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Abstract: Generating continental-scale pixel composites in dynamic coastal and estuarine
environments presents a unique challenge, as the application of a temporal or seasonal approach to
composite generation is confounded by tidal influences. We demonstrate how this can be resolved
using an approach to compositing that provides robust composites of multi-type environments. In
addition to the visual aesthetics of the images created, we demonstrate the utility of these composites
for further interpretation and analysis. This is enabled by the manner in which our approach captures
the spatial variation in tidal dynamics through the use of a Voronoi mesh, and preserves the band
relationships within the modelled spectra at each pixel. Case studies are presented which include
continental-scale mosaics of the Australian coastline at high and low tide, and tailored examples
demonstrating the potential of the tidally constrained composites to address a range of coastal change
detection and monitoring applications. We conclude with a discussion on the potential applications
of the composite products and method in the coastal and marine environment, as well as further
development directions for our tidal modelling framework.

Keywords: coastal; pixel-based composites; tidal; Landsat; change detection

1. Introduction

Continental scale applications of medium and high-resolution earth observation data are
becoming increasingly important and feasible, driven largely by free and open access to the Landsat
archive [1]. Leveraging an increased ability to automate scientific processing of standardised
image products [2,3] coupled with new computing, data storage and analytical capabilities and
infrastructures [4,5], the Landsat archive offers a temporal dimension for decades long retrospective
analysis and ongoing monitoring capabilities. This capability is further enhanced by the potential to
integrate data with spatial and spectral compatibility from sensors, such as Sentinel-2 [6], into these
new analytical infrastructures [5].

Pixel-based compositing methods are being increasingly recognised as a new paradigm in remote
sensing to leverage the large volumes of data available, whilst effectively mitigating against cloud,
aerosol contamination and data gaps in the archive [7]. Pixel-based composites can be generated
using the best-available-pixel (BAP) concept [7,8] which applies a range of user-defined criteria and
scoring to select the most representative pixel from an ensemble of images. Predominately targeted
at seasonal or annual timeframes in terrestrial environments, the criteria used is often based on a
combination of temporal (e.g., closeness to a given reference day) and data quality (e.g., proximity
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to cloud) metrics [7–9], along with a combination of spectral values or derived indices [10,11]. These
methods have also been extended to use time series trends at each pixel to estimate proxy values in
regions of no data, to ensure gap free composite generation, and increase the utility of the composite
images for change detection applications [12].

The development of a pixel compositing method for imagery in a dynamic coastal environment
presents a unique challenge. The application of a temporal or seasonal approach to composite
generation is confounded by tidal influences on the coast and in estuarine environments. In intertidal
regions which undergo periodic inundation and drying throughout the tidal cycle, the application
of conventional BAP approaches using temporal or data quality scoring will result in pixels in
neighbouring areas being drawn from images at different stages of the tidal cycle. In this region, even
if the process was adapted to incorporate spectral metrics that may correlate to tidal stage (e.g., water
indices), this is further complicated by the requirement to develop a corresponding metric for the
purely terrestrial or aquatic pixels in the image.

Using a data driven or statistical approach to compositing has been demonstrated to derive robust
composites from images that contain a multi-type environment such as we see along the coast [13,14].
These methods use a summary statistic for the pixel time series, such as a mean or a median, to create
the composite image. However, the averaging that is inherent to these methods means the composite
generation in the intertidal region will create a spatial smoothing of intertidal features, as low, mid and
high tide images are aggregated at a pixel level. Aside from the aesthetics of the image created, this
limits the use of the composites for change detection or analysis.

One potential method of dealing with the tidal problem is to incorporate ancillary data models
into the compositing process, in this case, a global tidal model [15]. Effectively, this enables us to
supplement the traditional temporal domain in the process development, with an alternate domain
defined by tidal height. This allows the time series to be queried in two domains, and provides the
ability to isolate the confounding tidal height variability. An application of this concept was shown in
the development of the intertidal extents model (ITEM), which modelled the exposed intertidal extent
and topography of the Australian coastline using the Landsat archive [16].

