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Abstract: Hyperspectral remote sensing is based on measuring the scattered and reflected
electromagnetic signals from the Earth’s surface emitted by the Sun. The received radiance at
the sensor is usually degraded by atmospheric effects and instrumental (sensor) noises which include
thermal (Johnson) noise, quantization noise, and shot (photon) noise. Noise reduction is often
considered as a preprocessing step for hyperspectral imagery. In the past decade, hyperspectral noise
reduction techniques have evolved substantially from two dimensional bandwise techniques to three
dimensional ones, and varieties of low-rank methods have been forwarded to improve the signal
to noise ratio of the observed data. Despite all the developments and advances, there is a lack of a
comprehensive overview of these techniques and their impact on hyperspectral imagery applications.
In this paper, we address the following two main issues; (1) Providing an overview of the techniques
developed in the past decade for hyperspectral image noise reduction; (2) Discussing the performance
of these techniques by applying them as a preprocessing step to improve a hyperspectral image
analysis task, i.e., classification. Additionally, this paper discusses about the hyperspectral image
modeling and denoising challenges. Furthermore, different noise types that exist in hyperspectral
images have been described. The denoising experiments have confirmed the advantages of the use
of low-rank denoising techniques compared to the other denoising techniques in terms of signal to
noise ratio and spectral angle distance. In the classification experiments, classification accuracies
have improved when denoising techniques have been applied as a preprocessing step.

Keywords: classification; denoising; hyperspectral imaging; hyperspectral remote sensing;
image analysis; image processing; inverse problems; low-rank; noise reduction; remote sensing;
restoration; sparsity; sparse modeling; spectroscopy

1. Introduction

Remote sensing has been substantially influenced by hyperspectral imaging in the past decades [1].
Hyperspectral cameras provide contiguous electromagnetic spectra ranging from visible over
near-infrared to shortwave infrared spectral bands (from 0.3 µm to 2.5 µm). The spectral signature
is the consequence of molecular absorption and particle scattering, allowing to distinguish between
materials with different characteristics. Hyperspectral remote sensing applications include agriculture,
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environmental monitoring, weather prediction, military [2], food industry [3], biomedical [4],
and forensic research [5].

A hyperspectral image (HSI) is a three dimensional (3D) datacube in which the first two
dimensions represent spatial information and the third dimension represents the spectral information
of a scene. Figure 1 shows an illustration of a hyperspectral datacube. Hyperspectral spaceborne
sensors capture data in several narrow spectral bands, instead of a single wide spectral band. In this
way, hyperspectral sensors can provide detailed spectral information from the scene. However,
since the width of spectral bands significantly decreases, the received signal by the sensor also
decreases. This leads to a trade-off between spatial resolution and spectral resolution. Therefore,
to improve the spatial resolution of hyperspectral images, airborne imagery has been widely used.
Further information about the different types of hyperspectral sensors is given in [2]. In this review,
we focus on the hyperspectral cameras which provide the reflectance from a scanned scene.

Figure 1. Left: Hyperspectral data cube. Right: The reflectance of the material within a pixel.

In real word HSI applications, the observed HSI is degraded by different sources, related to the
applied imaging technology, system, environment, etc., and therefore, the noise free HSI needs to be
estimated. When the observed signal is degraded by noise sources, the estimation task is referred to
as “denoising”.

The received radiance at the remote sensing hyperspectral camera is degraded by atmospheric
effects and instrumental noises. The atmospheric effects should be compensated to provide the
reflectance. Instrumental (sensor) noise includes thermal (Johnson) noise, quantization noise and shot
(photon) noise which cause corruption in the spectral bands by varying degrees. These corrupted
bands degrade the efficiency of the HSI analysis techniques and therefore they are often removed
from the data before any further processing. Alternatively, HSI denoising can be considered as a
preprocessing step in HSI analysis to improve the signal to noise ratio (SNR) of HSI.

Figure 2 illustrates the dynamics of the important subject of hyperspectral image denoising in the
hyperspectral community. The reported numbers include both scientific journal and conference papers
on this particular subject using “hyperspectral” and “(denoising, restoration, or noise reduction)”
as the main keywords used in the abstracts. In order to highlight the increase in this number, the
time period has been split into a number of equal time slots (i.e., 1998–2001, 2002–2005, 2006–2009,
2010–2013, 2014–2017 (October 1st)). The exponential growth in the number of papers reveals the
popularity of this subject.
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Figure 2. The number of journal and conference papers that appeared in IEEE Xplore on the vibrant
topic of hyperspectral image denoising within different time periods.

In this review, we have two main objectives: (1) giving an overview of the denoising techniques
which have been developed for HSI and compare their performance in terms of improving
the SNR; (2) demonstrating the effect of these techniques when applied as preprocessing for
classification applications.

1.1. Notation

In this paper, the number of bands and pixels in each band are denoted by p and n = (n1 × n2),
respectively. Matrices are denoted by bold and capital letters, column vectors by bold letters,
the element placed in the ith row and jth column of matrix X by xij, the jth row by xT

j , and the

ith column by x(i). The identity matrix of size p× p is denoted by Ip. X̂ stands for the estimate of the
variable X. The Frobenius norm and the Kronecker product are denoted by ‖.‖F and ⊗, respectively.
Operator vec vectorizes a matrix and vec−1 in the corresponding inverse operator. tr(X) denotes the
trace of matrix X. In Table 1, the different symbols and their definition are given.

Table 1. The different symbols and their definition.

Symbols Definition

xi the ith entry of the vector x
xij the (i, j)th entry of the matrix X
x(i) the ith column of the matrix X
xT

j the jth row of the matrix X
‖x‖0 l0-norm of the vector x, i.e., the number of nonzero entries.
‖x‖1 l1-norm of the vector x, obtained by ∑i |xi|.
‖x‖2 l2-norm of the vector x, obtained by

√
∑i x2

i .
‖X‖0 l0-norm of the matrix X, i.e., the number of nonzero entries.
‖X‖1 l1-norm of the matrix X, obtained by ∑i,j

∣∣∣xij

∣∣∣.
‖X‖F Frobenius-norm of the matrix X, obtained by

√
∑i,j x2

ij.

‖X‖∗ Nuclear-norm of the matrix X, obtained by ∑i σi(X), i.e., the sum of the singular values.
X̂ the estimate of the variable X.
tr(X) the trace of the matrix X.



Remote Sens. 2018, 3, 482 4 of 28

1.2. Dataset Description

The datasets that are used in this paper are described below.

1.2.1. Houston

This hyperspectral dataset was captured by the Compact Airborne Spectrographic Imager (CASI)
over the University of Houston campus and the neighboring urban area in June 2012. This dataset is
composed of 144 bands ranging from 0.38 µm to 1.05 µm and the spatial resolution is 2.5 m. The image
contains 349 × 1905 pixels. The available groundtruth covers 15 classes of interest. Table 2 gives
information on all 15 classes including the number of training and test samples. Figure 3 shows a
three-band false color composite image and its corresponding and already-separated training and
test samples.

Table 2. Houston—Number of training and test samples.

Class Number of Samples

No Name Training Test

1 Grass Healthy 198 1053
2 Grass Stressed 190 1064
3 Grass Synthetic 192 505
4 Tree 188 1056
5 Soil 186 1056
6 Water 182 143
7 Residential 196 1072
8 Commercial 191 1053
9 Road 193 1059

10 Highway 191 1036
11 Railway 181 1054
12 Parking Lot 1 192 1041
13 Parking Lot 2 184 285
14 Tennis Court 181 247
15 Running Track 187 473

Total 2832 12,197

DRAFT 5

2013–2016
1206 papers

Others
38.5%

Dim. reduction
9.4%

Unmixing
14.4%

2009–2012
450 papers

Classification
27.2%

Classification
22.4%

Unmixing
16.2%

Dim. 
reduction
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Image restoration 2.0%
Fast computing 3.6%
Res. enhancement 1.6%
Change detection 1.3%

Others
45.1%

Change detection 1.6%
Res. enhancement 2.7%
Fast computing 3.0%
Image restoration 3.2%

Fig. 3. Statistics on papers related to hyperspectral image and signal
processing published in IEEE journals during 2009–2012 and 2013–2016. The
size of each pie is proportional to the number of papers. The total number of
papers for each time period is shown at the center of each pie chart.
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Fig. 4. ROSIS-03 Pavia University - (a) False color composite, (b) training
samples, and (c) test samples.

