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Abstract: Accurately mapping savannah land cover at the regional scale can provide useful input
to policy decision making efforts regarding, for example, bush control or overgrazing, as well as
to global carbon emissions models. Recent attempts have employed Earth observation data, either
from optical or radar sensors, and most commonly from the dry season when the spectral difference
between woody vegetation, crops and grasses is maximised. By far the most common practice has
been the use of Landsat optical bands, but some studies have also used vegetation indices or SAR
data. However, conflicting reports with regards to the effectiveness of the different approaches
have emerged, leaving the respective land cover mapping community with unclear methodological
pathways to follow. We address this issue by employing Landsat and Advanced Land Observing
Satellite Phased Array type L-band Synthetic Aperture Radar (ALOS PALSAR) data to assess the
accuracy of mapping the main savannah land cover types of woody vegetation, grassland, cropland
and non-vegetated land. The study area is in southern Africa, covering approximately 44,000 km2.
We test the performance of 15 different models comprised of combinations of optical and radar data
from the dry and wet seasons. Our results show that a number of models perform well and very
similarly. The highest overall accuracy is achieved by the model that incorporates both optical and
synthetic-aperture radar (SAR) data from both dry and wet seasons with an overall accuracy of 91.1%
(±1.7%): this is almost a 10% improvement from using only the dry season Landsat data (81.7 ± 2.3%).
The SAR-only models were capable of mapping woody cover effectively, achieving similar or lower
omission and commission errors than the optical models, but other classes were detected with lower
accuracies. Our main conclusion is that the combination of metrics from different sensors and seasons
improves results and should be the preferred methodological pathway for accurate savannah land
cover mapping, especially now with the availability of Sentinel-1 and Sentinel-2 data. Our findings
can provide much needed assistance to land cover monitoring efforts to savannahs in general, and in
particular to southern African savannahs, where a number of land cover change processes have been
related with the observed land degradation in the region.

Keywords: savannah land cover; Landsat; PALSAR; seasonality; spectral-temporal variability metrics;
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1. Introduction

Savannahs are important ecosystems that are found on almost half of the African continent and
a fifth of the Earth’s surface [1]. They consist of different densities of grasses and woody vegetation
and are host to a number of ongoing land system science debates, such as equilibrium dynamics [2],
the role of anthropogenic processes in land degradation [3] and the contribution of drylands to the
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global carbon cycle [4]. Savannah biomes provide a plethora of ecosystem resources and services,
and play an important role in numerous processes, both natural and anthropogenic, such as biomass
production, the timing and characteristics of fire, the cycling of nutrients, surface runoff and soil
erosion, wind erosion, carbon sequestration, etc. [4–7]

Unfortunately, African savannahs undergo massive conversions and are affected by land
degradation and desertification processes [8], leading to a decline in the ecosystem services provided
to some of the continent’s poorest and most vulnerable human populations [9,10]. Reductions in the
productivity of dryland savannahs have major social and political implications [11], and given their
importance, the United Nations (UN) has labelled the accurate quantification of savannah degradation
as of high priority [12].

Mapping the extent of the main constituents of savannah land cover is, therefore, essential to
regional efforts to protect and manage savannahs. At large scales, the use of Earth observation
(EO) technologies is the only viable approach [13,14]. Most EO studies aiming to map and monitor
large scale land cover have employed optical Landsat data, due to the appropriateness of the spatial
resolution as well as to the freely available 40-year long archive [15,16]. The availability and length of
the Landsat archive is an unparalleled EO resource, particularly for long-term change detection and
monitoring [17]. Local [18], regional [19], continental [20] and even global [21] land cover mapping
studies with Landsat data have dominated the research efforts. However, some regions and biomes
have been extensively studied while others remain comparatively poorly understood. In particular,
savannah regions continue to be insufficiently studied and remain a source of uncertainty in both
global land cover products and carbon accounting systems [16,22–24].