In the ITEM process, 1◦ by 1◦ Landsat cells were tagged with a tidal height based on their time
of acquisition. Essentially, this imposed an arbitrary scale to the underlying tidal model, and an
assumption that the tidal height at any given epoch did not vary within the extents of the image
cell. Issues arising from this assumption included model discontinuities at some cell boundaries and
increased model errors in complex estuaries and around coastal features that were divided by the
arbitrary cell boundaries [16].

In this paper, we detail the development of a multi-resolution tidal modelling framework,
underpinned by the concept of allowing the data to drive the scale and boundaries of the model.
In moving away from the arbitrary boundaries of the ITEM tidal model, we are left with a variable
spatial scale problem, defined by the global tidal model, and how its coarse resolution relates to the
finer scale coastline features and processes. As noted by [17], a single instantaneous tidal height value
is always a simplification of a complex coastline or estuary. In this work, we use spatial segmentation
and clustering partition methods to allow the spatial variability of the tidal model to drive the scale of
the modelling framework, and therefore, minimise these simplifications.

To demonstrate the application of our framework to the creation of pixel-based composites, we
utilise the geometric median (geomedian) approach of [14]. This statistical method continues the
concept of a data-driven approach, removing arbitrary scoring and choices in the compositing process.
Case studies are presented, which include continental scale mosaics of the Australian coastline at high
and low tide, and tailored examples demonstrating the potential of the tidally constrained composites
to address a range of coastal change detection and monitoring applications. We conclude with a
discussion on the potential applications of the composite products and method in the coastal and
marine environment, as well as further development directions for the tidal modelling framework.
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2. Materials and Methods

2.1. Developing the Multi-Resolution Framework

To develop our tidal modelling framework (Figure 1) we utilised the OTPS TPX08 model,
a continental scale model consisting of a multi-resolution bathymetric grid solution with a 1/6◦

solution in the global open ocean, and a 1/30◦ local resolution solution to improve modelling in
complex shallow water environments [18]. This model has been successfully applied to large scale
coastal remote sensing studies in Australia [16,19] and East Asia [20]. The OTPS model is based on
a system of linear partial differential equations called Laplace’s tidal equations, parametrised with
nine harmonic tidal constituents. The model is fitted to track-averaged TOPEX/Poseidon altimeter
data collected from 1992 to 2016 and Jason-1 (Poseidon 2) altimeter data from 2002 to 2013, enabling
estimation of the tidal height and harmonic constituents at discrete temporal epochs and spatial
locations [15].
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To generate an ensemble of tidal model layers, we randomly selected a date and time for each
month of the year 2016. We then defined a raster grid at a resolution of 1/100◦ (~1.1 km) for the full
Australian coastal region, including the extent of the Great Barrier Reef. For each of the twelve random
epochs, the OTPS model was used to populate the raster grid with the tidal height relative to mean sea
level (MSL) at the selected date and time, so that each raster layer provided a snapshot of the spatial
variability of the OTPS model at a different point in time. By modelling dates and times across a full
year, we aimed to capture potential seasonal and temporal variability in different tidal regimes across
the continent [21].

The twelve tidal raster layers were then used as input layers for a multi-resolution segmentation
process implemented in the eCognition software package [22]. Multi-resolution segmentation uses a
combination of three parameters (scale, shape, and compactness) to drive the relative size and shape
of the created segments. To reach a balance between a segment size and shape that reflected the spatial
variation across the twelve tidal layers, and could function as a unit for image analysis and extraction,
we iterated through the segmentation parameters to generate a layer of 306 segments using parameter
values of shape = 0.1, compactness = 0.5, and scale = 300.

To translate these irregular segments into a more regular partition, we used a Voronoi tessellation,
a flexibly defined continuous mesh commonly used in geophysical applications where the spatial
variability needs to be determined as part of the problem (e.g., [23]). The segmentation was converted
into a Voronoi partition model by firstly defining the centroid locations for each of the 306 segments.
The centroid locations then functioned as the nodes in a Delaunay triangulation and subsequent
construction of a Voronoi partition, where each location within a Voronoi polygon is closer to the node
of that polygon than any other node in the partition model [24]. With a partition of 306 polygons
created, a final manual check and adjustment of nodes (if required) was completed to ensure polygon
boundaries respected coastal features and details which exist at a higher resolution than that of the
tidal model. The full partition was then clipped to our defined coastal region of interest extent, and an
inland buffer of 50 km to create the final model framework (Figure 1).