CD experiment. Changes occurring in this scenario include the
land-cover class transitions between crops, bare soil, subtle
variations in soil moisture, and water content of vegetation.
More detailed descriptions of this data set can be found in
[12]. Figs. 6 (a) and (b) show the false color composite of
X1 and X2, respectively. The false color composite of three
spectral change vector (SCV) channels is shown in Fig. 6 (c);
possible different changed pixels are illustrated in different

9

SVM RF RBFNN

(a) (b) (c)

(d) (e) (f)

Thematic classes:
Healty grass Stressed grass Synthetic grass Tree Soil
Water Residential Commercial Road Highway
Railway Parking lot 1 Parking lot 2 Tennis court Running track

Fig. 4: Classification maps corresponding to the worst (first row) and best (second row) classification overall accuracy
achieved by the different classifiers for a single training and test set: (a) SVM with KPCA (OA=94.75%), (b) RF with Hyper
(OA=94.57%), (c) RBFNN with KPCA (OA=90.08%), (d) SVM with SDAP(KPCA) (OA=98.39%), (e) RF with SDAP(kpca90
+ I) + Ndsm (OA=97.51%), (f) RBFNN with SDAP(kpca90 + I) (OA=94.95% ).

Fig. 5. CASI Houston - (From top to bottom) False color composite (R: band
70, G: band 50, B: band 20), training samples, and test samples.

(a) (b)

(c) (d)
Fig. 6. Umatilla County - False color composite (R: 650.67 nm, G: 548.92
nm, B: 447.17 nm) of the bitemporal EO-1 Hyperion images acquired over
an irrigated agricultural area in Umatilla County, OR (USA) in (a) 2004 (X1)
and (b) 2007 (X2). (c) Composite of three SCV channels (R: 823.65 nm, G:
721.90 nm, B: 620.15 nm); (d) Multi-class change reference map, where six
changes are in different colors, whereas the unchanged pixels are in gray.

colors, whereas the unchanged pixels are in gray. The multi-
class change reference map is made based on careful image
interpretation, as shown in Fig. 6 (d). Note that the possible
subtle sub-pixel level changes (e.g., the one associated with the
road surrounding the irrigated agricultural land [12]) was not
considered in this paper in order to conduct the quantitative
comparison with other pixel-level-based approaches fairly.
Thus six pixel-level changes were considered, as shown in
Fig. 6 (d).

III. DIMENSIONALITY REDUCTION

The increasing spectral resolution of hyperspectral data
benefits precision pattern recognition, but challenges both
the memory capacity of ordinary personal computers and
conventional signal processing techniques. For an HSI with
spatial dimension of 600 × 400 pixels at 16 bits-per-band-
per-pixel, the data volume becomes 240 MB for 500 spectral
bands. The data volume can be linearly increased when time
series hyperspectral data are acquired to monitor environ-
mental changes. The complexities of storing and processing
the data will easily exceed the memory capacity of ordinary
personal computers. Moreover, as discussed above, when the
ratio between the spectral bands and the number of training
samples is high, high-dimensional hyperspectral data suffer
from the well-known issue of the curse of dimensionality.
Dimensionality reduction (DR), aiming at identifying and
eliminating statistical redundancies of hyperspectral data while
keeping as much spectral information as possible, is widely
used in hyperspectral data processing. Relatively few bands
can represent most of the information in HSIs [13], making DR

Figure 3. Houston—from top to bottom—a color composite representation of the hyperspectral data
using bands 70, 50, and 20, as R, G, and B, respectively; training samples; test samples; and the
corresponding color bar.
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1.2.2. Trento Data

The second dataset was captured over a rural area in the south of the city of Trento, Italy.
This dataset is of size 600 by 166 pixels with a spatial resolution of 1 m with 63 spectral bands (ranging
from 402.89 to 989.09 nm) captured by the AISA Eagle sensor. The available groundtruth covers six
classes of interest including Building, Woods, Apple trees, Roads, Vineyard, and Ground. Figure 4
illustrates a false color composite representation of the hyperspectral data and the corresponding
training and test samples. Table 3 provides information about the corresponding number of training
and test samples.

Figure 4. Trento—from top to bottom—a color composite representation of the hyperspectral data using
bands 40, 20, and 10, as R, G, and B, respectively; training samples; test samples; and the corresponding
color bar.

Table 3. Trento—Number of training and test Samples.

Class Number of Samples

No Name Training Test

1 Apple trees 129 3905
2 Buildings 125 2778
3 Ground 105 374
4 Wood 154 8969
5 Vineyard 184 10,317
6 Roads 122 3252

Total 819 29,595

1.2.3. Indian Pines

The third dataset was taken by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
sensor over an agricultural area located at northwestern Indiana. This dataset is composed of 220
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bands ranging from 400 nm to 2500 nm. The image contains 145 × 145 pixels with a spatial resolution
of 20 m per pixel. The available groundtruth covers 16 classes of interest. Table 4 provides detailed
information about all 16 classes and the corresponding number of training and test samples. Figure 5
presents a three-band false color composite image and its corresponding training and test samples.

Figure 5. Indian Pines—(a) a color composite representation of the hyperspectral data; (b) test samples;
(c) training samples; and (d) the corresponding color bar.

Table 4. Indian Pines—Number of training and test Samples.

Class Number of Samples

No Name Training Test

1 Corn-notill 50 1384
2 Corn-mintill 50 784
3 Corn 50 184
4 Grass-pasture 50 447
5 Grass-trees 50 697
6 Hay-windrowed 50 439
7 Soybean-notill 50 918
8 Soybean-mintill 50 2418
9 Soybean-clean 50 564

10 Wheat 50 162
11 Woods 50 1244
12 Bldg-grass-tree-drives 50 330
13 Stone-Steel-Towers 50 45
14 Alfalfa 50 39
15 Grass-pasture-mowed 50 11
16 Oats 50 5

Total 695 9671

1.2.4. Washington DC Mall

The last dataset is the Washington DC mall which is an airborne dataset captured over the
Washington DC Mall in August 1995 using the HYDICE sensor (Hyperspectral Digital Imagery
Collection Experiment). The sensor provides 210 bands in the 0.4–2.4 µm spectral region where each
band contains 1280 lines with 307 pixels. After removing noisy bands, the available dataset contains
191 bands. The reference ground truth contains 7 classes of interest, given in Table 5. Figure 6 shows
the test and training samples, and a false color image of the dataset using bands 60, 27 and 17.
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(a) (b) (c)

Figure 6. Washington DC Mall—(a) a color composite representation of the hyperspectral data;
(b) training samples; (c) test samples; and the corresponding color bar.

Table 5. Washingto DC Mall—Number of training and test samples.

Class Number of Samples

No Name Training Test

1 Roof 40 3794
2 Road 40 376
3 Trail 40 135
4 Grass 40 1888
5 Tree 40 365
6 Water 40 1184
7 Shadow 40 57

Total 280 3929

1.3. Hyperspectral Modeling

A hyperspectral image can be represented by 1 dimensional (1D), 2 dimensional (2D),
or 3 dimensional (3D) models. In 1D, 2D, and 3D models the HSI is treated as a combination of
spectral pixel-vectors, spectral bands and as a whole cube, respectively. In other words, in 1D and 2D
models, spatial and spectral correlations are ignored, respectively. However, in 3D models, both spatial
and spectral correlations are taken into account. Using the matrix form we can represent the observed
degraded HSI as a combination of a true unknown signal and additive noise:

H = X + N, (1)

where H is an n× p matrix containing the vectorized observed image at band i in its ith column, X is
the true unknown signal which needs to be estimated, and N is an n× p matrix representing the noise.
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Other models may also be considered for HSI [6], however, model (1) is widely used in the literature.
Model (1) can be generalized by ([7]):

H = AWMT + N, (2)

where A is an n × n and M is a p × r matrix (1 ≤ r ≤ p). These are two dimensional and one
dimensional projection matrices, respectively. W (n × r) is the unknown projected HSI. A and M
are often selected to decorrelate the signal and noise in the HSI spatially and spectrally, respectively,
and they can be known or unknown (in HSI denoising they are usually assumed to be known).
Model (2) is a 3D model (see Appendix A for more details), however 2D and 1D models can be
obtained as special cases of model (2). If M = I, then model (2) becomes a 2D model. If A = I,
then model (2) becomes a 1D model, and if A = M = I, then model (2) is equivalent to model (1)
which is also a 1D model. Assuming model (2) and A and M known, the HSI denoising task is to
estimate W, and the HSI is restored by X̂ = AŴMT .