In spite of the successes of Landsat-based studies in forest regions, Olsson et al. [25] demonstrated
that optical systems are of limited value for discriminating the contribution of woody and grass
components to spectral signatures. In contrast, active EO sensors, in particular L-band Synthetic
Aperture Radars (SAR), are particularly suited for characterising savannah land cover [7,26]. However,
the commercialisation of L-band missions has emanated a reduced momentum in the operationalisation
and upscaling of existing applications. The provision of free data from the Advanced Land
Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) 1, and the
development of a global 25 m annual mosaic PALSAR product [27] are encouraging and have resulted
in increased attention to large-scale and multi-sensor mapping incorporating L-band imagery [28].

A strong seasonal cycle for climate and vegetation is typical in semi-arid savannahs [29].
Using information that quantifies this seasonal variation is, therefore, beneficial for land cover
mapping [30–33]. Statistical metrics (e.g., min, max, percentiles, and standard deviations) calculated at
the pixel level also have good utility for both fractional and hard classification approaches, particularly
when derived for a narrow seasonal window [28,32,34]. Furthermore, phenological indicators that
explicitly quantify the temporal profile of vegetation are useful for mapping efforts, provided sufficient
observations are present [35].

Within this context, we used an area in southern Africa to compare the accuracies achieved by
using different combinations of optical and radar data in order to provide guidance to savannah land
cover characterisation efforts. We mapped woody vegetation, grassland, cropland, and non-vegetated
areas and addressed the following research questions:

• Do Landsat-based spectral metrics or L-band PALSAR data map the main savannah land cover
types more efficiently?

• Does the integration of Landsat and PALSAR data improve mapping?
• Does single or multi-seasonal data produce the most accurate land cover models?
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2. Materials and Methods

2.1. Study Area and Description of Main Land Cover Types

The area, comprising of 44,467 km2, was chosen in a north-south transect in a way that would
allow it to be large enough to include a representative variation of the main land cover types found in
the region. The choice was also dictated by the availability of the radar data. About 70% of the study
area is in the Northwest Province of South Africa. It also extends to the Northern Cape Province (~10%),
the Free State Province (~10%), and to Botswana (~10%; Figure 1). Temperatures range from 17 ◦C to
31 ◦C in the summer and from 3 ◦C to 21 ◦C in the winter. The annual rainfall is ~400 mm, with nearly
all of it falling during the summer wet months, between October and April [36]. Around 80% of the
area falls within the Savannah Biome (Bushveld vegetation). The remainder falls within the Grassland
Biome, which contains a variety of grasses typical of arid regions [37]. Within the South African
part of the study area, 16 different vegetation types are found, mostly belonging to the thornveld,
bushveld or savannah grassland categories [37]. In addition, a large part of the study area is arable
land (e.g., the Vaalharts Irrigation Scheme [38]), contributing to a significant portion of the country’s
maize, groundnuts, sunflowers, dry beans and grain sorghum [39]. The area is also a vegetable and
citrus fruit producer [40].
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Figure 1. The location of the study area in: (a) Africa, and (b) southern Africa. (c) The elevation within
the study area.

We followed the Land Cover Classification System (LCCS) nomenclature developed by the
Food and Agriculture Organisation of the United Nations (FAO, UN [41]) to identify the main land
cover types of the study area. This is the same system employed by the South African National
Geospatial Information (NGI) [42] to develop the South African national product of 2009–2013 [43],
which we introduce in our analysis as a comparison dataset (in the absence of in-situ ground truth
data). The LCCS class labelling approach describes the four main land cover types of the study area as
follows (CSIR 2010):
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i Woody vegetation: trees, shrubs and bushes consisting of areas with either tree cover densities of
>15% and the remaining woody cover, consisting of shrubs and bushes, no more than twice that
of the tree cover, or of areas dominated by shrubs and bushes with a woody cover of >15% and
a tree cover less than twice that of the remaining woody cover. Shrubs and bushes may vary in
height up to 3 m. Trees are considered as woody vegetation with a crown elevation of >1.5 m
above ground and a total height of >3 m.

