictions and simulations for few-scatterer and
multi-scatterer sensing. We review the single-particle mode (SPM) and volume mode (VM) modelling
of Frehlich et al. and some numerical modelling of lidar detector time series and statistics. Interesting
behaviour may be observed from a modern coherent lidar used at short ranges (e.g., in a wind
tunnel) and/or with weak aerosol seeding. We also review some problems (and solutions) for
Doppler-sign-insensitive lidars.
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1. Introduction

Near-infrared coherent lidars are familiar in anemometry and turbulence sensing. Their behaviour
has been fairly well understood and modelled since the 1960s. Fibre-optic versions are increasingly
used in the wind power industry for aerosol targets, and are also becoming popular for solid targets
such as vibrating or rotating machinery, structural panels, and turbine blades. Several tutorials and
reviews have recently been published, aimed at the growing number of readers—not necessarily
optical or laser specialists—who need to understand the main features and limitations of these
sensor tools. As they become widely used and extended to different technical areas, it is sometimes
necessary to return to the fundamentals and check that older radar/lidar lessons are correctly translated
and applied.

A recent review of modern fibre-optic lidars [1] discussed three main points:

(1) The most common references in the literature of “coherent continuous-wave focused monostatic
lidars” are now some 25–40 years old but still worth reading. In particular, the carrier-to-noise
analysis of Sonnenschein and Horrigan [2] agrees with alternative treatments based on the popular
“antenna theorem” or “back-propagated local oscillator” (BPLO) approach. Their analysis applies
to ZephIR and similar modern fibre-optic aerosol lidars.

(2) Such lidars work over a large range of conditions and spatial scales; for example, the so-called
“probe volume” of a variable-focus lidar may easily vary over eight orders of magnitude.
There may also be large variations in scattering particle density and average atmospheric
backscatter. The assumption that the probe volume contains “many” scatterers can lead to
simple mathematics (Gaussian statistics for long random walks where the central limit theorem
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holds) and is extremely common but can be faulty (e.g., with very clean air or short measurement
range).

(3) The desire for simple descriptions or “sensor performance metrics” conflicts with the
complications of real lidar measurements. For example, the expressions “range resolution”
and “bandwidth” have multiple meanings, and it is difficult (and often confusing) to characterise
a lidar's performance by a single value. In a well-known sense, the axial resolution of a coherent
CW focused monostatic lidar is a Lorentzian function with scale parameter equal to the beam
Rayleigh range. In another important sense, the lidar can “resolve” scattering events with much
finer range precision.

The present paper concentrates on aerosol scattering and a common commercial application:
the “lidar Doppler” estimation of aerosol/lidar relative velocity and thus (by using several or many
estimates) of wind flow and wind patterns. We start with a brief review of the beam geometry for
a standard coherent lidar (Section 2). Sections 3 and 4 discuss the detector output for direct and
heterodyne detection respectively. Section 5 has comments on the large preceding literature and
reviews some disagreements about “lidar collection efficiency”, which is one aspect of the dependence
of carrier-to-noise (CNR) on beam geometry.

Section 6 discusses a computer simulation of multi-scatterer experiments. Section 7 describes the
important practical constraint of sign ambiguity for moving targets and illustrates how, even if I&Q
data or other indications of sign are not immediately available, that ambiguity can be removed for
typical aerosol targets. For the common conical-scan or sector-scan geometry and its associated VAD
(velocity-azimuth display) output, Section 8 discusses examples of measurement bias.

2. Lidar Geometry

Consider the sketches in Figure 1.
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Figure 1. Schematics of laser Doppler systems for remote wind sensing. (a) Reproduced from 
Lawrence et al. [3] (“A laser velocimeter for remote wind sensing”, Rev. Sci. Instrum. 1972, vol. 43, 
pp. 512–518) with the permission of AIP Publishing. This is concerned with Doppler measurements 
of wind-borne scatterers in the atmosphere at relatively short ranges, but is more widely relevant;  
(b) From Hill [1], concerned with modern fibre-optic lidars. See also below for Figure 2 and the 
original diagram in Lindelöw [4]. 

Figure 1. Schematics of laser Doppler systems for remote wind sensing. (a) Reproduced from Lawrence
et al. [3] (“A laser velocimeter for remote wind sensing”, Rev. Sci. Instrum. 1972, vol. 43, pp. 512–518)
with the permission of AIP Publishing. This is concerned with Doppler measurements of wind-borne
scatterers in the atmosphere at relatively short ranges, but is more widely relevant; (b) From Hill [1],
concerned with modern fibre-optic lidars. See also below for Figure 2 and the original diagram in
Lindelöw [4].
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Figure 2. Schematic of focused monostatic CW coherent lidar based on fibre-optics components.
Distance to focus is xfocus, and distance to target scatterer is x; these are called f and L in Figure 1a.
Reproduced from Lindelöw [4].

The beam is brought to focus at a distance f from the telescope aperture (mirror or lens), and the
scatterers are carried across the beam by the wind at a possibly different distance L, with a crosswind
velocity component of V ms−1.

Let the beam be a lowest-order Gaussian beam with a field described by

E(x, y, z) =
E0

w(z)
exp

[
−(x2 + y2)

w(z)2

]
exp

[
jk
(x2 + y2)

2R(z)2

]
(1)

w(z) = w0

√
1 + (z/zR)

2 (2)

is the “beam 1/e2 intensity radius” at axial distance z from focus

R(z) = z + z2
R/z (3)

is the beam radius of phasefront curvature at z

zR = πw0
2/π (4)

is the beam parameter or Rayleigh range (often notated b or b/2)

I(x, y, z) =| E(x, y, z) |2= E0
2

w(z)2 exp

[
−2

(x2 + y2)

w(z)2

]
(5)

Some constant factors and the extra on-axis (Gouy) phase shift have been omitted.
According to Equations (1) and (2), the beam extends indefinitely in any XY cross-section

plane, but its field strength decays exponentially, with scale parameter w(z). The beam also extends
indefinitely along the z axis, but its field strength decays according to 1/w(z), with scale parameter zR.
For a uniformly and densely seeded atmosphere, we are usually justified in neglecting the contributions
from scatterers that are more than a few beam widths off-axis or more than a few Rayleigh ranges
away from the beam focus—see below. For a single scatterer, of course, we are interested in the lidar
response for any scatterer position if it is detectable.

For such a Gaussian beam of intensity I(r) = I0 exp(−2(x2 + y2)/w2) = I0 exp(−2r2/w2),
illuminating one thin “slice” between ranges z and z + dz, some simple properties are

• P0 = I0 (πw2/2) is the total power, I0 is the on-axis intensity, and w is the e−2 intensity radius of
the beam.

• The power enclosed by a circle of radius h is P0·[1 − exp(−2h2/w2)]. If h equals 2w, about 99.97%
of the total power is enclosed. This is effectively all the power for most practical purposes, and the
mean intensity within the circle of radius h is nearly P0/(πh2) if h ≥ 2w.

• The probability distribution for the illumination intensity I is p(I) = 1
I (

w2

2h2 ) with normalisation to
unit probability within the circle of radius h (i.e., the intensity lies between I0 exp(−2h2/w2) and I0).
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Similar but z-averaged properties may be derived for a focused Gaussian beam whose width
parameter w(z) varies along the beam according to Equation (2). However, the mean intensity and the
p(I) then depend on the z integration limits, which may not be symmetric around the focus distance.
For example, a “collimated” exit beam has a plane wavefront initially; the beam waist lies at the exit
aperture (z = 0) and the beam expands as it propagates through positive ranges z; negative values of z
are not relevant because they lie inside or behind the lidar.

Note that our Rayleigh range is defined here as zR = πw2
0/λ, so that the beam radius w(z = zR) is√

2 times the beam waist radius w0. Alternatively, the terms “beam parameter”, “confocal distance”,
and “Rayleigh range” are sometimes defined as 2πw2

0/λ to refer to the distance between the plane where
w(z =−zR) =

√
2w0 and the corresponding plane on the other side of the waist where w(z = zR) =

√
2w0.