As an example, consider a 3D model obtained by using a 3D wavelet basis:

H = D2WDT
1 + N, (3)

where D2 and D1 represent 2D and 1D wavelet bases, respectively. Note that D2 (D2 = D1 ⊗D1,
see Appendix B) and D1 project the signal spatially and spectrally, respectively. If D1 = I, we obtain a
2D wavelet model:

H = D2W + N, (4)

where the signal is only projected spatially (i.e., 2D wavelet applied on each band separately), and if
D2 = I, a 1D wavelet model is obtained:

H = WDT
1 + N, (5)

where the signal is only projected spectrally (i.e., 1D wavelet applied on each spectral pixel separately).
Another example is the 1D model that is widely used for spectral unmixing:

H = WET + N, (6)

which is a special case of model (2) with A = I and M = E. In (6) the HSI is projected spectrally by E,
a matrix of endmembers, and W contains the abundance maps.

1.4. Hyperspectral Denoising

Assuming model (1), the denoising task is to estimate the original (unknown) signal X. This can
be done by penalized least squares optimization:

X̂ = arg min
X

1
2
‖H− X‖2

F + λφ(X), (7)

where the first term is the fidelity term, φ(X) is the penalty term, and λ determines the tradeoff between
both terms. Equivalently, model (1) can be solved by solving the constrained minimization problem:

X̂ = arg min
X

φ(X) s.t. ‖H− X‖F < ε, (8)

where ε is a small number to relax the exact solution to the problem:

X̂ = arg min
X

φ(X) s.t. H = X. (9)
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Note that the penalty method turns the constrained minimization problem (8) into the
unconstrained minimization problem (7). Another constrained formulation of the denoising problem
is to minimize the fidelity term subject to some constraint on the penalty term:

X̂ = arg min
X
‖H− X‖2

F s.t. φ(X) ≤ K, (10)

where K is the upper bound of the constraint.
The penalty term is usually selected based on the chosen model, the prior knowledge,

and characteristics of the data. For instance, if we use sparsifying bases in model (2) for A and
M, such as wavelet bases (model (3)) then it is better to use penalties which promote sparsity such as
`1 (or `0) in (7):

Ŵ = arg min
W

1
2

∥∥∥H−D2WDT
1

∥∥∥2

F
+ λ

n

∑
i=1

p

∑
j=1

∣∣wij
∣∣ . (11)

Note that function φ can also be a combination of multiple penalty terms.

1.5. HSI Denoising Challenges

HSI denoising is a delicate task and needs specific attention compared to denoising of other images
due to the importance of preserving spectral information. The high spectral correlation provides a
great advantage for the denoising task, however, oversmoothing causes loss of valuable spectral
information. In the next sections, we point out the main challenges related to the development of HSI
denoising algorithms.

1.5.1. Hyperspectral Model and Parameter Selection

The selection of the HSI model requires attention. For instance, in model (2), A and M need to be
carefully selected for an improved performance of HSI denoising. Additionally, the selection of the
model parameters is not a trivial task. For instance, over- or under-estimating λ in (7) yields either
information loss or poor denoising performance. Providing ad hoc or experimental strategies for these
estimations may make denoising algorithms unreliable and problematic to be used as a preprocessing
step in HSI analysis. It is worth mentioning that selecting more complicated models or penalties makes
the parameter selection task much harder.

In [7], a model and parameter selection criterion is given for a general model of the form (2)
where A and M are orthogonal matrices, N is Gaussian noise, and the hyperspectral signal is given by
X̂ = AŴMT , where Ŵ is given by

Ŵ = max (0, |B| − λ)
B
|B| , (12)

and B = [bij] = ATHM. λ is the tuning parameter and B has rank r. Since the estimated signal
X̂ = AŴMT , the performance of denoising techniques is highly dependent on the selection of those
parameters. In denoising applications, it is often of interest to select the models and the corresponding
parameters based on the minimization of the mean squared error (MSE),

Rλ,r = E
∥∥X− X̂λ,r

∥∥2
F . (13)

Unfortunately, in real world applications the true signal X is unknown and thus it is impossible
to compute the MSE. In [8], an unbiased estimator of the MSE, called Stein’s unbiased risk estimator
(SURE), was derived for deterministic signals with Gaussian noise. The general form of SURE is
given by

R̂λ,r = ‖E‖2
F + 2

p

∑
j=1

tr

(
Ω

∂x̂(j)

∂hT
(j)

)
− np, (14)
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where E = H− AŴrMT
r is the residual, Ω = diag

(
σ2

1 , σ2
2 , . . . , σ2

p

)
, and σp is the noise standard

deviation in band p. In [7], a model and parameter selection criterion was proposed, based on the
estimate of MSE by using SURE for X̂ = AŴMT where Ŵ is given by (12):

R̂λ,r = ‖H‖2
F +

n

∑
i=1

r

∑
j=1

(
2I(
∣∣bij
∣∣ > λ)−max

(
0, b2

ij − λ2
))
− np, (15)

where I is the indicator function. The main advantage of (15) is that model parameters can be selected
based on the MSE estimator. As can be seen, (15) is only dependent on the observed signal (H).
Therefore, (15) lets us select the model (in the form of model (2)) and the models parameters (r and
λ) w.r.t. the minimum of the estimation of the MSE. Equation (15) is called hyperspectral SURE
(HySURE), and is proposed in [9] in the context of spectral unmixing to determine the subspace
dimension (or the number of endmembers), r, in the absence of the noise free signal X (The Matlab
code online available in [10]). Additionally, a model selection criterion that is not dependent on the
unknown signal (such as (15)) provides an instrument to compare the denoising techniques without
using simulated (noisy) HSI and by only using the observed HSI itself.

1.5.2. Spectral Distortion and Band-Wise Normalization Issues

Spectral information in HSIs is of great importance in HSI analysis. Therefore, it is essential
that HSI denoising techniques preserve the spectral information. Both signal and noise variances are
varying throughout the hyperspectral bands, which makes the noise estimation and denoising task
very challenging. To cope with this issue, some denoising techniques use band-wise normalization to
obtain spectral bands of similar scale. Band-wise normalization causes spectral distortion and it is not
recommended for HSI. One way to deal with varying signal and noise variances is to define the model
parameters to be variable w.r.t. the spectral bands. For instance, in model (3), (11) can be rewritten as

Ŵ = arg min
W

1
2

∥∥∥H−D2WDT
1

∥∥∥2

F
+

n

∑
i=1

p

∑
j=1

λj
∣∣wij

∣∣ , (16)

where the tuning parameter λ is defined to vary w.r.t. the spectral bands (the columns of W) to cope
with noise power that varies between spectral bands.

1.5.3. Noise Variance Estimation

Denoising techniques, and particularly the model parameter selection criteria, are often highly
reliable on the estimation of the noise variance. One of the most common techniques used for HSI noise
parameter estimation is multiple linear regression (MLR) [11,12]. MLR was proposed in [13] as a noise
estimation technique which assumes that each band is a linear combination of the other bands and
therefore can be estimated by using least squares estimation. The main reason of the success of MLR is
the high spectral correlation of the pixels. This technique does not take into account spatial information.
On the other hand, conventional noise variance estimation techniques, such as the median estimator
applied on the wavelet coefficients [14] only take into account the spatial correlations. Therefore,
it is of interest to investigate variance noise estimation techniques which exploit both spectral and
spatial correlations.