ii Grassland: areas dominated by grasses with >4% vegetation cover. Areas may contain up to 15%
woody cover. Grasslands may be almost bare during the dry season and during drought episodes.

iii iii Cropland: areas where natural vegetation has been removed or modified and replaced by
other types of vegetation cover of anthropogenic origin. This vegetation is artificial and requires
human activities to maintain it in the long term. All vegetation that is planted or cultivated with
an intent to harvest is included in this class, including cultivated herbaceous graminoids such
as maize, sugar cane and cereals. It also includes small fields with subsistence crop farming,
all herbaceous non-graminoids such as cotton, sunflower, potatoes, etc., pulses and orchards.
The fields may be fallow at certain times during the year.

iv iv Non-vegetated (or bare): this class consists of artificial cover as a result of human activities as
well as areas with <4% vegetative cover, including bare rock, sands and unconsolidated bare soil
such as animal feed lots, visible erosion, fine rock and soil fragments, as well as areas with bare
soil resulting from unfavourable conditions (e.g., low rainfall).

Examples of these can be seen in the photographs of Figure 2.
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2.2. Data

2.2.1. Aerial photographs

The sampling was carried out using colour aerial photography of 0.5 m pixels, freely-available
from the NGI [42]. The NGI aims to capture 40% of the country every three years and the remaining
areas every five years. We used the ESRI ArcGIS 10.5© environment for collecting the samples as the
software makes the NGI aerial photographs available as a mosaicked product for the entire country [44].
Our study area is covered by photographs taken mainly in 2010 and, to a lesser extent, in 2008 (<5%)
and in 2013 (<10%).

2.2.2. Landsat

The choice of Landsat data was driven by the need to coincide with the availability of the reference
data (which cover the study area with aerial photographs taken between 2008 and 2013), and with the
PALSAR data which were only available for the year 2008. All Climate Data Record (CDR) images
with less than 80% cloud cover were obtained from the USGS EROS Data Center for the six WRS-2 tiles
covering the study area (Figure 1; Table 1). The images were preprocessed to surface reflectance using
the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) procedure, and clouds
and cloud shadows were removed using F-mask [45,46]. Finally, the Normalised Difference Vegetation
Index (NDVI [47]) was calculated. From the resulting 7-band image stacks (the six 30 m-pixel bands,
plus the NDVI), spectral-temporal variability metrics were calculated, i.e., statistical values were
derived from all co-located observations offering an effective method for generating meaningful land
cover predictors [32,48]. We calculated five statistics for each of the seven bands: the mean, the standard
deviation and three percentiles (25th, 50th and 75th), totaling 35 layers per pixel per season.

Table 1. Number of Landsat images used in each period for variability metric calculations.

Period Start Date End Date Landsat 5
(TM) Scenes

Landsat 7
(ETM+) Scenes L5 + L7 Total # of Images Used

Dry

02-6-2006 1-10-2006 35 29 64
02-6-2007 1-10-2007 28 29 57
02-6-2008 1-10-2008 8 29 37
02-6-2009 1-10-2009 0 24 24
02-6-2010 1-10-2010 0 17 17 Total Dry: 199

Wet

01-1-2006 01-4-2006 5 19 24
21-11-2006 31-3-2007 30 72 102
21-11-2007 31-3-2008 47 79 126
21-11-2008 31-3-2009 29 83 112
21-11-2009 31-3-2010 5 90 95
21-11-2010 31-12-2010 0 8 8 Total Wet: 467

Total Dry + Wet: 666

TM: Thematic Mapper. ETM: Enhanced Thematic Mapper.