3. The Detector Output (Direct Detection)

Consider the average backscattered power reaching the receive aperture: a quantity proportional
to the “photon count” due to scattering from all illuminated regions [5].

If there are N scatterers contributing, the instantaneous power is proportional to the
magnitude-squared of the sum over N phasors (one from each scatterer). A time or ensemble average
power, taken over all relative phases of the individual scatterer reflections (all phases being assumed
equally probable), is proportional to the sum of N positive terms, one for each scatterer; each term
depends on the scatterer’s position in the Gaussian illuminating beam, and also has an inverse-square
dependence of the strength of the spherical scattered wave as it propagates back to the receiver.
Cross-terms average to zero, regardless of N; the averaging to zero results from the random uniform
distribution of phases and does not require N >> 1. If we assume for simplicity that the fraction of
scattered light received within the aperture (and falling on the detector) is the same for all scatterers at
a particular range, that is usually a serious and restrictive assumption. The precise dependence on
scatterer position may not be easy to express, if we wish to consider scatterers in the near field—for
example, a thin slice so near the lidar aperture that the solid angle subtended by the aperture is not
the same for all scatterers in the beam. We can only mention here a large literature on the detailed
geometrical “form factors” and “collection efficiency” of direct-detection lidars [6].

This instantaneous power and this average power would be seen in direct-detection mode, where
we assume that photoelectrons are generated independently from every small sub-area of the detector,
and the total photoelectron current is (in the limit of large count) an accurate, “light-in-a-bucket”
record (subject to some detector response bandwidth) of the time-varying optical power that falls on
the whole detector surface. For the moment we can consider that a fixed (usually large) fraction of the
backscattered laser light that falls within the receive aperture reaches the detector. This backscattered
light forms an interference pattern due to its N randomly phased components (a Gaussian speckle
pattern, in the limit N >> 1). Using a single-mode optical fibre in the receive channel of a direct-detection
lidar has consequences. One advantage is that we know where we are looking (there is a well-defined
“receive antenna” pattern—not to be confused with the phase-sensitive heterodyne-lidar antenna
pattern below) but a disadvantage is that much light entering the receive aperture is lost because it
does not match the fibre mode at the entrance facet; another consequence, often undesirable in direct
detection, is that intensity fluctuations are not averaged out.

With this catch-all or “bucket” aperture, the average direct-detection backscattered power is
proportional to the sum over the individual N illumination intensities—for any value of N or any
seeding density; strictly, this holds without any lower limit, and we assume we never reach the other
extreme where the scatterers are so dense that multiple scattering is significant.

In terms of the standard random-walk problem on a complex plane, we have at any one point
(or any one sufficiently small detector element) the coherent summation of N randomly directed
vectors [1]. If each vector has the same length a, the total “intensity”—the mean value of the
square of the resulting distance from the origin—is <I> = Na2. The second moment of intensity
is <I2> = 2N(N − 1)a4 + Na4, which for large N approaches 2(Na2)2 = 2<I>2. The “normalised second
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moment” is thus <I2>/<I>2 = 2 − (1/N). If the vector lengths are drawn from a random distribution [7],
we can use the following result:

< I2 >

< I >2 = 2
(

1− 1
N

)
+

1
N

< a4 >

< a2 >2 (6)

Many further expressions for the intensity moments of various orders have been studied, often
through the indirect mathematical methods of “generating functions”. The probability distribution of
intensity P(I) tends to be less tractable; few of the results, in terms of integrals of Bessel functions, reduce
to useful analytical expressions. (Note that we use p(I) above to describe the spatial variations, and P(I)
here to describe the time series at a detector point). For an illuminated collection of N non-fluctuating
scatterers, with N “moderately large”, Pusey et al. [8] expressed P(I) as the Gaussian-limit exponential
exp(−I/<I>)/I plus a series of stated correction terms. Some of the integrals involved in random-walk
analysis are difficult to compute with high precision, but this is not of major importance for lidar users.

A many-scatterer Gaussian-statistics limit of the random walk model should not be assumed
without thought; also, the definition of “CNR” depends on whether we include times when no
scatterers are present. In practice, perhaps with rather detailed “time-frequency” post-processing,
we may increase the “CNR” by discarding data from such times and by discarding frequency bands
which do not contain the (usually chirping) lidar returns.

Because of the Gaussian beam’s circular symmetry, the backscattering from the full 3D
scatterer-filled volume is usually treated by an integral over a set of thin discs (with radial scale
w(z) and extending from z to z + dz) considered to fill the space on one side of the lidar aperture.
We note that scattering from a collection of particles all confined to a very thin disk (or spherical shell
etc.) may not satisfy the requirement of uniformly distributed phase [7].

4. The Detector Output (Heterodyne Detection)

Now consider the heterodyne operating mode by adding the LO (and BPLO) to the picture, with
no other optical change; the backscattered light received at the detector is the same as before—say
Ps(N) for N scatterers—but in general, some fraction (1 − ηhet) of this incident light will not be
mode-matched with the LO and will not contribute to the heterodyne current, whose power is
proportional to ηhet, Ps(N), and the local oscillator power PLO. The overlap of incident light and
LO light can be evaluated at the detector surface or (by a considerable extension of the original
far-field “antenna theorem”) at any other convenient plane. When we evaluate it in the target plane,
the (time-averaged or ensemble-averaged) contribution to the heterodyne output power made by any
scatterer is proportional to the intensity of the transmitted beam at the scatterer coordinates and also to
the BPLO intensity there. Since we have assumed that transmit and BPLO beams are matched, we can
describe the spatial variation equally by the product of transmit and BPLO intensities or by the square
of the transmit intensity.

In direct detection, each small element of the detector produces its own photocurrent—which
can be described by a time series of non-negative real numbers. In heterodyne detection, each small
element produces a (usually dominant) shot noise photocurrent, plus a modulation—that is, an extra
term (which oscillates at the heterodyne frequency, taking both positive and negative values as the
interference fringes evolve). The net result of summing the outputs from the various detector elements
is thus phase-sensitive: the total photocurrent is never negative, but the coherent (phase-sensitive)
sum of the additional modulations—which is what interests us—can be positive or negative.

Once the lidar is shot-noise-limited, any further increase in LO power causes a proportionate
increase in shot noise power and does not change the CNR; that is, any multiplying constant of LO
power cancels top and bottom in a C/N expression.

The heterodyne current due to several scatterers is the vector sum of the individual currents,
one for each scatterer; each term is proportional to the beam intensity and to the BPLO intensity at
the scatterer. The mean square of the current (averaged over all relative phases as above) equals the
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sum of the individual squares; this is the same result as for the mean square of the length of a 2D
random walk.

Consider a single scatterer blown transversely through the beam along a straight line at uniform
speed V: its z and x values remain essentially constant, and its y value equals (t − t0)V. As it traverses
the beam it produces a detector output current with an intermediate-frequency (IF) component.

i(t) = 2R
√
ηhetPLOPs(t) cos (ωct + θ(t)) (7)

where R = detector responsivity,ωc = offset radian frequency, and θ = phase shift. The time variation
of i(t) includes variations in some or all of these parameters. Here we may takeωc to be constant (there
is no extra bulk target motion along the z-axis line of sight) and θ to express the time-varying Doppler
phase shift. We may also take PLO to be constant (the total local oscillator power at the detector) and Ps

to be the backscattered power reaching the detector (not constant). The scalar ηhet represents, for this
single scatterer, the “heterodyne efficiency” with which the LO and backscattered light overlap at the
detector. Note again that we write ηhet proportional to the square of output current, i.e., to output
power. In the literature on heterodyne lidars, there are various preferences for splitting the “efficiency”
into several terms identified with different parts of the total system [1,9].