1.5.4. Dominant Noise Type Investigation

Assuming mixed noise scenarios, it is of interest to investigate the dominant noise type within an
HSI. Additionally, noise estimation in such scenarios is not a trivial task and therefore it is an open
question if it is more efficient to estimate the mixed noises simultaneously or hierarchically.
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1.5.5. HSI Denoising as a Preprocessing Step

Despite the considerable progress in HSI restoration techniques, they have usually not been used
in HSI analysis as a preprocessing step. This might be due to several reasons such as the computational
cost, efficiency, reliability, and automation of the algorithms. The main goal of the denoising-based
preprocessing stage is to improve the SNR of the observed dataset. It is of interest to investigate the
contribution of the various HSI restoration approaches as a preprocessing step for further HSI analysis,
such as change detection, resolution enhancement, classification or unmixing. In this paper, we will
address this matter for the classification application.

1.5.6. Computational Cost

HSI restoration approaches need to be computationally efficient to be useful as a preprocessing
step in real-world applications. Fast computing techniques such as parallel computing and GPU
programing may be considered for the fast implementation of HSI restoration approaches in the future.
Particularly, fast computing techniques can considerably speed up the patch-wise or pixel-wise HSI
denoising techniques.

1.5.7. HSI Datasets

Usually in benchmark datasets, corrupted and noisy spectral bands are removed. To evaluate the
performance of HSI denoising as a preprocessing technique for further HSI analysis, the access to the
complete datasets may be required.

1.6. Hyperspectral Noise Assumptions

The presence of different noise sources in a HSI makes its modeling and the denoising task very
challenging. Therefore, HSI denoising approaches often consider either of the following noise types or
a mixture of them:

1.6.1. Signal Independent Noise

Thermal noise and quantization noise in HSI are modeled by signal independent Gaussian
additive noise [15,16]. Usually, noise is assumed to be uncorrelated spectrally, i.e., having a diagonal
noise covariance matrix [16,17]. The Gaussian assumption has been broadly used in hyperspectral
analysis since it considerably simplifies the analysis and the noise variance estimation.

1.6.2. Signal Dependent Noise

Shot (photon) noise in HSI is modeled by the Poisson distribution for which the noise variance is
signal dependent. The noise variance estimation under this assumption is more challenging than in
the signal independent case [18].

1.6.3. Sparse Noise

Impulse noises such as salt and pepper noise, missing pixels, missing lines and other outliers
often exist in the acquired HSI, and are usually due to a malfunctioning of the sensor. In this review,
we categorize them as sparse noise due to their sparse characteristics. Sparsity techniques or sparse
and low-rank decomposition techniques are used to remove sparse noise from the signal. In [19],
impulse noise is removed by using an `1-norm for both penalty and data fidelity terms in the proposed
minimization problem.

1.6.4. Pattern Noise

Hyperspectral imaging systems may also induce artifacts in hyperspectral images, usually referred
to as pattern noise. For instance, in push-broom imaging systems, the target is scanned line by line
and the image lines are acquired in different wavelengths by an area-array detector (usually, a charged
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coupled device (CCD)). This line by line scanning causes an artifact called striping noise which is
often due to calibration errors and sensitivity variations of the detector [20]. Striping noise reduction
(also referred to as destriping in the literature) for push-broom scanning techniques has been widely
studied in the remote sensing literature [21,22] in particular for HSI [20,23–25].

2. HSI Denoising Overview

During the past couple of years, a considerable amount of research has been devoted to
hyperspectral image denoising. Conventional denoising methods based on 2D modeling and convex
optimization techniques were not efficient for HSI because these ignore the spectral information.
The highly correlated spectral bands in HSI have been found very useful to improve HSI denoising.
As a result, HSI denoising techniques have evolved to methods that incorporate spectral information.
These HSI denoising approaches can be categorized in four main groups, which will be treated below.

2.1. 3D Model-Based and 3D filtering Approaches

3D model-based HSI denoising techniques utilize model (2), where both the spatial and spectral
projections using matrices A and M, respectively are applied. The projection matrices A and M are
usually selected to decorrelate the signal spatially and spectrally, respectively, and for this either
dictionaries or bases are used. HSI restoration techniques based on 3D filtering are categorized in
this group. Those methods try to decorrelate the noise from the signal in all 3 dimensions (spatial
and spectral). In [26], the discrete Fourier transform (DFT) was used to decorrelate the signal in the
spectral domain, and the 2D discrete wavelet transform (2D DWT) for denoising the signal in the
spatial domain. 3D wavelet shrinkage was applied for multispectral image denoising in [27]. In [28],
2D bivariate wavelet shrinkage (2D BiShrink) [29] was extended to 3D for the purpose of HSI denoising.
3D non-local means filtering (NLM) [30] was exploited for HSI denoising in [31]. In [32], 2D DWT and
principal component analysis (PCA) were used to decorrelate the noise and the signal spatially and
spectrally, receptively. A 3D (blockwise) nonlocal sparse denoising method [33] was presented in [34]
where the minimization problem contained a group lasso penalty and a dictionary consisting of the 3D
DCT and the 3D DWT. To solve the minimization problem, the accelerated proximal gradient method
was used. In [35], the HSI was treated as a 3D datacube and a HSI denoising technique was proposed
that uses sparse analysis regularization and the undecimated wavelet transform (UWT), where the
function φ in Equation (7) is the 3D undecimated wavelet transform:

X̂ = arg min
X

1
2
‖H− X‖2

F + λ
∥∥∥U2XUT

1

∥∥∥
1

, (17)

where U2 and U1 are 2D and 1D UWTs.
In [17,35], the advantages of (orthogonal and undecimated) 3D wavelets over 2D ones were

discussed for HSI denoising. In [36], a new 3D model was proposed for HSI, given by X = D2WVT ,
where V contains the spectral eigenvectors of H and is given by the singular value decomposition
(SVD): SVD(H) = ŨS̃VT . To estimate the true signal, the `1 penalized least squares optimizer
was used:

Ŵ = arg min
W

1
2

∥∥∥H−D2WVT
∥∥∥2

F
+

p

∑
i=1

λi

∥∥∥w(i)

∥∥∥
1

. (18)

Additionally, SURE was used for the selection of the regularization parameter. In [7], it was shown
that for the `1 penalized least squares method of (11), 3D models outperform 2D models. Another
important observation that was confirmed in [7], is the advantage of using spectral eigenvectors for
the spectral projection. It was demonstrated that a 1D model that projects the data on the spectral
eigenvectors (i.e., in model (2), A = I and M contains the spectral eigenvectors) outperforms even 3D
models that use wavelet bases.
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2.2. Spectral and Spatial-Spectral Penalty-Based Approaches

In HSI, the spectral bands are highly correlated. Some denoising approaches have proposed
penalties which exploit this high spectral correlation. These methods usually use either model (1) or
model (2) where M = I and define the function φ in (7) for spectral penalties. It is worth mentioning
that when using a spectral projection matrix M, the spectral bands and therefore the spectral penalties
are decorrelated.

In [37], it was assumed that X = D2W where D2 contains 2D wavelet bases, and a group of `2

penalties on the 2D wavelet coefficients were proposed:

Ŵ = arg min
W

1
2
‖H−D2W‖2

F + λ
n

∑
j=1

∥∥wj
∥∥

2 , (19)

This method was improved in [7] for the purpose of HSI denoising by taking into account the
spectral noise variance and solving the obtained minimization problem by using the alternating
direction method of multipliers (ADMM):

Ŵ = arg min
W

1
2

∥∥∥(H−D2W)Ω−1/2
∥∥∥2

F
+ λ

n

∑
j=1

∥∥wj
∥∥

2 . (20)

Note that (19) is separable and has a closed form solution while (20) is not separable and needs to
be solved iteratively by using convex optimization algorithms.