To generate seasonal composites, metrics were calculated over two non-overlapping periods:
the dry and the wet season. Moreover, in order to have sufficient data to allow for the calculation of
the metrics, and to compensate for cloud contamination and data availability issues, imagery from
five consecutive seasons were considered (Table 1). To choose the specific temporal windows for the
dry and the wet seasons we consulted with the daily and dekadal rainfall estimates of the University
of Reading TAMSAT group (version 3: https://www.tamsat.org.uk/data/rfe/; [49]). According to the
TAMSAT data, in 2009 and 2010, the rains arrived after late October, and the green-up therefore started
in November. Equally, in some years (2008–2010), the wet season lasted until mid-May, delaying the
start of the dry season (browning). We therefore selected the period from 2 June to 1 October for the
dry season, and from the 21 November to 31 March for the wet season.

Figure 3 shows the Landsat 5 and 7 observations available per pixel for the study area for both
the dry and wet seasons. It also includes an example, from 2008, of the data scarcity for the region,

https://www.tamsat.org.uk/data/rfe/
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even for the dry season when cloud contamination was not an issue: large parts of the study area,
especially in the south, are covered by less than three observations, which renders the calculation of
metrics irrelevant. On average, about 30 non-cloudy observations per pixel were found within each
5-year wet and dry period (Table S1).Remote Sens. 2018, 10, x FOR PEER REVIEW  6 of 18 
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Figure 3. Number of Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper + (ETM+)
observations over the study area for: (a) the dry seasons of the years 2007–2011 (2 June–1 October);
(b) the respective wet seasons (21 November–31 March), and (c) the dry season of the year 2008.

2.2.3. PALSAR

ALOS PALSAR-1 was a JAXA-managed L-band radar mission, operating from 2006 to 2011 at
a wavelength of 23.6 cm. Data were collected across four polarizations: fine-beam single (FBS: HH or
HV; spatial resolution = 10 m); fine-beam dual (FBD: HH + HV or VV + VH; spatial resolution = 20 m),
or quad full polarimetry (HH + HV + VH + VV; spatial resolution = 30 m). ALOS operated a global
image acquisition strategy; however, due to seasonal requirements for different regions, not all areas
were imaged consistently.

Radar images were downloaded from the Alaska Satellite Facility (https://www.asf.alaska.edu/).
For the dry season, the only data available within the 5-year window (that the Landsat metrics were
calculated for), was the year 2008. Dual polarisation FBD images were acquired (HH, HV). For the wet
season, only FBS (HH) bands were available for 2006–2007 and 2007–2008, and the latter was chosen.
To ensure consistency across the study area, images were selected with the smallest possible time
difference: a maximum of 17 days for both seasons (Table 2). Following download, the raw images
were first converted to backscatter using the standard conversion equation:

σ0 = 10 × log10(DN + 0.001) + CF (1)

https://www.asf.alaska.edu/
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where σ0 is backscatter, DN is the raw digital number and CF is a calibration factor (−83). Secondly,
a Lee filter with a 7 × 7 window size was applied to minimise speckle effects [50], using Erdas
IMAGINE 2013© [51]. Pixels were aggregated to match the Landsat resolution (30 m) using the nearest
neighbour resampling. Finally, in addition to the original backscatter, we also calculated the dry season
ratio image of HH/HV as it has been proved to be useful to land cover classification [52–54].

Table 2. Acquisition dates and polarizations for Advanced Land Observing Satellite Phased Array type
L-band Synthetic Aperture Radar-1 (ALOS PALSAR-1) data used. FBS: Fine Beam Single polarization;
FBD: Fine Beam Dual polarization.

Polarization Path Frames Date

FBS 600 6610, 6620, 6630, 6640, 6650, 6660 14-2-2008
FBS 600 6610, 6620, 6630, 6640, 6650, 6660 2-3-2008
FBD 601 6610, 6620, 6630, 6640, 6650, 6660 1-7-2008
FBD 601 6610, 6620, 6630, 6640, 6650, 6660 18-7-2008

To increase the utility of the SAR data, we calculated a series of Gray-Level Co-Occurrence Matrix
(GLCM) texture variables. GLCMs are a series of localised texture metrics that quantify the statistical
properties of a layer over a moving window [55]. We calculated seven GLCM layers (mean, variance,
homogeneity, contrast, dissimilarity, entropy, and second moment [56]). These statistics were calculated
over both 3 × 3 and 9 × 9 windows, resulting in 15 layers per SAR backscatter (one backscatter + seven
3 × 3 GLCM layers + seven 9 × 9 GLCM layers).