Usually, Equation (7) is taken to say that PLO is a fixed quantity without spatial variation, and its
value (in units of Watts)—the LO power that reaches the detector—is adjustable at our discretion;
whereas, although the transmitted laser power is also a fixed number of Watts at our discretion,
the value of Ps(t) depends on other factors such as optical losses, atmospheric attenuation and the
position of the scatterer in the beam. In practice, Ps(t) will vary deterministically as the scatterer
moves across the Gaussian intensity beam profile, reaching some peak value (see Section 5.4) when the
scatterer makes its closest approach to the beam axis. The value of ηhet for the particular distribution in
space of scattered light at the detector (which will usually vary with time), and the particular (usually
fixed) LO light distribution in space, is then a further matter of fact or calculation.

That is, in our notation, the spatial dependence in Equation (7), as the scatterer traverses the
beam, brings a time dependence to Ps, and possibly to ηhet and θ, but not to PLO. This heterodyne
current component i(t), due to a single scatterer at position y(t), is proportional to the transmitted

beam intensity at the scatterer, i.e., the spatial variation is described by exp
[
−2(x2+y2)

w(z)2

]
. Note that

the transverse variation of the transmitted beam is the Gaussian in Equation (1); the local oscillator
(and hence the BPLO) will be assumed to keep a perfect copy of this Gaussian shape. Equation (14) in
the early paper by Sonnenschein and Horrigan [2] describes “the square of the signal current produced
by a single scatterer”, and a corrected version is

|is|2 ∝
R4

λ2L4
[

1 + (πR2

λL )
2
(1− L

f )
2
]2 exp


−4(πRr

λL )
2[

1 + (πR2

λL )
2
(1− L

f )
2
]
 (8)

L is the range to target, f is the range to beam focus, their R is the transmitted beam radius (our
w(z) at the aperture where z = −f), and r is off-axis distance (r2 = x2 + y2).

In [1], we reviewed some of the differently notated but essentially similar versions of Equation (8)
in the literature and illustrated the frequency-chirp behaviour of scatterers that traverse the beam.
The product of chirp duration and chirp slope is roughly

chirp excursion (Hz) =
πw(z)

2V
2V2

λR(z)
=
πVw(z)
λR(z)

(9)

The chirp changes sign if the wavefront curvature changes sign (i.e., if we consider events on
one side of the beam focus and then the other). As we move away from the beam waist z = 0 (in



Remote Sens. 2018, 10, 466 7 of 24

either +ve or −ve direction), the absolute value of R(z) at first decreases, then reaches its minimum
of R(|z| = zR) = 2zR, then increases again. So, on each side of the beam focus, there are in principle
two distances z corresponding with any given value of R greater than 2zR. These two distances are
associated with the same chirp slope dθ(t)/dt but different beam widths w(z) and thus different
envelope durations and different chirp excursions.

5. Previous Literature

5.1. Semiclassical Account of Laser Radar

There are large relevant literatures on coherent lidar, photon correlators, laser Doppler
velocimeters (LDVs) and laser transit velocimeters (LTVs), electromagnetic scattering from small
particles, interference effects in the presence of more than one scatterer, and so on (see for
example [1,7,9], and their references). From an optical-radar viewpoint, the function of the scatterers
is to provide, at the receiver, copies of the transmitted waveform [10]; when all the different copies
are considered (with their various delays, attenuations, polarisations, frequency shifts etc.), we have
a total field at any given detector element whose intensity at any instant is proportional to the
mean rate of photoelectron production. That mean rate is vastly increased by the strong steady LO.
There are typically very many photoelectrons, but each has a random (Poisson point process) time of
origin. There is no one-to-one connection of individual photoelectrons with individual “photons” in
this typical semiclassical account of a shot-noise-dominated coherent lidar. It is generally assumed
that the photocurrents are so strong that, in line with our discussion above, the “full phase and
intensity” information in the optical field is indeed transferred intact to the heterodyne detector output;
for example, a very weak FM sideband (due to a faint micro-Doppler vibration) can still be isolated and
examined and assigned a conventional SNR that is negligibly degraded by the (intermittent, discrete,
Poisson) nature of the photoelectrons.

At power levels several orders of magnitude weaker, when we approach single-photon detection,
this picture must change, but we retain it here. We neglect many complexities of scattering theory,
vector wave effects, polarisation, and detector physics. But it is worth reviewing the detector output
current (above) and referring now to some literature including frequently quoted “fundamentals of
coherent lidar” papers.

The strength of the heterodyne current is usually judged by the average modulus-squared
<|i(t)|2>. (The average is taken over a time exceeding the longest fluctuation time, and there are
usually several types of fluctuations present). This strength is determined by how well the scattered
light and the LO overlap: the overlap integral, or antenna efficiency, includes both the magnitudes
and the relative phases of the signal and LO terms. The need for transmit and receive antennas to
be “matched” was familiar from earlier radar work, and was quickly imported and applied to lidar
studies in the 1960s and 1970s. A large literature developed on various sub-topics such as:

• The “best” designs of telescopes and truncating apertures, according to several different metrics
of efficiency;

• The benefits of angular selectivity or directionality of heterodyne antennas—and the corresponding
requirement to establish and maintain precise alignment in practice;

• The statistics of detector outputs for various types of target: solid, liquid, or gas; few scatterers or
many scatterers; concentrated or distributed in range; static or moving;

• The effects of one-way and two-way atmospheric turbulence;
• The differences between monostatic (shared apertures and collinear beams) and bistatic or

multistatic lidars.

The literature inevitably swelled as different approaches and notations were developed
and published by groups working on laser systems in private companies, universities, and
government organisations.
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5.2. Local Oscillator (LO) and BPLO

One important sub-topic is the “back-propagated local oscillator” or BPLO, which was presented
by Siegman [11] as follows:

Consider the complex LO amplitude distribution falling on the photodevice surface (weighted by
the quantum efficiency distribution if necessary). Reverse the direction of propagation of this LO
distribution and allow the reversed wavefront to propagate back out through any optical elements that
an incident signal wave would traverse. The resulting far-field or Fraunhofer diffraction pattern will
be the antenna pattern of the optical heterodyne receiver.

The general principle is that we may reverse the direction of propagation of the wavefront and
perform the overlap integral in any convenient place—not just the detector surface, but for example the
telescope aperture or the plane(s) of the target(s). Two aspects of this BPLO approach may be especially
relevant to modern wind lidars [1]. One is the advantageous choice of overlap plane. We are free to
evaluate the overlap at different places: it may be that some, from a practical, computational point of
view, are better than others. Zhao et al. [12] compare two expressions for a transmission function that
relates a point in the scattering plane to a point in the detector plane. The light successively encounters
a primary mirror, a secondary mirror, “a series of optical components, such as steering mirrors and
polarizers”, a detector lens, and the detector. The virtual BPLO encounters these in the reverse order,
and the corresponding expression is derived by “changing the order of integrals and invoking the
reciprocity theorem”. Formally, the expressions are equivalent, but in the BPLO one, “the result of
the first several steps of integration is common to all points in the scattering plane and needs only to
be calculated once . . . In addition, if the system is well aligned and free from astigmatism, circular
symmetric properties of the integrand further simplify the integration to a 1-D calculation . . . Thus the
BPLO treatment greatly reduces the amount of computation”.

The amount of computation needed for these integrals, and any “computational advantage”
of the BPLO approach, typically decrease when we change to fibre-optic lidars—because they have
fewer components and obstructions, and propagation within single-mode fibre needs negligible extra
calculation. That is, the non-BPLO approach may be less tedious in fibre lidars than in free-space lidars,
although still more tedious than the BPLO approach. We can calculate everything at the detector if we
wish; nothing forces us into BPLO calculations.