To exploit the redundancy and high correlation in the spectral bands in HSI, a penalized least
squares method using a first order spectral roughness penalty (FOSRP) was proposed for HSI denoising
in [38]:

X̂ = arg min
X

1
2

∥∥∥(H− X)Ω−1/2
∥∥∥2

F
+

λ

2

∥∥∥XRT
p

∥∥∥2

F
, (21)

where Rp is a (p− 1)× p difference matrix given by

Rp =


−1 1 0 . . . 0 0
0 −1 1 0 · · · 0
...

...
. . . . . .

...
...

0 0 0 . . . −1 1

 . (22)

Assuming X = D2W, to exploit the multiresolution analysis (MRA) property of wavelets,
the following penalty function was applied on the 2D wavelet coefficients:

Ŵ = arg min
W

1
2

∥∥∥(H−D2W)Ω−1/2
∥∥∥2

F
+

1
2

L

∑
l=1

λl
p

∑
j=1

∥∥∥Rpwl
j

∥∥∥2

2
, (23)

where λ varies with the decomposition level of the wavelet coefficients, l (1 ≤ l ≤ L). It was shown
that (21) is separable and has a closed form solution. Additionally, SURE was utilized to select the
tuning parameters, yielding an automatic and fast HSI denoising technique. The advantage of the
FOSRP compared to the group `2 and `1 penalties in the wavelet domain was confirmed in [7,38].
In [39], it was shown that the use of a combination of the FOSRP and the group lasso penalty:

Ŵ = arg min
W

1
2

∥∥∥(H−D2W)Ω−1/2
∥∥∥2

F
+

1
2

L

∑
l=1

λl
1

p

∑
j=1

∥∥∥Rpwl
j

∥∥∥2

2
+

L

∑
l=1

λl
2

p

∑
j=1

∥∥∥wl
j

∥∥∥
2

, (24)

outperforms the use of each penalty solely.
Total variation (TV) [40] is a widely used and efficient regularization technique for denoising in

image processing. In TV denoising, the function φ in (7) represents the total variation of the signal
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X. In a HSI, the penalty term can account for spatial and/or spectral variations. Cubic total variation
(CTV) was proposed in [41]:

X̂ = arg min
X

1
2
‖H− X‖2

F + λ
∥∥∥√(DvX)2 + (DhX)2 + β(XRT

p )
2
∥∥∥

1
, (25)

where Dh and Dv are the matrix operators for calculating the first order vertical and horizontal
differences, respectively, of a vectorized image. For an image of size n1 × n2, Dh = Rn1 ⊗ In1 and
Dv = In2 ⊗ Rn2 (see Appendix C). β determines the weight of the spectral difference w.r.t. the spatial
one. CTV exploits the gradient in the spectral direction and as a consequence improves the denoising
results compared to band by band TV denoising. In [42], an adaptive version of CTV was applied for
preserving texture and edges simultaneously:

X̂ = arg min
X

1
2
‖H− X‖2

F + λωT

√√√√ p

∑
i=1

(Dvx(i))2 + (Dhx(i))2, (26)

where ω defines spatial weights on pixels (see [42] for more detail about the selection of ω). In [43],
a spatial-spectral HSI denoising approach was developed where a method of spectral derivation was
proposed to concentrate the noise in the low frequencies, after which noise is removed by applying the
2D DWT in the spatial domain and the 1D DWT in the spectral domain. A spatial-spectral penalty was
proposed in [44] which was based on five derivatives, one along the spectral direction and the rest
applied in the spatial domain for the four neighborhood pixels.

2.3. Low-Rank Model-Based Approaches

Low-rank (LR) modeling has been widely used in HSI analysis and applications such as
dimensionality reduction, feature extraction, unmixing, compression etc. Due to the redundancy
in the spectral bands, the LR models often assume a much lower spectral dimension than the one
provided by the HSI cameras, i.e., in model (2) r � p. In [7], model (11) and HySURE [9] were applied
and it was shown that the low-rank model outperforms the full-rank one.

A low-rank representation technique called Tucker3 decomposition [45] was used for
hyperspectral image denoising in [46]. The HSI was described by a third order tensor and the
rank of the decomposition was estimated by minimizing a Frobenius norm. In [47], a similar idea was
exploited by applying a higher spectral reduction. In [48], a genetic algorithm (GA) was developed
for choosing the rank of the Tucker3 decomposition. This work was followed by [49], in which
a kernelized version (using Gaussian radial basis functions) of the Tucker3 decomposition was
proposed. A multidimensional Wiener filter on a Tucker3 decomposition of HSI was proposed
in [50], where the flattening of the HSI was performed by estimating the main direction corresponding
to the smallest rank.

Another low-rank modeling for HSI denoising is Parallel Factor Analysis (PARAFAC) [51]. In [36],
the low-rank version of model (18) was applied, using X = D2WVT where V and W are low-rank
matrices (i.e., r � p):

Ŵ = arg min
W

1
2

∥∥∥H−D2WVT
∥∥∥2

F
+

r

∑
i=1

λi

∥∥∥w(i)

∥∥∥
1

, (27)

where the penalty is applied on the reduced matrix W of size n × r. Recently, an automatic
hyperspectral restoration technique, called HyRes was proposed in [52]. HyRes used (27) and HySURE
to select the model parameters which led to a parameter free technique.
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In [7,53], sparse reduced-rank restoration (SRRR) using both synthesis and analysis undecimated
wavelets was proposed. Assuming the low-rank model X = S2WVT , where W and V are low rank
matrices and S2 contains 2D synthesis undecimated wavelets, the SRRR optimizer is given by:

Ŵ = arg min
W

1
2

∥∥∥H− S2WVT
∥∥∥2

F
+

r

∑
i=1

λi

∥∥∥w(i)

∥∥∥
1

. (28)

Assuming the low-rank model X = FVT , where F and V are low-rank matrices, the SRRR is
given by:

F̂ = arg min
F

1
2

∥∥∥H− FVT
∥∥∥2

F
+

r

∑
i=1

λi

∥∥∥U2f(i)
∥∥∥

1
, (29)

where U2 contains 2D analysis undecimated wavelets. Assuming the same model, a low-rank TV
regularization was proposed in [7,54]:

F̂ = arg min
F

1
2

∥∥∥H− FVT
∥∥∥2

F
+

r

∑
i=1

λi

√
(Dvf(i))2 + (Dhf(i))2. (30)

Finally, in [12], a wavelet-based reduced-rank regression was proposed, where in the low-rank
model X = D2WVT , both W and V are unknown variables. For the simultaneous estimation of
the two unknown matrices, an orthogonality constraint was added, which led to a non-convex
optimization problem:

(V̂, Ŵ) = arg min
W,V

1
2

∥∥∥Y−D2WVT
∥∥∥2

F
+

r

∑
i=1

λi

∥∥∥w(i)

∥∥∥
1

s.t. VTV = Ir (31)

2.4. Approaches Making the Mixed Noise Assumption

All previous methods inherently assume signal independent additive Gaussian noise as the main
source of noise. Other methods take mixed noises into consideration for HSI modeling and denoising,
where the HSI X in model (1) is assumed to be corrupted by a mixture of the different noise sources as
described in Section 1.6.

2.4.1. Mixed Signal Dependent and Signal Independent Noises

Noise models including a mixture of signal dependent noise (NSD) and signal independent
noise (NSI) (N = NSI + NSD) were proposed in [11,34,55]. In these models, two parameters need
to be estimated which are the variances of NSI and NSD, modeled by a Gaussian and a Poisson
distribution, respectively. In [34], a 3D (block-wise) non-local sparse denoising method is proposed.
The minimization problem uses a group Lasso penalty and a dictionary consisting of a 3D discrete
cosine transform (3D-DCT) and a 3D discrete wavelet transform (3D-DWT), and is solved by using
the accelerated proximal gradient method. In [55], NSI and NSD are removed sequentially. Maximum
likelihood is used to estimate the two parameters of the noise model, and MLR is used for an initial
estimation of the noise.