2.2. Application of the Framework—Temporal and Tidal

The tidal model framework was designed for analysis of the earth observation data archive
managed within the Digital Earth Australia (DEA) platform. The DEA is an instance of the Open Data
Cube (https://www.opendatacube.org/) and has been developed from an earlier prototype referred
to as the Australian Geoscience Data Cube (AGDC) [5,25].

In this work, we apply the framework to the Landsat data archive within the DEA, which has
been acquired continuously since 1987 by sensors on the Landsat 5, 7, and 8 satellites, at a 25 m pixel
resolution and observation frequency of 8–16 days. These data have been geometrically corrected
using the Landsat Product Generation System (LPGS) code developed by the United States Geological
Survey [26], and converted into nadir view angle, bidirectional reflectance distribution function
(BRDF), and atmospherically corrected surface reflectance (NBAR), using the methods described in [3].
Pixel-based quality (PQ) metadata (e.g., cloud, cloud shadow, saturation) was calculated for all scenes
and stored as bitmasks, as described in [27]. This approach is pixel-based, rather than the traditional
scene-based approach, and incorporates geometric and spectral calibration and quality assurance of
each Earth surface reflectance measurement [5]. Following the failure of the ETM+ scan line corrector
on Landsat 7 [28], we have opted to exclude post-May 2003 Landsat 7 data from the work we describe
in this paper.

One of the fundamental differences in the DEA, compared to the earlier AGDC, is the ability to
spatially query the archive at a variable scale defined by the user. In AGDC products, such as the
Intertidal Extents Model (ITEM) v1.0 [16], analysis was confined by the 1◦ by 1◦ cells structure of
the AGDC, imposing an arbitrary scale on the tidal analysis, and resulting in the discontinuities and
attribution errors highlighted earlier. The DEA allows the variable scale of our Voronoi-based tidal
model framework to be used as our spatial units of analysis.

https://www.opendatacube.org/
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The tidal attribution process is similar to that described in [16], although in the new tidal model
we use the location of the Voronoi node for each polygon as the representative pixel location, rather
than the manually placed “tidal post” defined in ITEM v1.0. At the Voronoi nodes, the OTPS model
can then be used to generate a tidal height for each image subset defined by the polygons across the
full 30 year archive of data. This tidal attribution opens up a new domain by which we can query, sort,
and analyse the data within each polygon, therefore leveraging both temporal and tidal information
(Figure 2).
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Figure 2. Tidal height attribution to observations: for a given location, the tidal model (grey) can be
used to attribute a tidal height relative to mean sea level (MSL (m)) based on the date and time of the
image acquisition (black). Images illustrate the manner in which the tidal height attribution can be used
can characterise the environment at different biophysical states i.e., low (a) through mid (b) to high (c)
tide. The percentile lines represent percentiles of tide height within the observed tidal range (OTR), and
the range between the lowest (LOT) and highest (HOT) observed tides in the attributed observations.

We can use this new ability to sort and constrain the image data intersected at each polygon by
both tidal stage and time, to create ensembles of image data ready for compositing. We apply the
recent approach proposed in [14] that uses a statistics-based approach to pixel-based compositing. This
method takes an ensemble of earth observation (EO) data and collapses them down to a single image,
providing a high-quality representation of a typical pixel observation with a reduced influence of
outliers in the time series. This method effectively trades a temporal stack of poor quality observations
for a single high-quality pixel composite image. The core of the method is based on a high-dimensional
generalisation of the median called the geometric median or “geomedian”. The geomedian is well
suited to EO data as it is extremely robust to commonly observed outliers, such as cloud, cloud shadow,
and sun-glint, and provides a data-driven approach to generating the composite. Unlike many other
statistical approaches to pixel-based compositing, the resulting composite maintains the relationship
between the spectral bands of the data, enabling further analysis using band ratios, machine learning
methods, or sample-based classification. A quantitative assessment and comparison against other
statistical composite approaches is given in [14].
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3. Results

3.1. Continental Scale Mosaics

To demonstrate the application of our tidal modelling framework at a continental scale, we have
drawn upon the Landsat archive to produce 6-band pixel-based composites of the entire Australian
coastline at high and low tide. These datasets are constrained not only by tide height, but also
temporally, and show the geometric median surface reflectance for each pixel as observed over the
selected time period. In order to draw out the full benefits that the geomedian composting approach
can bring requires careful consideration and determination of the extents of both the temporal and
tidal domains used.