The second point is a difference between fibre-based lidars and the more familiar free-space optical
systems. Single-mode fibres act as spatial filters. They support only one spatial mode (transverse
mode), so any light that arrives at a fibre entrance plane in other modes does not propagate any
significant distance along the fibre and does not reach the fibre exit—it is lost. Similarly, any virtual
BPLO light “arriving” at the fibre from the detector contributes nothing to the antenna pattern (and the
overlap integral) unless it matches the fibre mode. The spatial form of the BPLO, once it leaves the
fibre and continues through any transmit optics toward the target, is always that of the launched single
transverse mode of the fibre. In particular, it is unaffected by apertures or obstructions between the
fibre and the detector or by spatial variations in detector response. Nothing we do before the fibre can
affect the antenna pattern after the fibre.

To the extent that detector output statistics are affected by the number and nature of the scatterers
in the probe volume, this is an important difference between single-mode-fibre lidars and most
free-space lidars. If we damage or partly block the fibre-lidar detector, then the probe volume
(the physical extent and shape of the region contributing to the spatial overlap), and the carrier
statistics, will not change. In free-space lidars there are often apertures, obstructions, and detector
imperfections; these are often inaccessible and/or hard to adjust, yet they strongly influence the probe
volume and statistics. Moreover, the practical difficulty of measuring detailed beam properties (such
as BPLO shape and phase) causes uncertainty about what parts of a target are contributing, and how
strongly. The ease of LO and BPLO alignment in fibre sensors, and the enforced limitation to one
well-defined mode, reduce this uncertainty.
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The situation is symmetrical; we could as easily have said “Nothing we do in free space can affect
the illumination pattern at the detector—it is determined by the propagation of the single mode from
the fibre end to the detector surface, through any distorting elements that may be present internally”.

Zhao et al.’s caveats still apply: “The LO field at the detector should also be calculated very
carefully . . . the field at the waist is usually different from an ideal Gaussian distribution . . . the
criterion for ignoring the diffraction effect of the sharp-edged apertures for a Gaussian beam is quite
stringent”. The point is that the presence of a truly single-mode filter, somewhere in the optical chain
between detector and target, defines the single mode that is relevant (e.g., in diffraction calculations)
for both internal and external regions.

We neglect the possibilities of systems that are not reciprocal, e.g., the beams have significant
frequency differences, and some components (such as modulators, amplifiers, and regenerative or
self-aligning cavities) are frequency-selective or dispersive [3].

In practice, there are also specific, small, but possibly significant departures from ideal theory
when fibres are involved:

• The fundamental mode of a single-mode fibre is normally modelled as a free-space Gaussian
TEM00 in spatial profile, and we make this assumption here; in practice the match is very good
but not perfect;

• Fibre-pigtailed collimators (FPCs) can improve the balance between lateral and angular
misalignment effects by increasing the effective TEM00 radius at the coupling plane [13]. Lens focal
length and lens-fibre distance will change accordingly, but otherwise, our efficiency calculations
are not affected—the FPC/fibre combination behaves as a single-mode fibre with, at one end,
a larger mode area;

• Higher-order terms in the mode field expressions imply that the wavefront in the fibre is slightly
curved instead of plane. This curvature is familiar in hollow waveguide physics [14] and leads to
measurable asymmetries in waveguide/beam coupling experiments, but we neglect it here.

There is a long history of cross-checks and calibrations of coherent lidars, with hard and distributed
targets, and a sometimes baffling range of discrepancies. Experienced scientists, trying hard to account
for all terms in the carrier-to-noise equations, still fall short by factors of around 2; indeed, Kavaya [15]
noted that CNR theory and experiment often disagreed by nearly 3 dB, and not by a random variable
factor ranging from say −3 dB to 3 dB. Note that this shortfall is in CNR (or sensitivity), and not
necessarily in accuracy, probe length etc.

5.3. Collection Efficiency for Coherent Lidars

Evidently, then, in modern coherent lidar sensors the nature of the beam overlapping that
determines optical efficiency and carrier-to-noise (and their variations as functions of range to target)
is essential to lidar calibration and operation.

Some disagreements about this in the wind lidar literature were discussed within the UpWIND
project [16–19]. First, Lindelöw [4] reconsidered the range weighting of wind lidars and proposed
a redefinition of “probe length” based on the WPP (“wind peak profile”) function; this is relevant to
pulsed lidars that are range-gated (whether focused or not). These two issues of focus and range-gating
are often present together, but it is possible to separate them and check the predicted discrepancies.
For incoherent (randomly phased) returns from many aerosol scatterers, with the algorithms of signal
processing and Doppler estimation that are most commonly used, the WPP proposal has not been
widely accepted and has not altered the current standard treatments. It is mentioned here because
“probe length” or “range resolution” is often presented as a figure of merit (that is, the shorter the
better), and thus enters discussions of whether one lidar or another is “better”, or whether pulsed or
CW operation is “better”. Readers should check which definition is being used.

A second topic is the “fibre lidar collection efficiency” relevant to focused monostatic coherent
lidars, both pulsed and CW. Most published models use a Lorentzian for this efficiency or sensitivity
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function, whether or not the scaling with “1/area” (which is a Lorentzian for a Gaussian beam,
with the conventions above) is recognised explicitly. Lindelöw [4] and then Lindelöw with
Risø/Leosphere colleagues [17] preferred a function that is spatially narrower (tighter) than the
Lorentzian. The discrepancy becomes larger at longer focus ranges, amounting to ~25% difference at
typical large-turbine sensing heights of 100–150 m.

Lindelöw’s model [4] “takes into account small receptor apertures and co-propagation of the local
oscillator and the received backscatter in a single mode fiber . . . A focused lidar will transmit a narrow
beam of light with a waist at distance xfocus, typically at 20–200 m. A sketch of a fiber optic based
focused monostatic coherent lidar is presented in Figure 31. The lidar has a combined emitter/receptor
in the form of a fiber end positioned in front of the focusing lens”. This “Sketch of system and principle
of a focused monostatic cw coherent lidar based on fiber optic components” is our Figure 2 below,
similar to Figure 1b above.

If we consider this as an imaging system, then an object or source at range x (in this case a thin
illuminated disk of air) creates an image on the other side of the lens. In Lindelöw’s treatment, the first
stage of light propagation (from fibre through lens to this target object) and the last stage (just before
recoupling to fibre) are described by standard Gaussian beam equations, but there is an intermediate
stage (backscattering by the target, then formation of an image) under different assumptions and using
thin-lens equations.

This mixing of Gaussian beams and rays has consequences illustrated in Figure 3.
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Figure 3. Two models for heterodyne lidar collection efficiency. (a) Normalised curves of range
dependence for three different fixed focus ranges (50 m, 100 m, 200 m). Lorentzian (solid lines):
efficiency scales as the reciprocal of beam area. Lindelöw (dashed lines): modified Gaussian optics/ray
optics model proposed by Lindelöw [4]; (b) The quotient (Lorentzian efficiency)/(Lindelöw efficiency)
for a fixed target range of 100 m and a varying focus range. Wavelength 1.575 µm, equivalent fibre core
beam radius 4.5 µm, and lens focal length 200 mm (roughly representative of QinetiQ/ZephIR lidar).

The two “collection efficiency” functions are normalised so that their peak heights are equal for
short focus range (where the differences between ray optics and Gaussian beam optics are negligible).
This single normalisation factor is then applied for the other focus ranges. Any one curve in Figure 3a
shows the efficiency for the given choice of focus (e.g., 100 m) as the target range, and only the target
range, is varied. The Lorentzian curves peak at exactly the selected focus ranges (by construction,
because our “focus range” means the distance where beam area is smallest); the curves for Lindelöw’s
model peak at slightly more distant ranges.

Note that the focus distance is assumed to be changed by varying the fibre-to-lens distance as
mentioned above [20]. This means a slight but not always negligible dependence of beam size at
the lens on xfocus. The exact form of the curves depends on this and on the choice of normalisation,
but a comparison of the two approaches is not affected (because they use the same beam physics,
and give identical results, for propagation to the target).