2.3. Classification and Validation

Our analysis focused on identifying the optimal combination of seasonal and sensor information
for savannah land cover mapping. Moving toward this aim, we developed a series of classification
models consisting of combinations of the datasets described in the previous sections. This resulted in
a total of 15 independent models (Table 3).

Table 3. The 15 independent models tested in this study and the number of parameters in each.

Model # Parameters Included Number of Parameters

1 Dry Landsat All SAR 95
2 Dry Landsat Dry SAR 80
3 Dry Landsat Wet SAR 50
4 Dry Landsat 35
5 Wet Landsat All SAR 95
6 Wet Landsat Dry SAR 80
7 Wet Landsat Wet SAR 50
8 Wet Landsat 35
9 All Landsat All SAR 130

10 All Landsat Dry SAR 115
11 All Landsat Wet SAR 85
12 All Landsat 70
13 SAR All 60
14 SAR Dry 45
15 SAR Wet 15

Land cover classifications were carried out using the machine learning algorithm of Random
Forests which combines decision trees with bootstrapping and aggregation [57]. Random Forests has
been proven to be a successful classifier for remote sensing imagery, due to their effective handling of
correlated predictors and reduced tendency toward over-fitting [58]. Models were constructed using
the “randomForest” package version 4.6 within the R statistical environment [59]. Training data were
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acquired through random sampling, with 2400 points (600 per class) representative of a 30 m Landsat
pixel selected.

The classified land cover maps were validated using the NGI aerial photographs and a two-stage
stratified random sampling procedure following best-practice guidelines [60]. First, an initial sample
of 100 points per class was collated (400 samples in total). The user’s accuracy was then calculated,
which, combined with the mapped cover proportions from the all-variable model (Model #9 in Table 3),
allowed for the estimation of an appropriate stratified random samples size, with a target standard
error of 0.01 [60–62]. This resulted in a final validation set of 1082 points, which were assigned a land
cover class based on the visual interpretation of the NGI imagery. Finally, the model accuracy and
class area estimates were adjusted using probability equations and best practice guidelines [60].

3. Results

The model that scored the highest overall accuracy of 91.1 ± 1.7% was the one that incorporated
Landsat and PALSAR metrics from both the dry and wet seasons (Model #9, Table 3, Figure 4).
Its accuracy statistics are shown in Table 4, and the resulting map can be seen in Figure 5a. This model
included 130 parameters and the ten most important ones, according to the mean decrease in the Gini
index [63], can be seen in Figure S1.

Another five models (#1, 2, 5, 6, and 10) also scored very high overall accuracies (from 90.4 ± 1.8%
to 91 ± 1.7%), i.e., within the confidence interval of the best-performing model. The six top performing
models were able to map the main savannah types with similar per class accuracies (Figure 6; Table S2).

According to the “All Landsat All SAR” model (#9), woody vegetation and grassland were the
most prevalent land cover classes, with 20,833 km2 (95% CI: 165 km2, i.e., 51 ± 0.4% of the study
area) and 13,485 km2 (95% CI: 569 km2, i.e., 33 ± 1.5%), respectively. Cropland was the third largest
(5930 ± 501 km2 or 15 ± 1.2% of the study area), while non-vegetated land occupied 3338 km2 (95% CI:
710 km2, i.e., 8 ± 1.7% of the study area).
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Table 4. Confusion matrix and accuracy statistics for the all-parameter model (Model #9 in Table 3).