2.4.2. Mixed Signal Independent and Striping Noises

This assumption is common in techniques proposed for striping noise removal. The noise model
is given by N = NSI + NStr where NStr is the striping noise. NStr depends on the signal level and
the position of detectors of the acquisition array in the cross-track direction (either i or j) [23]. In [20]
a striping noise removal method was proposed by assuming that the striping noise contains higher
spatial frequencies than the surface radiance. Then the striping noise frequencies were detected
and removed using low-pass filtering. A low-rank technique was proposed in [24] which uses a
regularized cost function to preserve the spatial structures of subimages from spectral bands. In [23],
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a subspace-based approach is proposed to restore a HSI corrupted by striping noise and signal
independent noise. The noise parameters were estimated by the least squares method. A moment
matching (MM) technique [56,57] has been adapted for HSI striping noise removal in [25] by exploiting
the spectral correlations.

2.4.3. Mixed Signal Independent and Sparse Noises

A widely used mixed noise assumption for HSI denoising is N = NSI + NSP where NSP is sparse
noise, described in Section 1.6. As a result, model (1) is rewritten as

H = X + NSI + NSP, (32)

where X is assumed to have a low rank. To estimate the low rank matrix X and the sparse marix NSP
simultaneously, a joint minimization problem is obtained in the form:

(X̂, N̂SP) = arg min
X,NSP

1
2
‖H− X−NSP‖2

F + λ1φ1(X) + λ2φ2(NSP). (33)

Common choices for φ1 and φ2 are the nuclear norm and the `1 sparsity norm [58], leading to:

(X̂, N̂SP) = arg min
X,NSP

1
2
‖H− X−NSP‖2

F + λ1 ‖X‖∗ + λ2 ‖NSP‖1 . (34)

This mixture assumption was used in [59] where HSI was denoised by solving

(X̂, N̂SP) = arg min
X

1
2
‖H− X−NSP‖2

F s.t. rank(X) ≤ r, ‖NSP‖0 ≤ K, (35)

where the upper bound of the rank r of X and the cardinality K of NSP were assumed to be known
variables. That method was improved in [60], by taking into account the changes of the noise variance
throughout the spectral bands. In [61], a denoising method was presented by adding a TV penalty to
the denoising criterion (34):

(X̂, N̂SP) = arg min
X,NSP

1
2
‖H− X−NSP‖F + λ1 ‖X‖∗ + λ2 ‖X‖HTV + λ3 ‖NSP‖1 (36)

where ‖X‖HTV denotes the norm of the sum of total variations on the spectral bands:

‖X‖HTV =
p

∑
i=1

√
(Dvx(i))2 + (Dhx(i))2.

In [62], a weighted Schatten p-norm is defined:

‖X‖w,Sp
= (

p

∑
i=1

wiσ
p
i (X))

1/p

and used to induce the low-rank property on X:

(X̂, N̂SI , N̂SP) = arg min
X,NSI ,NSP

‖X‖w,Sp
+ λ ‖NSP‖1 s.t. H = X + NSI + NSP, ‖NSI‖F ≤ ε. (37)

where the Gaussian noise matrix NSI is also estimated in the minimization problem. In [63], a patchwise
approach was proposed that exploits the nonlocal similarity across patches, using (35). Recently,
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a low-rank and sparse restoration technique was proposed ([64]), using a low-rank constraint applied
on the spectral difference matrix:

(X̂, N̂SP) = arg min
X,NSP

1
2
‖H− X−NSP‖2

F + λ1

∥∥∥XRT
p

∥∥∥
∗
+ λ2 ‖NSP‖1 s.t. rank(XRT

p ) ≤ r. (38)

Some methods cope with the mixed sparse and Gaussian noise without enforcing the low-rank
property. The denoising method proposed in [65] utilizes a TV penalty, called spatio-spectral total
variation (SSTV):

(X̂, N̂SP) = arg min
X,NSP

1
2
‖H− X−NSP‖2

F + λ1 ‖X‖SSTV + λ2 ‖NSP‖1 (39)

where
‖X‖SSTV =

∥∥∥DvXRT
p

∥∥∥
1
+
∥∥∥DhXRT

p

∥∥∥
1

.

A TV-based method was proposed in [66], leading to the following minimization problem:

(X̂, N̂SP) = arg min
X,NSP

1
2
‖H− X−NSP‖2

F + λ1 ‖X‖CrTV + λ2 ‖NSP‖1 (40)

where ‖X‖CrTV was given by

‖X‖CrTV =
n

∑
i=1

p

∑
j=1

ωi,j

√
(DvXRT

p )
2
i,j + (DhXRT

p )
2
i,j,

and ω defines spatial weights on pixels. For more detail regarding the selection of ω, we refer to [66].

3. Comparison of HSI Denoising Techniques

In this section, different HSI denoising methods are compared qualitatively and quantitatively on
a simulated and a real dataset.

In a first experiment, a simulated noisy dataset is generated by adding zero-mean Gaussian noise
(i.e., N =

[
nji
]

where nji ∼ N(0, σ2
i ) is normally distributed) to a portion (128 × 128 × 136) of the

Houston University dataset (Section 1.2.1). The variance of the noise (σ2
i ) variates along the spectral

axis according to

σ2
i = σ2 e

− (i−p/2)2

2η2

∑
p
j=1 e

− (j−p/2)2

2η2

,

where the power of the noise is controlled by σ, and η behaves like the standard deviation of a Gaussian
bell curve [13]. In the experiment, six HSI denoising techniques are compared:

• 2D-Wavelet: 2D wavelet modeling (4) [14], using a conventional band by band denoising technique,
• 3D-Wavelet: a 3D wavelet model approach (Section 2.1) using (16) [27],
• FORPDN: first order spectral roughness penalty denoising [38], a spectral penalty-based approach

(Section 2.2) using (23),
• LRMR: low-rank matrix recovery [59] using (35),
• NAILRMA: Noise-adjusted iterative low-rank matrix approximation [60], given by (36).

LRMR and NAILRMA are both low-rank techniques, described in Section 2.4,
• HyRes: hyperspectral restoration using sparse and low-rank modeling [52] which is also a

low-rank model-based approach, described in Section 2.3, using (27).

All the results in this section are means over 10 experiments (adding random Gaussian noise)
and the error bars show the standard deviations. Wavelab Fast (A fast wavelet toolbox developed for
HSI analysis) [67] was used for the implementation of the wavelet transforms. For all the experiments
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performed in this paper, Daubechies wavelets were used with 2 and 10 coefficients for spectral and
spatial bases, respectively. Five decomposition levels were used for the filter banks. The Matlab codes
for FORPDN and HyRes are online available in [68,69], respectively.

To evaluate the restoration results for the simulated dataset, SNR and MSAD (Mean Spectral
Angle Distance) are used. The output SNR, in decibels is given by:

SNRout = 10 log10

(
‖X‖2

F/
∥∥X− X̂

∥∥2
F

)
,

while the noise input level for the whole cube is given by:

SNRin = 10 log10

(
‖X‖2

F/‖X−H‖2
F

)
.

MSAD, in degrees is given by:

MSAD =
1
n

n

∑
j=1

cos−1

(
XjX̂T

j∥∥Xj
∥∥

2

∥∥X̂j
∥∥

2

)
× 180

π
.

Figure 7a shows the comparison of the HSI denoising techniques based on SNR. The figure
shows the level of the denoised hyperspectral signal SNRout compared to the level of the noise added
(in dB) to the simulated dataset SNRin. The results are shown for varying SNRin from 5 to 45 dB
with increments of 5 dB. The blue line shows the original noise levels, the performance of the HSI
denoising methods is compared based on the gain obtained w.r.t. the original noise levels. As can be
seen, 2D-Wavelet generates the lowest SNRout and for SNRin ≥ 35 dB, the gain is close to negligible.
3D-Wavelet outperforms the 2D version. One can further notice that FORPDN ouperforms 3D-Wavelet
consistently for all SNRin and outperforms LRMR when SNRin ≤ 15 dB, and SNRin ≥ 35 dB, while
when 15 dB ≤ SNRin ≤ 35 dB, LRMR and FORPDN perform similarly. The results also show that
HyRes and NAILRMA, both low-rank denoising techniques, considerably outperform all the other
methods. They are both designed to cope with varying noise power throughout the spectral bands.
HyRes generates the highest SNRout.