In Figure 3a, the efficiencies are plotted for three choices of xfocus (50 m, 100 m, 200 m). The quotient
of the two efficiencies, for a fixed target range (100 m) and a varying focus range, is shown in Figure 3b.
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Note that these are two different feasible experiments: the first considers how the fixed-focus lidar
responds to scatterers placed at different ranges, and the second varies the fibre-to-lens distance to
explore the response to scatterers placed at a fixed range.

Lindelöw [4] notes the disagreement between his approach and the early theory of Sonnenschein
and Horrigan [2], which for our current geometry is equivalent to the BPLO approach. This “S&H”
paper predates 1.5 µm fibre lidars but applies to them without modification because we assume
untruncated pure TEM00 beams throughout. He notes that beams may overfill or underfill the detector,
and that the older literature does not consider the modern layouts where received and LO beams
co-propagate in optical fibre. But the transmit/BPLO approach remains valid, if the BPLO is correctly
calculated (including any variations or truncations or damage of the “photodevice surface”, and any
spatial filtering in the fibre). Results may be expressed as a diffraction integral in the detector plane,
the target plane or some other convenient plane. The standard approach is correct—or, at least, correctly
developed within its stated approximations—and Lindelöw’s, because of inconsistent shifting between
ray and beam optics, is not. But the differences are small, of the same order as current errors in
calibration, and so not easy to verify in practice—often less than 1 dB (in efficiency or power ratios) or
a few % (in the range for peak efficiency). Lindelöw’s −3 dB widths (FWHM) are 20–25% narrower
than the conventional predictions (see also [21] and its Figure 2.9). No experimental checks are offered
here, and few relevant ones are in the References; it would be good to see more.

Brewer et al. [22], before detailing a full diffraction-integral approach, describe a geometrical
approach similar to Lindelöw’s. They are more concerned with bistatic direct-detection lidars for
imaging distant targets, but they are still treating single-mode fibres (which, although not carrying
LO or BPLO beams, still reject any received light which is not mode-matched or, in geometric optics
language, does not fall within the fibre numerical aperture). Some changes or extra details are
needed before we apply their results to a monostatic focused coherent lidar: transmit and receive
fibre/telescope optics are matched (in their worked example, the transmit aperture diameter must
be taken as 10 cm), the far-field assumption is dropped, and care is needed when solving quadratic
Gaussian-beam equations.

This last point is already familiar from Hill and Harris [20]. Brewer et al.’s worked example uses
a nearly collimated transmitted beam that has a specified width (spot size) at a distant target. In their
“far-field” solution a slightly diverging transmitted beam appears to have a virtual beam waist some
67 m behind the lidar. They ignore the slightly converging “near-field” solution with a real beam waist
a similar distance in front of the lidar. The choice makes little difference to an ideal free-space imager,
but more difference to a lidar used for near-field wind measurements.

Frehlich and Kavaya [23] develop useful general expressions and, after translation between
various technical notations, show agreement with several other published accounts including
Sonnenschein and Horrigan [2] where there are several misprints and, as occasionally happens,
two cancelling factor-of-2 errors; Michael Kavaya has maintained and distributed a list of these and
other errata.

Sonnenschein and Horrigan proceed to sum over a large collection N >> 1 of scatterers
(representing a random diffuse target) and neither they nor Frehlich and Kavaya consider the
single-particle or few-particle cases in detail.

Lawrence et al. [3] show good agreement between their CO2 lidar and a conventional cup
anemometer, but do not analyse the few-particle case.

5.4. Single-Particle Mode and Volume Mode

This interesting distinction in lidar processing should perhaps be better known. It gives
an opportunity to recall the many friendships and the long productive career of Dr Rod Frehlich.
Indeed, large parts of the present paper and of its References are comments on and restatements of his
determined, thorough exploration of radar and lidar physics.
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A NASA report by Kavaya et al. [24] includes Frehlich’s comparison of single-particle mode (SPM)
and volume mode (VM) measurements. The contributions from scattering particles can be defined in
different ways. Essentially, VM adopts the theory and CNR definitions followed here and in most of
the literature, while SPM measures a particle’s peak contribution—that is, if a particle is detected in
the probe volume, then we record the photocurrent contribution from the instant of closest approach
to beam axis.

For decades, optical scientists have grumbled about the uncertainties in the shape(s) of laser
beam(s), the resulting distortions in fringe patterns, and the positions and trajectories of scatterers.
“Non-diametral traverses of particles across the scattering volume have also not been considered
in the broadening formulae. There is no convenient way to account for these effects . . . ” [25];
see also Schulz-Dubois [26]. Our point here is that these two definitions give different results for
range dependence, as shown in Figure 4. Errors may arise in calibration and interpretation unless
a consistent choice is made.
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Figure 4. (a) “Normalized range gain density” from Kavaya et al. [24], for volume mode and
single-particle mode (λ = 9.11 µm, beam radius to 1/e2 intensity points at the lens = 30.2 mm, focus
distance = 50 m); (b) Same quantities calculated for a ZephIR-type lidar (1.57 µm, 25 mm, 10 m).

6. Simulation of Multiple Scatterers in a Lidar Beam

The simulated measurement volume is assumed here to have rectangular (usually square) cross
section, with room for circles around the beam axis whose radii are at least 2w(z) for all relevant z.
The decrease in average intensity as we move away from the focus along the z axis follows, as in
Equations (1)–(5), a Lorentzian (rather than the steep Gaussian function for x and y), but for most
practical purposes a choice of (−3zR, 3zR) for the z-axis limits will include “almost all” the relevant
scattering. Indeed, these choices are overkill in the sense that many of the simulated scatterers are
illuminated so feebly that their contribution to the results is negligible; a conservative choice increases
confidence in the simulations.

Thus, we choose a focused lidar beam geometry (a certain transceiver aperture and focused
Gaussian beam parameters) and then simulate the movement of identical scattering particles which
enter a measurement “box” at random times and at random positions on the x–z “face” of the box,
the box being sufficiently large that any particles arriving outside it would not be “significantly”
illuminated. Each scatterer has a random Poisson-process arrival time and crosses the beam at uniform
speed, with a constant x and constant z each drawn from a uniform random distribution.

The scattering probe volume is shaped by our focused monostatic lidar [24], so the illumination
is non-uniform, and the wavefronts encountered away from focus are non-planar. At any instant,
Ntot(t) scatterers are within the box, and the time or ensemble average of this number is proportional
to the rate of the Poisson process and to the size of the box (the assumed measurement volume).
For precise experimental checks, the measurement volume should be carefully specified. For example,
in Figure 1b, the physically relevant volume lies to the right of the transmitting lens. Regions to the
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left are inside the lidar itself, and presumably not filled by scatterers; thus the “relevant” volume may
not be symmetric around the beam focus.

At any instant, the number of scatterers “contributing”, in the sense that they are significantly
illuminated, is at most Ntot and may (if we size the box conservatively) be much smaller. During some
time intervals, there may be no scatterer in the box or none that contributes significantly. The number
of scatterers illuminated in a fixed measurement volume will generally change with time (as would
happen in real life, because of random or wind-blown scatterer movement). The assumed measurement
volume itself may be altered during a simulation run (notably because of a varying beam focus), but of
course, consistency checks are advisable—runs for different measurement volumes may take very
different amounts of computation, but their average results should be similar so long as the box and
Ntot are sufficiently large.

There are many possible experimental scenarios, and many fluctuation processes and associated
timescales. It is important to keep in mind what is meant by an “average”—whether over time,
probability distribution, or ensemble of experiments.