Reference
User’s Accuracy

WV G C NV Total

Mapped

Woody vegetation (WV) 475 3 1 5 484 0.98
Grassland (G) 9 295 15 4 323 0.91
Cropland (C) 1 33 131 0 165 0.79

Non-vegetated (NV) 32 4 0 74 110 0.67
Total 517 335 147 83 1082

Producer’s accuracy 0.94 0.90 0.88 0.85
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Figure 5. (a) Land cover map from the best performing model of this study (Model#9 in Table 3);
(b) error-adjusted area estimates and 95% confidence interval margins for the four land cover classes
estimated from the best performing model; and (c) the 2010 high resolution (SPOT 5 and colour infrared
aerial photography-based) land cover data of the South African National Geospatial Information (NGI)
mapping agency [43]. Locations A, B and C are the example subsets that appear in Figure 7.

The most reliably mapped class was woody cover, with user’s and producer’s accuracies of 98.1%
and 93.7%, respectively (Table 4). All classes demonstrated user’s and producer’s accuracies of over
~80%, with the exception of the user’s accuracy for the non-vegetated land (67.3%). The main source of
error came from the commission of this land cover type, which can often occur when attempting to map
classes that cover smaller areas [32,64]. Moreover, there is a degree of confusion between the grassland
and cropland classes, which resulted in the relatively large confidence interval for cropland, even larger
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for grassland. This is also anticipated as a number of crops cultivated in the region (e.g., maize) have
similar spectral properties to certain grasses [65]. In general, well-irrigated (pivot) fields were well
mapped (Figure 7C), while smaller scale agriculture was less so (Figure 7A).Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 18 
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Figure 6. The class-level accuracy statistics for the 15 models tested.

Our best performing model (Figure 5a) is spatially similar to the 10 × 10 m land cover map
produced by the NGI for the Northwest Province in 2010 using SPOT 5 data (Figure 5c) [43]. We used
the NGI map to compare our results in the absence of ground truth data, other than the very
high-resolution aerial photography. The two maps follow similar general patterns with regards
to the extent of woody cover, cropland and grassland. If the NGI data are considered as the reference,
then our land cover map manifests a general underestimation of woody vegetation and cropland and
a respective overestimation of grassland and non-vegetated land. We compared the NGI land cover
with our best-performing model statistically: considering each land cover class separately, the data
were first aggregated into percentage cover for 1 km grid cells. Pearson’s correlation tests were then
applied to the corresponding pixels. This is considered a robust approach for comparing land cover
as it minimises errors caused by geolocation and pixel misalignment [66]. The correlations were the
highest for the cropland class (94.4%), followed by woody vegetation (74.5%) and grassland (61.7%),
while a relatively low correlation was found for the non-vegetated class (54.5%).

Overall, the Landsat-only models were more accurate than the PALSAR models. The latter
performed marginally worse than their optical counterparts, with overall accuracies of 81.6% (±2.3%)
for the SAR model with both wet and dry season parameters (All SAR); 81.3% (±2.3%) for the dry
season model (dry SAR) and 73.7% (±2.6%) for the wet season model (wet SAR), respectively (Figure 4).
However, the PALSAR imagery were very effective in identifying woody cover, achieving very low
commission errors: 3.4% for the “all SAR” and 4.2% for the “dry SAR”. The “wet SAR” model was not
as successful, scoring a much higher woody vegetation commission error of 13.6% (Table S2). All other
classes generally had higher commission and omission errors than the Landsat-based models, with the
exception of the producer’s accuracy of the non-vegetated areas achieved by the “all SAR” and the
“dry SAR” models (Table S2, Figure 6). Most interestingly, the results also show that the combination
of the optical with the L-band SAR data improved the predictions, especially when the dry season
PALSAR data were added to the models (Figures 4 and 5; Table S2).
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Figure 7. Example subsets from the study area depicting: (A–C): the aerial imagery; (A1,B1,C1):
the NGI 2010 land cover map [43]; and (A2–A6,B2–B6,C2–C6): classification model results of this study.