3.1.1. Composite Domain Determination

The generation of clear, noise-free image composites is primarily influenced by two factors: the
number and the quality of the input images. As the quality of single input images cannot usually be
controlled (e.g., cloud cover, glint, noise); the relative number of input images usually provides a good
estimation of composite quality. At each polygon extent, we are essentially determining the number of
input images by modifying the ranges of both the temporal and tidal domains.

From a tidal perspective, to generate composites which reflect the coastal region at both high and
low tide, we need to select images acquired as close to these extremes of the tidal range as possible.
Complicating this requirement is the sun-synchronous nature of Landsat data acquisition, which means
that all observations are made at approximately the same time of day (mid-morning in Australia) at
any given location. Practically, this means that we are likely to only observe a limited subset of the
full tidal range (Figure 2), and the size and nature of the subset in any location will vary along with
the different tidal regimes and ranges of the continent [21]. Hence, we adopt the terminology used
in [16] using the observed tidal range (OTR), highest observed tide (HOT), and lowest observed tide
(LOT) as distinct from common datums, such as lowest astronomical tide (LAT). For our continental
scale application, we set the tidal range domain to the upper and lower 20th percentiles of the OTR,
for the high and low tide composites respectively, and then use the temporal domain to further refine
the composite quality.

In the temporal domain, a range of environmental and geographic factors need to be considered
that influence the per-pixel and polygon data quality and archival completeness. For example, wet
season cloud cover prevents high quality acquisitions for large parts of every year in some northern
regions, while sun angle variations in different regions and seasons produce sun glint over water in
many areas and lower reflected light values and increased noise in others (e.g., Tasmania). Many of
these factors can be overcome by increasing the time range of observations fed into the composite
process, however, this needs to be carefully balanced with the nature of the coastal environment in
each polygon. In highly dynamic coastal regions, extending the time period results in a smoothing and
generalisation of features; whilst in more static regions, such as coral reefs, the period can be extended
and still maintain the crisp representation of features in the final composite.

With these considerations in mind, initial composites for each polygon were generated for the
lowest and highest 20th percentile of the archive from 2010 to 2017. Each polygon composite was then
examined for image quality (i.e., residual effects from persistent clouds or archival gaps). If the image
quality was deemed poor, the nature of the coastal environment within the polygon was assessed, to
determine if extending the time period would significantly smooth dynamic features and processes
within the polygon. If extending the time period was deemed appropriate, a new composite was
created with an additional 5 years of observations included, and the assessment process was repeated.
In this way, we sought to create a balance in each polygon between composite image quality and utility
of the composite imagery, to accurately capture all environments at high and low tide.
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3.1.2. High and Low Tide Image Composites

The resulting quality controlled geomedian images for each polygon are then mosaicked to
produce the two continental scale multi-spectral composite image datasets, visualising the Australian
coastline and reefs at high and low tide. The median properties of the process suppress noise from
individual observations, producing a clean and noise free image that is highly interpretable for the
delineation and identification of features and habitats. This also translates across boundaries of the
mosaicked polygon sections, with smooth transitions, colour balance, and little indication of the
original polygon footprints (Figure 3). Not only are clouds and data gaps dealt with effectively as in
terrestrial applications, but the suppression of glint, breaking water, and white-caps greatly increases
the visual clarity and consistency of the images both in open water and coastal regions (Figure 4).

In contrast to band independent statistical average methods, the geomedian preserves the band
relationships within the modelled spectra at each pixel. This is important, as it opens up the opportunity
to apply algorithms which incorporate field spectra for parametrisation or validation with more
confidence and rigour. The ability to visualise and spectrally characterise the same environment
at different biophysical stages (high and low tide) further extends the mapping and classification
potential of the datasets.
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3.2. Coastal and Estuarine Change

Producing clean and interpretable composites at a continental scale required a standardised
approach, and often a long time-range of input data to counteract many of the regional effects in the
greater dataset. By generating sequential composites in more localised applications, the process can
also be used to discover, investigate, and monitor coastal change. Flexibility in how we define the
domains for generating coastal composite imagery enables us to investigate two types of coastal change:
change that is gradual, such as sediment transport or urban expansion, and change that is sudden, and
caused by major events, such as floods and cyclones. By restricting inputs from the tidal domain, one
of the major and confounding variables of change in the coastal zone is constrained, enabling a clearer
understanding of the dynamics that are producing change. Similarly, modifications in the temporal
domain can also be targeted to better characterise the approximate date or rate of change.