For a collection of scatterers distributed (on average uniformly) across a slice of atmosphere at
a certain range z, and for randomly distributed phase terms, the mean squared quantity <|i(t)|2 >
contributed by that slice is proportional to the scatterer number density and inversely proportional to
the illuminated area of the slice—so it peaks at the beam focus, where the area is least (see also Section 4
of [1] for this “1/area” relation). If we fix the number density and vary the beam area, the number of
scatterers involved scales with beam area; but, because the average contribution per scatterer to the
detector power scales as the intensity squared (i.e., as the inverse square of beam area), the net result is
a power scaling with 1/area. We also see that the number of scatterers in a thin slice is proportional
to beam area A, and the beam intensity at each scatterer is proportional to 1/A. So, the fractional
backscattered power per slice is a constant, independent of beam size. So long as we continue to use
a time-averaged definition of power, this conclusion applies when we vary the beam size for arbitrarily
small seeding densities.

The heterodyne current due to several scatterers is the vector sum of the individual currents,
one for each scatterer as in Equation (7); for matched transmit and BPLO beams, each term can be
considered to vary as the beam intensity at the scatterer. The mean square of the current (averaged
over all relative phases as above) equals the sum of the individual squares; this is the same result as
for the mean square of the length of a 2D random walk.

We can illustrate some of the familiar results in the literature [1]. We assume a fixed transmit
power, a fixed LO power, and the usual optical arrangement described above (focused monostatic
coherent lidar, matched transmit and BPLO). First, Figure 5 shows the chirping behaviour of scatterers
that cross the beam away from the focal plane.

This modelling approach was discussed in [1], and similar time-frequency plots are well known.
Renard et al. [27] discuss airborne lidar options, and the general features of chirps are clear in their
exemplary figure (reproduced here as Figure 6).
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Figure 6. Example of time-frequency plot in Renard et al. [27]. See also Baral-Baron [28].

Second, we model an experiment where the beam waist position and radius are varied (for
constant beam width at the lens); the target is modelled as randomly generated scatterers (of equal
reflectance) within a box that encloses the waist as described above. The scatterer density (m−3) is
constant on average. We see in Figure 7 the variations in probe volume, CNR, and normalised second
moment of intensity.
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Figure 7. Results from one simulation of a lidar with uniform aerosol seeding density, fixed aperture, and
varying focus range. Average CNR is almost independent of focus range, despite the variation of 4 orders
of magnitude in probe volume. Normalised 2nd moment of intensity <I2>/<I>2 is large at short ranges
but closely approaches 2 (characteristic of complex Gaussian statistics) if there are “many” randomly
arranged scatterers (say a few tens or more) in the probe volume. Figure 1.4 in Banakh and Smalikho [9] is
similar, illustrating their analytical expressions for “echo power” and the number of efficiently scattering
particles, with specific model assumptions for a CO2 atmospheric lidar (λ = 10.6 µm).
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Here, the simulation assumes constant measurement time (120 ms) at each focus range. At the
shortest ranges, there are so few scatterers contributing that the results for CNR and 2nd moment
are noisy. (The “No. of scatterers in probe volume” plotted is a theoretical average number given
by (2λ3/π2) × (focus distance/beam waist radius)4 × (seeding density), so it is not noisy). As the
range increases to tens of metres, the number of scatterers contributing rises quickly, because of this
fourth-power dependence of probe volume on range [24]. The CNR is almost constant with range as
we expect, and the 2nd moment of intensity falls to very nearly 2 when the probe volume contains
tens of scatterers. This computer run uses λ ~1.57 µm and w0 ~15 mm, with a seeding density of
500,000 m−3, and with the scatterer reflectance and shot noise level set to give a CNR of about 10 in
a bandwidth of 10 MHz. The 2nd moment is more than 100 at the shortest range of 5 m but within 1%
of 2.00 for ranges above 45 m. Of course, more stable results at the shorter ranges can be obtained if
(for example) we simulate a different experiment where the total number of contributing scatterers
(rather than the measurement time) is fixed at each range.

Such a simulation is easily run for hundreds or thousands of scatterers on a PC. This was harder
40 years ago, for example when Mayo [29] modelled the “triply stochastic” physics of turbulent flow,
particle arrivals, and photodetections.

Two more papers emphasising the practical side rather than simulations, but relevant to
understanding the various models, are the following:

Jarzembski and Srivastava [30] discuss some interference effects for the case of two illuminated
particles and treat some experimental time series at length. But they restrict their explanations to
particles near the beam focus and use a corresponding simplification of the Sonnenschein and Horrigan
equation. They neglect the information in the envelope of the two-scatterer lidar output, saying that
“it does not contain phase properties of backscatter”. For the linked amplitude and phase modulations
in such FM interference experiments, see Hill et al. [31] and its references.

Harris et al. [32] draw fresh attention to the possibilities for single-particle lidar anemometry and
to the need to consider different fluctuation statistics because the probe volume varies dramatically;
they do not consider time series analysis, chirp behaviour, or spectral moment estimation in detail.

This section has only sketched a very wide topic of relevance to short-range and/or thinly seeded
sensing (e.g., wind tunnel lidar and high-altitude anemometry); there are whole industries based on
particle/suspension analysis through optical scattering.

7. Direction Sensing for VAD Lidars with Sign Ambiguity

7.1. Deciding the Sign

We mention two related issues in coherent lidar Doppler sensing. One is the requirement to attach
signs (+ or −) as well as magnitudes to these estimates. The other is the estimation of the overall target
motion vector after the estimation of several Doppler shifts. Apart from brief comments here and
in Section 7.2 below, we cannot review the huge literature on estimating scatterer speed through the
Doppler effect. For the moment we assume that the detector output yields a well-defined spectral peak
and thus some reasonable mean-Doppler estimate.

Suppose for illustration that we are trying to estimate the magnitude and direction of the wind
and using a coherent lidar and a “conical scan” or “velocity-azimuth display” (VAD) mode. With
a system as described above, a change of sign (+/−) of the velocity component does not affect the
detector output: that is, one lidar measurement (one brief “snapshot” at a single viewing angle) does
not tell us whether the wind component along the line of sight is towards the lidar or away. Moreover,
for a uniformly flowing wind, although a collection of several or many measurements at different
viewing angles can tell us the wind speed (magnitude of wind vector), it still does not resolve this
180-degree ambiguity. For example, the ZephIR lidar collects approximately 50 separate estimates
of wind velocity component per second, spaced evenly around its 360-degree conical scan, and the
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resulting “figure of 8” pattern allows an accurate estimate of wind speed. However, the same pattern
would appear for a uniform wind flowing in the opposite (180 degrees different) sense (Figure 8).
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Figure 8. The appearance of Doppler estimates in a polar plot for a conical-scan lidar without direction
(+/−) discrimination. (a) “Figure-of-8” for a steady wind; (b) Perturbations soon after the passage
overhead of an A320 jet. Data from trials with ZephIR at Birmingham airport; (c) Simplified guide to
interpretation of “figures-of-8” (with thanks to Dr M Harris). The results from Hill et al. [33] here and
in Figures 9a and 10 below are reproduced by permission of QinetiQ Limited.
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Figure 9. A passing aircraft leaves a pair of trailing wake vortices which form (briefly and
approximately) a stable “line feature” in the atmosphere. This line drifts with the mean wind across
the scan circle defined by the measurement points of a conical-scan lidar, and the angles where the
lidar detects a significant disturbance are recorded and plotted. (a) Example of data from trials with
ZephIR at Birmingham airport, adapted from Hill et al. [33]; (b) Sketch of the principle. This plan
view is simplified; in practice the lidar processing and scanning may take account of vertical as well as
horizontal drifts and may have complicated algorithms for estimating the vortex and wind parameters.