Since the spectral information is higly valuable in HSI analysis, we also use MSAD to compare
the spectral preservation of the HSI denoising techniques. Figure 7b plots the MSAD of the different
HSI restoration techniques w.r.t. the input noise power. The results are shown in logarithmic scale
for a better visual representation. It can be seen that 2D-Wavelet produces the highest MSAD. In this
experiment, 3D-Wavelet improves over LRMR when SNRin ≤ 15 dB, and SNRin ≥ 35 dB, while LRMR
and 3D-Wavelet perform similarly when 15 dB ≤ SNRin ≤ 35 dB. The results also show that FORPDN
outperforms 2D-Wavelet, 3D-Wavelet and LRMR consistently for all SNRin. It can also be seen that,
also based on MSAD, HyRes and NAILRMA outperform the other techniques.
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Figure 7. Comparison of the performances of the studied HSI restoration methods applied on
the simulated dataset w.r.t. different levels of input Gaussian noise. (a) SNR (dB); (b) MSAD
(logarithmic scale).

A highly corrupted band from the simulated dataset was selected for a visual comparison of the
restoration methods in Figure 8. 2D-Wavelet shows a very poor performance, which is not surprising,
since denoising is applied on each spectral band individually and the information is highly corrupted
in that specific band. 3D-Wavelet considerably improves the visual quality, due to the incorporation of
the information from the other bands by 3D modeling and filtering. FORPDN, NAILRMA and HyRes
all perform very well. The weak performance of LRMR on this band is due to the fact that it is not
designed to cope with the variation of the noise variance throughout the spectral bands.

We also applied the denoising methods on a real dataset. Figure 9 shows the visual comparison
of the abovementioned hyperspectral denoising methods applied on the Trento dataset. A portion of
Band 59 is selected for the comparison because it is heavily corrupted by noise. The results indicate
a similar behavior as on the simulated dataset. 2D-Wavelet performs the weakest, while FORPDN,
NAILRMA and HyRes obtain the best visual performances.

HSI Noisy 2D-Wavelet 3D-Wavelet

FORPDN LRMR NAILRMA HyRes

Figure 8. Visual comparison of the performances of the studied HSI restoration methods applied on
the simulated dataset.
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HSI 2D-Wavelet 3D-Wavelet

FORPDN LRMR NAILRMA HyRes

Figure 9. Visual comparison of the performances of the studied HSI restoration methods applied on
the Trento dataset.

4. Classification Application

In this section, we investigate the effect of the HSI denoising techniques as a preprocessing step
for HSI classification. In order to evaluate the performance of different denoising approaches, we have
applied three well-known classifiers including support vector machines (SVM) [70], random forest
(RF) classifiers [71], and extreme learning machines (ELM) [72].

An SVM tries to separate training samples belonging to different classes by locating maximum
margin hyperplanes in the multidimensional feature space where the samples are mapped [73]. SVMs
were originally introduced to solve linear classification problems. However, they can be generalized to
nonlinear decision functions by considering the so-called kernel trick. A kernel-based SVM (using the
Radial Basis Function (RBF) kernel) projects the pixel vectors into a higher dimensional space where
the available samples are linearly separable and estimates maximum margin hyperplanes in this new
space in order to improve the linear separability of data.

RF [71] is an ensemble method (a collection of tree-like classifiers) based on decision trees for
classification. Ensemble classifiers run several (an ensemble of) classifiers which are individually
trained, after which the individual results are combined through a voting process. Ideally, an RF
classifier should be an independent and identically distributed randomization of weak learners. The RF
classifies an input vector by running down each decision tree (a set of binary decisions) in the forest
(the set of all trees). Each tree leads to a unit vote for a particular class and the forest chooses the
eventual classification label based on the highest number of votes.

ELMs have been developed to train single layer feedforward neural networks (SLFN). Traditional
gradient-based learning algorithms assume that all the parameters of the feedforward network,
including weight and bias, need to be tuned. In [74], it was shown that the input weights wi and the
hidden layer biases bi of the network can be initialized randomly in the beginning of the learning
process and the hidden layer H can remain unchanged during the learning process. Therefore, by fixing
the input weights wi and the hidden layer biases bi, one can train the SLFN in a similar manner to find
a least-squares solution α̂ of the linear system Hα = Y where α is the weight vector which connects
the ith hidden node and the output nodes. In contrast with the traditional gradient-based approach,
an ELM obtains not only the smallest training error but also the smallest norm of the output weights.
Detailed information about the aforementioned pixel-wise classifiers can be found in [75,76] where the
performances of the classifiers have been critically compared.
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In order to compare classification accuracies obtained by different classifiers, three metrics have
been applied: (1) Overall accuracy (OA), which is the number of correctly classified pixels, divided by
the number of test samples; (2) Average accuracy (AA), which is the average value of the classification
accuracies of all available classes; Kappa coefficient (K), which is a statistical measurement of agreement
between the final classification map and the ground-truth map.

4.1. Setup

In the case of the SVM, the RBF kernel (as mentioned above) is employed. The optimal
hyperplane parameters C (parameter that controls the amount of penalty during the SVM optimization)
and γ (spread of the RBF kernel) were selected in the range of C = 10−2, 10−1, ..., 104 and
γ = 10−3, 10−2, ..., 104 using five-fold cross validation. In the case of the RF, the number of trees
is set to 300. The value of the prediction variable is set approximately to the square root of the number
of input bands. In the case of the ELM, the regularization parameter was selected in the range of
C = 1, 101, ..., 105 using five-fold cross validation.

4.2. Results

In this section, the above-mentioned classifiers (i.e., ELM, SVM, and RF) have been applied to the
four datasets (i.e., Houston, Trento, Indian Pines, and Washington DC). With reference to Tables 6–9,
the following points can be observed:

1. In general, the prior use of denoising approaches improves the performance of the subsequent
classification technique compared to the use of the input data without denoising step.
The improvements reported in the cases of Trento (up to 19.4% in OA using ELM) and Indian
Pines (up to 26.31% in OA using ELM) confirms the importance of the use of denoising techniques
as a preprocessing step for HSI classification.

2. The use of denoising approaches is clearly advantageous for raw data (i.e., before performing
any preprocessing or low SNR bands removal). For instance, the classification accuracies have
been considerably improved for the Indian Pines dataset while the amount of improvement is
not that significant for the Houston and Washington DC data whose low SNR bands had been
already eliminated.

3. In general, ELM and SVM demonstrate a superior performance for the classification of denoised
datasets compared to RF.

Table 6. Houston—Classification accuracies obtained by different denoising approaches before using
ELM, SVM, and RF. The metrics AA an OA are reported in percentage, the Kappa coefficient is unitless.

Base Classifier Index HSI 2D-Wavelet 3D-Wavelet FORPDN LRMR NAILRMA HyRes

ELM

OA 79.55 79.31 81.25 79.07 83.55 84.63 80.72
AA 82.4 81.91 83.47 81.94 85.13 86.16 82.88
K 0.7783 0.7753 0.7964 0.7728 0.8214 0.8331 0.7906

SVM

OA 80.18 80.29 80.22 79.97 79.49 79.92 80.46
AA 83.05 82.87 82.97 82.65 82.28 82.85 83.21
K 0.7866 0.7879 0.7871 0.7844 0.7793 0.7839 0.7896

RF

OA 72.99 72.87 73.02 72.92 72.78 73.17 73.01
AA 76.9 76.85 76.95 76.97 76.59 77.1 76.97
K 0.7097 0.7085 0.7102 0.7091 0.7076 0.7116 0.71
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Table 7. Trento—Classification accuracies obtained by different denoising approaches before using
ELM, SVM, and RF. The metrics AA an OA are reported in percentage, the Kappa coefficient is unitless.