In the following sections, we look at these two types of change, and ways in which the composite
domains can be targeted to assess them. Firstly, we show how time series composites can be generated
using a consistent time step to highlight average change over time, and how they are useful in
environments where change is likely to be gradual and ongoing. Second, we show how composite
time series can be generated using major events to dictate the temporal inputs to the composites, and
we demonstrate the importance of the tidal domain in this type of analysis.

3.2.1. Natural Change Utilising Consistent Time Steps

Dynamic regions of the Australian coast and their associated change can be identified in
composites that span the length of the Landsat archive using a consistent time step. Although
each geomedian composite depicts an averaged representation from the input ensemble of images,
consistent time step composites can be useful to indicate whether the rate of change is constant across
the whole time series, and can identify periods of noteworthy change.
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Two approaches can be used in the identification of coastal change study sites: (1) regions are
located based on a prior understanding of the local change conditions, or (2) a data driven approach
can be used to identify dynamic coastal areas. The latter approach has been used successfully in this
work to identify change locations in remote regions of Australia.

The data driven approach utilises the Intertidal Extents Model (ITEM) v.1 confidence layer [16]
as a diagnostic tool. The confidence layer was designed to highlight any errors in the original tidal
modelling framework, although as shown in [16], the layer also has the ability to indicate areas of
potential coastal change and instability. This is because it highlights pixels where changes in a land or
water classification do not correspond with the underlying tidal model, indicating that other dynamics
are driving the change.

The data driven approach to identifying change locations revealed that the Keep River in
Australia’s Northern Territory has a number of sites where significant geomorphic change was
identified during the recorded history of imagery for the site (Figure 5). Whilst the ITEM confidence
layer does not indicate the timing and nature of the change, or whether it was event based or naturally
continuous, this can be further explored using consistent time step composites.
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Figure 5. Intertidal extents model (ITEM) confidence layer, Keep River West Bank, Northern Territory:
The confidence layer shows the average variation in normalised difference water index NDWI values
across each tidal percentile used in the ITEM product. Higher values indicate regions of change
between water and land that are not driven by tidal influences [16].

To investigate changes indicated in Figure 5, images of the mid-tide range (40th to 60th percentiles
of observed tide heights) were used as inputs to the geomedian composite process, with 6 year epoch
time steps defined across the length of the archive. Using the mid-tide range reliably provides a rich
dataset from which to select input images, without a dependency on the less frequently occurring
observations at the extremes of the tidal range. The time series of 6 year composites for the Keep River
(Figure 6) show two processes of natural change occurrence. Firstly, the area is seen to be dynamic
in terms of sediment transport with banks both continuously forming and disappearing. Overall,
sediment deposition and the development of the observed sand/mud banks appear to be the dominant
driver of change in this environment. Secondly, the formation and settlement of these banks has been
the catalyst for the progression of vegetation (mangrove) in this part of the river.
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Figure 6. Consistent time step composites at a mid-tide range, Keep River West, NT: using observations
drawn the middle 20th percentile (i.e., 40 to 60th percentile) of the observed tidal range, these
composites visualise the changes indicated in the ITEM confidence layer shown in Figure 5, whilst
constraining tidal influences.

3.2.2. Event Based Change Utilising Ancillary Data

Event based coastal change was investigated by creating geomedian composites where the
temporal domain steps are informed by an ancillary data source; in this case, the flood water heights
from in situ gauge measurements. Flood gauge measurements for the Burdekin River, Queensland,
were sourced from the Bureau of Meteorology [29], indicating a number of significant events over the
period covered by the Landsat archive in the DEA.

The Burdekin River is one of Queensland’s largest rivers, draining a catchment dominated by
livestock grazing as the primary land use [30]. Discharging into the Coral Sea, and occasionally,
the Great Barrier Reef, it is well documented to transport high sediment loads from catchment to
shore [31]. It is also susceptible to seasonal cyclones and subject to major semi-regular flooding, often
as a consequence of the weather systems associated with the annual cyclone season [32].