Wind speeds are routinely estimated with fewer and/or less widely spread viewing angles if
the CNR is sufficient and the wind is known (or assumed) to be steady so that we are confident of
a sinusoidal variation of speed with scan angle or equivalently of the typical figure-of-8 polar plot of
Figure 8. Schwiesow et al. [34] reported success with as little as 1/16 of a full scan (that is, less than half
a radian), and Leosphere’s Windcube lidars typically use 4 or 5 separate, fixed beam directions [35].
If we assume a steady wind and thus a figure-of-8 of known symmetric shape, far fewer than the
50 estimates per scan suffice for a good estimate of its size and orientation. But the same problem
arises in all such cases: we need some extra information in order to determine the sign of the wind.
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Figure 10. Spectrogram plots of ZephIR lidar data from airport trials. (a) Rectified cosine wave for
a fairly steady airflow on the southern approach to Birmingham airport [33]. A polar plot would
produce a “figure of 8” similar to Figure 8a; (b) Perturbed cosine wave after the passage of a Boeing
777. The vortex lines provide mainly positive Doppler contributions during one half-scan (vortex flow
towards the lidar, faster than the mean wind) and mainly negative ones during the other. The scan
angles at which the perturbation is judged “significant” according to some metric can be identified and
added to a plot such as the one in Figure 9a.

Of course, a separate non-lidar instrument may be added to measure, at one point or more, the
wind direction. In “ordinary” atmospheric conditions, it is sufficient to measure with a conventional
anemometer (vane/cup/ultrasonic) near the surface, and trust that the wind direction does not veer
sharply between measurements and between adjacent measurement heights; in this way, by assuming
a reasonable continuity, we can assign the wind vector to the correct quadrant at successively greater
heights [36]. But what if such a non-lidar instrument is unavailable or inappropriate?

There are several ways forward. An artificial frequency shift can be introduced, typically by
an acousto-optic modulator, so that the zero-Doppler region appears shifted from zero frequency in
the detector output. Or the in-phase and quadrature (I&Q) components of the complex carrier can
be separately detected, so that their relative phase can be tracked. Both approaches tend to involve
significant extra hardware and cost.

A third way, cruder but feasible, relies on the fact that real wind flows are not wholly “uniform”;
they always have fluctuations, for example of density, velocity, and backscatter. Nonetheless we
usually assume that they remain “uniform” or well-behaved over some extent and duration: that is,
we adopt a “frozen flow hypothesis” whereby the spatial patterns containing these fluctuations are
being transported with some overall mean wind motion. The patterns need only be sufficiently
distinct, and evolve sufficiently slowly, for us to track them with adequate confidence: it is a matter of
“sufficient” CNR and of timescales. If we look at the same small volume of atmosphere at intervals
of hours or many minutes, we may see no significant correlations of the departures from uniformity;
on a timescale of seconds or tenths of a second, we may have considerable success.

For example, Figure 9 shows unambiguous direction-sensing for a ZephIR lidar without frequency
offset or I&Q processing [33]. In this case, the atmosphere is perturbed by aircraft wake vortices that
typically last for many seconds and are (approximately) transported across the sky with the local
mean horizontal wind component, while descending slowly towards the ground. During a series of
one-second conical scans the lidar detects the perturbations caused by the vortex pair. For a typical
single scan, there are several detections (marked by the small red symbols in Figure 9a); as time evolves,
we see that these detections cluster in two groups that diverge. For one group the scan angles increase,
and for the other they decrease, because the line of the vortex pair—which is approximately a straight
line, considered on this scale of a few hundred metres—is entering the lidar’s conical-scan pattern.
For a line feature leaving the scan pattern, the two sets converge, and this distinction tells us the
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direction of the wind. For an ideal thin line, the two sets of detections coalesce when the line becomes
tangent to the scan circle; in practice the region of lidar detection sensitivity is 10–30 m across, and so
is the pair vortex structure from a typical medium aircraft. So, on this type of plot, the detections are
clustered only loosely, and we expect scatter of several metres or more (or the corresponding spreads
in angle/time), but after a few consecutive seconds of scanning, we are in no doubt of the overall
tendency (divergence in angle of the two groups, or convergence?) and thus in no doubt of the +/−
sign decision.

A conventional X-Y time-frequency (rather than polar) plot shows a rectified cosine wave when
the air is relatively unperturbed. When an aircraft passes overhead and the trailing vortices are
sampled by the lidar scan, there are considerable additions to (and subtractions from) the cosine
function (Figure 10).

The ZephIR example above, an early demonstration with eyesafe fibre-optic lidar, is deliberately
simple: the airflow is strongly perturbed, and we also have prior expectations about the general form
of the pair of counter-rotating vortices. But the principle [37–41] applies to the natural fluctuations of
velocity, backscatter etc. in “ordinary” air, with no helpful jet aircraft passing, and hence was of interest
for Malvern and Risø work with ZephIR-type lidars for wind applications. Evidently the “metrics”
for correlation-tracking of this sort (typically based on the first few spectral moments viz. carrier
strength, mean Doppler, and Doppler spread) will be adjusted to suit if we believe that particular
geometrical features may be present; for example we may expect to see these linear vortices, or 2-D
loops, or sheets of separated air flow, or 3-D volumes of turbulent air; but even a simple correlation
plot without special assumptions may strongly indicate the likely sense of the overall wind motion.
Many demonstrations are now in the literature with larger measurement sets, more detailed correlation
and wavelet algorithms, and heftier processors [42,43].

7.2. Some Issues in Frequency Estimation

The estimation of a Doppler shift in wind lidar is usually treated as a “mean frequency” problem
and attacked by forming power spectral estimates or autocorrelation functions. For light winds, there
are obvious technical issues.

First, in the absence of a frequency-shifting scheme such as the modulator mentioned above,
the informative carrier lies close to DC, where interferences such as local oscillator noise and laser
relative intensity noise (RIN) are usually strongest. The influences of “intensity” noise and “phase”
noise on frequency estimation depend on the estimator used, and we need to know the complex
(intensity and phase) variations associated with laser instability; an estimate of the power spectral
density attributed to RIN is insufficient. Evidently a two-point or “instantaneous frequency” algorithm,
as it relies on the phases alone, should be unaffected by AM when the CNR is high, but other
algorithms use more or less of the AM or envelope information—for good reasons—and will be
correspondingly affected.

Second, how is a wind speed defined when the measurement volume—usually, as we have seen,
a long thin volume extending through several or many metres—contains some scatterers approaching
us and some scatterers receding? The coherent addition of complex components with different Doppler
signs (clockwise and anticlockwise phasor rotations) does not necessarily give the same result as the
incoherent addition of the sign-insensitive outputs.

This is an issue not just of “ambiguity” but of distinctly different results in the detector output.
If we suppose for simplicity that there are only two scatterers present in the beam, one moving towards
the lidar and one away, and that their individual contributions to the detector output have equal
magnitudes and opposite signs, the net result in a frequency-shifted (direction-sensitive) coherent lidar
is the sum of two oppositely rotating phasors.

Also, the common use of a blocking or highpass filter (to remove both carrier and dominant noise
near DC) will in any case cause a bias in subsequent Doppler estimation. For example, the lowest few
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hundred kHz of ZephIR data (in practice, two or three frequency bins of the spectrogram display) are
not used in Figure 10.

8. Errors and Bias in Doppler Lidars for Steady Winds

Finally, we discuss two examples of how (according to the manufacturer’s publications) the
extraction of wind velocity from the lidar detector output must be imperfect. Any error or bias is likely
to be very small, but lidar users—including those involved in calibration and verification studies—are
advised to check if and how any corrections are applied.

There is a practical issue in conical-scan or sector-scan lidars where lidar measurements are
accumulated (usually in the form of averaged power spectral estimates or autocorrelations) during an
appreciable interval and hence over an appreciable range of angles. For example, the standard ZephIR
choice of 50 measurements per one-second scan means that each measurement represents a “wedge”
or segment of angular extent 360/50 = 7.2 degrees of scan. This, in turn, may mean a small but not
entirely negligible error in estimates of the figure-of-8 size (wind speed), orientation (wind direction),
and lobe symmetry (vertical wind component).

Suppose the lidar forms a spectral estimate at a given scan angle θ (not to be confused with the
phase angle above) by accumulating short-term estimates over the range θ − δ to θ + δ and then finds
a mean frequency (first spectral moment) from the accumulated estimate.