Best Classifier Index HSI 2D-Wavelet 3D-Wavelet FORPDN LRMR NAILRMA HyRes

ELM

OA 75.18 81.5 88.64 78.5 94.17 94.66 84.94
AA 80.32 84.47 88.92 81.99 93.06 91.6 87.04
K 0.6744 0.7559 0.8484 0.7164 0.9224 0.9286 0.8017

SVM

OA 84.65 91.15 91.32 89.99 90.16 91.52 87.39
AA 85.28 89.22 89.7 89.76 89.39 90.42 86.83
K 0.798 0.8825 0.8851 0.8681 0.8698 0.8873 0.8333

RF

OA 85.13 90.52 86.75 87.11 86.33 87.02 85.68
AA 84.99 87.33 85.49 85.55 84.35 86.32 84.33
K 0.8032 0.8737 0.8241 0.8289 0.8186 0.8277 0.8103

Table 8. Indian Pines—Classification accuracies obtained by different denoising approaches before
using ELM, SVM, and RF. The metrics AA an OA are reported in percentage, the Kappa coefficient
is unitless.

Best Classifier Index HSI 2D-Wavelet 3D-Wavelet FORPDN LRMR NAILRMA HyRes

ELM

OA 64.78 73.65 79.38 81.37 91.09 89.57 73.5
AA 69.1 81.77 88.55 90.22 94.64 93.71 79.63
K 0.6059 0.7034 0.767 0.7889 0.8981 0.8807 0.7029

SVM

OA 66.81 87.14 81.2 87.8 89.43 87.26 82.82
AA 74.69 93.37 88.43 93.82 93.57 92.03 89.4
K 0.6267 0.854 0.7874 0.8613 0.8796 0.855 0.8051

RF

OA 69.27 81.54 70.27 73.41 67.92 66.58 69.54
AA 76.2 88.42 77.04 80.5 75.27 75.45 77.26
K 0.6528 0.7914 0.6642 0.7002 0.6382 0.6234 0.6565

Table 9. Washington DC Mall—Classification accuracies obtained by different denoising approaches
before using ELM, SVM, and RF. The metrics AA an OA are reported in percentage, the Kappa
coefficient is unitless.

Best Classifier Index HSI 2D-Wavelet 3D-Wavelet FORPDN LRMR NAILRMA HyRes

ELM

OA 99.94 99.73 99.65 99.83 99.59 99.62 99.94
AA 99.97 99.74 98.73 99.87 98.28 97.76 99.97
K 0.9991 0.996 0.9949 0.9975 0.9939 0.9943 0.9991

SVM

OA 98.21 98.23 98.21 98.23 98.28 98.26 98.23
AA 95.82 95.83 95.82 95.83 96.38 95.88 95.83
K 0.9739 0.974 0.9739 0.9741 0.9748 0.9746 0.9741

RF

OA 97.97 98.06 97.93 97.96 98.02 97.96 97.91
AA 96.14 95.63 95.83 97.02 96.15 95.6 96.07
K 0.9704 0.9717 0.9698 0.9702 0.9711 0.9702 0.9694

Figure 10 shows several classification maps obtained by applying ELM on the Indian Pines dataset,
without denoising and denoised by using 2D-Wavelet, 3D-Wavelet, FORPDN, LRMR, NAILRMA and
HyRes. As can be seen, the classification map obtained by ELM on the raw data dramatically suffers
from salt and pepper noise. This issue can be partially addressed using all the denoising approaches
investigated in this paper. In particular, LRMR and NAILRMA considerably reduce the salt and pepper
noise and produce homogeneous regions in the classification maps.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 10. Comparison of the classifications maps obtained by applying ELM on the Indian Pines
dataset (a) raw data, (b) 2D-Wavelet, (c) 3D-Wavelet, (d) FORPDN, (e) LRMR, (f) NAILRMA,
and (g) HyRes.

5. Summary, Conclusion and Future Challenges

In the past decade, HSI denoising has been considerably evolved. Conventional denoising
methods based on 2D modeling and convex optimization were not efficient enough for HSI due to the
ignorance of spectral information. Therefore, advanced denoising techniques have been developed
to take into account the HSI characteristics. The high correlation between spectral bands in HSI has
been found very useful for HSI denoising and therefore denoising techniques have been developed to
exploit spectral information. 3D model-based and 3D filtering approaches [26,35] have been suggested
to use spectral information by treating the HSI as a 3D datacube. Spectral and spectral-spatial
penalty-based approaches [38,39,42,44] have been developed to incorporate spectral information.
Moreover, the advantages of low-rank modeling have been explored. Many techniques have been
proposed based on low-rank modeling [7,12,36,46,49,51,53,54]. Low-rank based techniques have also
been utilized for mixed noise removal in HSIs [59–62].

In this paper, the state-of-the-art and the recent developments in the area of HSI denoising have
been presented. In addition, this paper provided a background for HSI modeling and denoising,
in which HSI denoising challenges and the different noise types have been discussed. Experimental
results presented in this paper provide a comparative study over different generations of denoising
techniques and confirmed the advantage of the low-rank techniques over the other ones. The gain in
SNR is up to 20 dB for very low input SNR i.e., SNRin = 5 dB. In more detail, based on the experimental
results, one can conclude that conventional band by band denoising techniques have provided the
poorest performance compared to 3D filtering and spectral denoising approaches. Additionally,
the effects of denoising as a preprocessing step for HSI classification have been investigated on four
datasets. The experimental results have shown that the performances of the denoising techniques are
consistent for the three classifiers and four datasets used. In general, from the classification experiments
one can conclude that exploiting the denoising techniques has improved the classification accuracies.
For Trento and Indian Pines datasets the improvements of the OA are very substantial compared
to the spectral classification without the prior use of a denoising approach. The improvements in
the OA obtained using ELM to classify the Indian Pines and Trento datasets reach to 26.31% and
19.4%, respectively.
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Despite the developments in HSI denoising, several important challenges remain to be addressed.
Future challenges include; further investigation of the contribution of the HSI denoising approaches
as a preprocessing step for further HSI analysis such as unmixing, change detection, resolution
enhancement etc., exploring a model selection criterion which is not restricted to the Gaussian noise
model, noise parameter estimation, investigating of the influences of the different noise types and
indication of the dominant noise, and incorporating high performance computing techniques to obtain
computationally efficient implementations. Investigating the performances of the HSI denoising
approaches for denoising hyperspectral image sequences [77] and thermal hyperspectral images [78]
(where emissivity becomes important and therefore other type of noise i.e., dark current noise can be
encountered) are also of interest.
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Appendix A. Matrix Representation of A 3D Model for HSI

The representation used for model (2) also includes 3D model representations, if A = L⊗KT

where matrices L (n1 × n1) and K (n2 × n2) are used for spatial projections. We vectorize the projected
band i as

vec(Lvec−1(y(i))K
T) = L⊗KTvec(vec−1(y(i))) = Ay(i). (A1)

Applying the same spatial projection matrices for all bands (i.e., AY) and spectral project matrix
M, the noise free HSI is modeled as

X = AWMT , (A2)

where Y = WMT .

Appendix B. Representation of 2D Wavelet Transform for a Vectorized Image

Here, we show how the 2D separable wavelet transform (matrix D2) can be applied on a vectorized
image. D2 is separable i.e., a 1D wavelet transform is first applied on the rows of the image and then
on the columns (separable bases). Let WT2D be a 2D wavelet transform, it can be applied on a 2D
image X as

WT2D(X) = D1XDT
1 . (A3)

where matrix D1 contains the 1D wavelet bases in its columns. When Vectorizing (A3), we have

vec(D1XDT
1 ) = D2x, (A4)

where D2 = D1 ⊗D1 and x = vec(X) [79]. Therefore, (A3) can be translated into (A4) and vice versa.

Appendix C. Calculation of The Matrix Operators for The First Order Vertical and Horizontal
Differences to Apply on a Vectorized Image

Assuming X is an n1 × n2 image, vec(X) = x(i) and the difference matrix Rn2 is an (n2 − 1)× n2

matrix given by (22). The horizontal difference matrix applied on X, i.e., XRT
n2

can be vectorized as
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vec(XRT
n2
) = (Rn2 ⊗ In2)vec(X) = Dhx(i).

where Dhx(i) is the first order horizontal differences of X. Analogously, it can be shown that Dvx(i)
contains the first order vertical differences of X.
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