The Burdekin River estuary is a multi-channel system where geomorphic change is evident in
the 30 year imagery archive of the DEA. To investigate whether composite imagery can indicate that
these changes can be attributed to flooding events, we generated geomedian composites at 3 year time
steps either side of flood events in 1991 and 1998 indicated in the gauge record. These composites were
constrained to the lowest 20% of the OTR to allow the maximum substratum extent to be exposed
across the estuary. A simple land/water classification, identical to that used in [16], was completed on
each composite image, utilising the normalised difference water index (NDWI) [33]. Differencing of
the land and water extents between subsequent composites was then completed to indicate areas of
change from wet to dry and vice versa (Figure 7).

This analysis shows that that geomorphic change in the estuary is influenced considerably more
by flood events, rather than by regular flow. For example, the change shown on either side of both the
1991 (Figure 7e) and 1998 (Figure 7g) flooding event is significantly greater than that of the subsequent
comparable time periods where no flood event is recorded (Figure 7f).

There are two notable strengths provided by the tidal tagging and geomedian compositing
approach to change detection applications. Firstly, the noise suppression and reduced pixel-to-pixel
variation in the composites enables both improved visual interpretation and a cleaner application of
indices and classification techniques. Secondly, change effects related to the tidal influences can be
largely eliminated from change detection analyses. We can clearly illustrate the importance of this
second feature of the method using the Burdekin River case study.
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Figure 7. Event based composite generation and change analysis: pixel-based composites generated on
either side of identified flood events at the Burdekin River mouth estuary. Produced from observations
in the lowest 20th percentile of the observed tidal range (OTR), and displayed in false colour (a–d).
Change analysis utilising the normalised difference water index (NDWI) (e–g) highlights the increased
modification of the estuary before and after flood events (e,g), in comparison to a non-flooding
period (f).

The Burdekin River case study was generated using imagery identified from the lowest 20%
of observed tide heights for each of the time series epochs. If the tidal domain ranges were varied
between these epochs, we would expect the tidal influences to confound and hinder the detection of
geomorphic change. To demonstrate, we select a non-flooding comparison period between the years of
1991 to 1994, and 1995 to 1998, shown in the low tide case study as Figure 7b,c,f. In Figure 8, we show
the same analysis performed on the same epochs, but using a composite created from the highest 20%
of the OTR for the latter period. As expected, a significant degree of change was detected (Figure 8c)
that can be almost entirely attributed to tidal effects when compared to Figure 7f, where change is
assessed between two composites of comparable tidal ranges. This is an extreme example, drawing
imagery for both ends of the tidal range to illustrate the concept, and one might argue that a user
would naturally select images from comparable tidal stages for this type of analysis. However, to do so
would require moving back to the single scene analysis paradigm, and the associated environmental
noise and cloud issues that accompany it. By developing a framework to incorporate tidal tagging and
composite generation, we are providing a method to leverage the benefits of image compositing in this
highly dynamic environment.
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Figure 8. Change detection with the influence of tides: composites either side of a non-flooding period
(see Figure 7b,c) generated from observations at different stages of the tidal cycle; lowest 20th (a)
and highest 20th (b) percentile of the OTR. Analysis using the NDWI illustrates the importance of
constraining to a common tidal range for change applications, with large areas of change driven by
varying tides identified in (c), when compared to the constrained analysis shown in Figure 7f for the
same time periods.

4. Discussion and Future Work

In Section 3.1, we have shown how our developed tidal modelling framework can be applied at
a continental scale to produce a clean, cloud and glint free composite mosaic for the full Australian
coastline and the Great Barrier Reef at high and low tide. The characteristics of the geomedian approach
ensure that the resulting mosaic is visually appealing, suppressing temporal and pixel-to-pixel noise.
The smooth transitions in the mosaic between the individually processed image polygons also indicate
that when combined with the geomedian process, our spatial characterisation of the tidal model is
at an appropriate scale to capture its variability, whilst striking a balance with the computational
demands of processing 30 years of Landsat data at a continental scale. In our process, we aimed to
use tidal data to drive the spatial structure of the model, although ultimately, some manual decisions
were required (e.g., scale of the segmentation, coastal alignment of Voronoi boundaries) for practical
implementation. Ideally, a fully data driven approach, such as under a Bayesian framework (e.g., [34])
might be adopted to optimise the spatial dimension of the model.