Denote the wind heading by θtrue, so that an ideal non-direction-sensing lidar would detect
a maximum line-of-sight component at θtrue and θtrue + π radians, and a minimum line-of-sight
component at θtrue + π/2 and θtrue + 3π/2 radians. Short-term estimates are incoherently accumulated
at a steady rate (per radian of scan). The power per estimate will fluctuate around a steady mean
(given assumptions of uniform operating conditions, backscatter etc.). But, neglecting the fluctuations,
we may assume that each incremental scan segment (θ, θ + dθ) contributes a spectral increment of the
same total power centred around a Doppler frequency proportional to abs(cos(θ)).

The measured wind speed can thus be taken as proportional to the average of abs(cos(θ)) over
the interval (θ − δ, θ + δ). Evidently, the wind speed may be underestimated near θ = θtrue and
θtrue + π and overestimated near θtrue + π/2 and θtrue + 3π/2. The direction-sensing lidar behaves
slightly differently because of the signed function cos(θ); the mean frequency is then proportional to
cos(θ)·sin(δ/δ).

First, we show results (as functions of θ) for 10 measurements per scan, that is δ = π/10. It is
assumed that scan segments are contiguous (without overlapping). In Figure 11a the scan origin θ
= 0 (the midpoint angle for the first segment) coincides with the true wind direction. In Figure 11b
we assume the maximum possible “offset” so that the true wind heading coincides with the edge of
a segment, that is, the angle where one segment finishes and the next one begins.
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in Figure 10a. For each scan rotation, the average of the cosine is obtained for each of 10 contiguous 
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0.5 segment). 

The “errors” shown here might be unacceptable. Figure 12 shows similar results for the ordinary 
ZephIR case of 50 measurements per scan, that is δ = π/50 or 2δ = 7.2 degrees. Now the bias would 
almost certainly be negligible in practice. It is still noticeable very close to π/2 and 3π/2 but, usually, 
these regions are not used—any measurements within them are discarded, because (as just 
mentioned) we do not trust the detector noise floor in the lowest spectral bin(s)—and the effect of 
this slight data loss on curve-fitting algorithms is unimportant. 

Figure 11. Rectified cosine function and its time-windowed average, representing the
Doppler-estimating behaviour of a non-direction-sensing lidar; compare this with the typical ZephIR
display in Figure 10a. For each scan rotation, the average of the cosine is obtained for each of
10 contiguous segments (arcs) of π/5 radians. (a) The true wind heading coincides with the midpoint
angle of a segment (i.e., zero offset); (b) The true wind angle coincides with the edge of a segment
(i.e., offset = 0.5 segment).
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The “errors” shown here might be unacceptable. Figure 12 shows similar results for the ordinary
ZephIR case of 50 measurements per scan, that is δ = π/50 or 2δ = 7.2 degrees. Now the bias would
almost certainly be negligible in practice. It is still noticeable very close to π/2 and 3π/2 but, usually,
these regions are not used—any measurements within them are discarded, because (as just mentioned)
we do not trust the detector noise floor in the lowest spectral bin(s)—and the effect of this slight data
loss on curve-fitting algorithms is unimportant.
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Non-scanning lidars (such as standard WindCube) do not have this problem to the same extent,
as their field of view is tighter—essentially, the beam angular width of at most a few milliradians
rather than the wedge of a few degrees. But they have another issue if the speed and direction are
estimated directly (as described in [19]) from a small number, typically 4, of fixed-angle measurements.
When a horizontal wind speed is obtained as Vh =

√
u2 + v2, where its orthogonal components u

and v are derived from lidar line-of-sight speed estimates, any small zero-mean random noises on
these estimates will create small zero-mean random noises on u and v and (in general) non-zero-mean
random noise on Vh. For zero-mean Gaussian noises on the initial estimates, this bias of Vh will
be positive.

For each type of lidar, given our assumptions about uniform horizontal winds and our known
beam parameters, a compensation function could reduce the bias of the individual measurements
(before curve-fitting an equation for the wind vector). Or the biased measurements could be fitted to a
modified equation that included terms to describe the bias.

9. Conclusions

This paper is a companion to [1] and other recent overviews of fibre-optic lidars; a common
theme is the reexamination of basic equations and principles in radar or lidar. In [1], the emphasis
was on the hundreds of fibre-optic lidars installed today for wind and especially wind turbine farm
measurements; again we stressed what happens when the number of scatterers (components) changes
through 0, 1, 2, . . . up to the “many” of near-Gaussian statistics. The present paper has considered the
simulation of few-scatterer and multi-scatterer lidar experiments, and some problems (and solutions)
for Doppler-sign-insensitive lidars.

We reviewed the BPLO description of the integrals for lidar CNR and efficiency. In a monostatic
Doppler lidar with matched LO and transmit beams, “focusing of the beam gives rise to a spatial
sensitivity along the beam direction that depends on the inverse of beam area; it follows that the
sensitivity rises to a peak at the beam waist and falls symmetrically on either side” [20]. The sensitivity
function Q used by Banakh, Smalikho et al. [44] is an exact Lorentzian, and (once we make the necessary
adjustments in notation) it is the same Lorentzian used by Sonnenschein and Horrigan [2], Frehlich
and Kavaya [23], Qi Hu et al. [45], and others. We contrasted this with Lindelöw’s description of
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“collection efficiency”, which departs from the “1/area” rule. A fair and separate question, though, is
whether the usual calibration experiments are sufficiently precise to tell these two descriptions apart.

We reviewed the single-particle mode (SPM) and volume mode (VM) modelling of Frehlich et al.
and some numerical modelling of lidar detector time series and statistics.

We have tried to highlight and explain behaviour that may be observed from a modern coherent
lidar used at short ranges (e.g., in a wind tunnel) and/or with weak aerosol seeding. It is worth noting
that non-Gaussian statistics (and opportunities for improved processing) may arise at focus distances
of 10–20 m, even when there are 106–107 scatterers per cubic metre.

Finally, we reviewed some issues in direction sensing, sign ambiguity, and limited angular
resolution for standard Doppler-sensing coherent lidars.

It has been interesting to watch these fibre-optic lidars grow into accurate reliable calibrated tools
of the wind energy trade, with accompanying expectations and responsibilities.
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Glossary

BPLO Back propagated local oscillator. A fictitious aid in analysing heterodyne lidars.
CNR Carrier-to-noise ratio. Strictly this should mean a ratio C:N but it often appears as

a quotient C/N or a decibel measure. In lidars with nonlinear processing steps such as
frequency estimation, the CNR or carrier-to-noise (at the detector, before processing) is
often distinguished from SNR or signal-to-noise (after processing); these two noises “N”
may have quite different statistics.

CW Continuous wave.
FM Frequency modulation.
I&Q In-phase and quadrature (the two parts of a complex quantity, usually the detector output

current, giving a phase angle tan−1(Q/I).
LO Local oscillator.
SPM Single-particle mode: lidar scattering events are individually registered and treated as

follows: if a particle is detected in the beam, then the peak resulting detector output counts
towards an overall metric. See VM.

TEM00 Transverse electromagnetic mode of lowest order; the first in a nominally complete
orthogonal set of “Gaussian beams” into which a propagating monochromatic lidar beam
can be decomposed.

VAD Velocity-azimuth display. Usually refers to a conical-scan lidar.
VM Volume mode: the entire time series of a scattering event counts towards an overall metric.

This is normal procedure in an atmospheric lidar illuminating a volume densely seeded
with scatterers; individual scattering events are not usually isolated and examined even if
that is technically feasible. But other metrics exist (see SPM) and may show different
dependences on target range.

Windcube A brand of pulsed lidars operating near 1.5 µm; based on research at ONERA, Palaiseau,
and later developed and marketed by Leosphere.

ZephIR A brand of CW lidars operating near 1.5 µm; based on research at QinetiQ, Malvern,
and later developed and marketed by ZephIR Lidar.
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