The reduced noise and spatial consistency of the mosaic greatly increase its interpretability, and
therefore, its utility to be paired with shoreline and change detection algorithms. The ability to
switch between and modify the temporal and tidal domains in our framework further increases its
functionality and potential for more targeted change detection applications, a selection of which we
have demonstrated in Section 3.2. With the analytical and computing capacity provided by the DEA,
there is potential to build these open source algorithms into a user-friendly interface, where the user
can modify the location, temporal and tidal variables in the composite generation process to target
their specific needs. The flexible nature of the developed frame work and the DEA means that in the
near future, the user will not only be able to access the vast archive of Landsat data, but also data
from new sensors such as Sentinel-2, greatly increasing the density of the archive and allowing finer
temporal steps and analysis. However, combining the data from these sensors to allow calibrated
time series analysis and composite generation presents a number of challenges, including radiometric
calibration, atmospheric correction, and spatial registration [35], and is an active area of research
internationally [36,37].

One of the most significant benefits of using the geomedian approach for creating composites
is the maintenance of the spectral relationship between bands. As we have noted, this increases
the potential utility of the composites for processes such as band ratios, machine learning, and



Remote Sens. 2018, 10, 480 13 of 15

classification algorithms. For instance, the mapping of mangrove of extents was explored by [38] using
band-independent median mosaics of Landsat data at high and low tide. The classification in their
work was restricted to samples generated from the synthetic composites, based on pre-defined regions
of interest. With geomedian spectra, this kind of work can be extended to utilise in situ and reference
spectral endmembers for classification, instead of requiring some prior knowledge of habit extent,
whereas this type of approach is not valid with band independent statistically derived composites.

In the marine space, the spectral characteristics of the geomedian open up the possibility for
temporal and tidally constrained composites to be used for a range of water quality and parameter
estimation problems. Future work will investigate the application of a recently developed turbidity
algorithm shown to be applicable at a global scale with Landsat data [39,40]. The implications
of applying this approach to composite data will be explored, where the domains can be tailored
seasonally, as well as drawing further information from the tidal modelling process by sorting images
based on tidal phase (i.e., ebb or flow tide).

The development path of the tidal modelling framework is a direct result of insights gained from
the implementation of original tidal tagging process used in the ITEM product [16]. The workflow
of that product makes it possible for straightforward implementation of the new multi-resolution
framework for tidal tagging, and work is underway to assess the improvements that this is bringing
to version 2 of the ITEM. Incorporated in this proposed work is validation of both the ITEM product
suite and the new tidal modelling framework, with a combination of in situ GPS elevation and tidal
gauge measurements. This is aimed at providing increased confidence in the full range of products
that can be realised through the tidal modelling and composite creation tools on the DEA platform.

5. Conclusions

In this paper, we have presented a methodology for generating pixel-based composites from large
time series of earth observation data in highly dynamic coastal regions. The tidal modelling framework
to enable this process was developed from a global tidal model, and by allowing the model itself to
define the spatial variability by which we query the data, the framework allows the confounding tidal
influence in coastal regions to be constrained. In the examples presented, we show the capability
of the method to generate clean, noise free composite mosaics of the Australian coastline at high
and low tide, and we demonstrate how the framework can be tailored to address a range of change
detection applications.

To fully realise the potential of the method, there remains challenges to be addressed, including
the ability to integrate data from a range of sensors. The potential of further refining how the tidal
modelling is completed is also discussed, with the aim of moving to a fully data driven approach not
requiring manual decision processes. One of the important areas of future work identified centres
around the properties of the compositing method that preserves the band relationships within the pixel
composite spectra. This feature provides the potential to apply a range of spectral analysis processes,
such as classification and empirical parameter estimation, in a more robust manner when compared to
band-independent statistical composites.

6. Data Availability

The high and low tide composite products, and further information on the tidal ranges and
timeframes used to create them, can be accessed at http://dx.doi.org/10.4225/25/5a615705d20f7.
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