The most commonly employed approach of using dry season optical data did not prove to be
more accurate than its wet season counterpart. The overall accuracies for both models were very
similar, with the wet model actually performing slightly better: 81.8 ± 2.3% for the wet season and
81.7 ± 2.3% for the dry season, respectively (Figure 4). The wet season model also scored lower
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grassland and cropland commission errors, as well as lower grassland and non-vegetated omission
errors, than did the dry season model (Figure 6, Table S2). Most importantly, when the wet season data
were added to the ‘dry’ models, results always improved for all land cover types (Figure 6, Table S2).

Similarly, when SAR data were used in the model, the addition of the wet season data improved
the model performance for most land cover types. With the exception of the producer’s accuracy for
the grassland and the cropland and of the user’s accuracy for the latter, in all other cases the per-class
accuracies increased when the wet season data were added.

4. Discussion

It is commonly understood that savannah landscapes are difficult to map, mostly due to the
low inter-class but high intra-class spectral variability, confounded by seasonal and within-pixel
variation [32,67]. Our best performing model, incorporating 130 parameters and estimated from dry
and wet season optical and radar data, was able to achieve a high overall accuracy (91.1 ± 1.7%), as well
as user’s and producer’s accuracies ranging from 80% to 98% for woody cover, grasses and crops.
These three land cover types together occupy 92% of the study area in southern Africa. Difficulties
were identified and high commission errors were produced when attempting to discriminate the
non-vegetated areas (32.7%). This was anticipated and explained by both the low coverage of the area
by such land cover types (8%), as well as the spectral confusion with the fallow land [32,64]. The latter
was also noted by Eggen et al. [67] in their Landsat-based Ethiopian study, where they report very low
accuracies for the barren class (54% user’s and 48% producer’s accuracy).

Our results, produced from multi-sensor and multi-season data, were similar to the accuracy
achieved using coarser resolution data by Mishra et al. [68] who employed MODIS annual and
intra-annual vegetation indices in a southern African savannah (Central Kalahari, Botswana).
They presented overall accuracies of 93% when attempting to map the six main morphological
vegetation types (woodland, dense shrub land, open shrub land, very open shrub land, grassland
and pans/bare areas), which were very similar to ours (91.1%). The very high accuracy achieved with
the MODIS data is commendable, especially since the methodology suggested by Mishra et al. [68]
does not involve an onerous multi-sensor undertaking. However, when a finer resolution mapping
product is required, MODIS-based approaches are not sufficient, and more complicated sensor fusion
techniques need to be considered: for instance the one proposed in our study, or Landsat-MODIS
fusions (e.g., STARFM [69] and ESTARFM [70]).

The use of metrics was also identified as being beneficial for land cover mapping by
Müller et al. [32] in a study on another savannah environment in the Brazilian Cerrado, which was
however much wetter. They used Landsat time series to map cropland, pasture and natural savannah
vegetation and achieved a very similar overall accuracy (93%). They make a note that such high
accuracies were possible due to the temporal depth of their study period, which was 3 years. In our
study, we had to resort to using a slightly longer period (5 years) due to data availability and cloud
contamination issues (Figure 3). The use of a 5-year compositing epoch may result in some land cover
changes occurring within our study period. However, most change processes in savannahs (e.g., shrub
encroachment, overgrazing, and overexploitation of woody shrubs and trees for fuelwood) are gradual
transitions, which reduces the risk of abrupt conversions.

4.1. Landsat or PALSAR? or Both?

Radar data are known for their ability to map certain savannah vegetation properties, such as
woody and canopy structure and volume [26,71]. Here we tested their fitness for mapping different
savannah land cover types. When it came to the ability to identify woody cover, it was the combination
of PALSAR dry and wet season metrics that produced the lowest commission errors (3.4%) and
outperformed all other optical-only model combinations. This is in support of a number of studies who
tested the performance of SAR data when mapping woody vegetation or the percentage of woody cover.
Naidoo et al. [7] compared L-band PALSAR dry-season data with Random Forest models incorporating
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Landsat bands and vegetation and textural indices from different seasons, in order to map a woody
canopy cover in an area within the Kruger National Park in South Africa. They found that the SAR-only
models outperformed the best Landsat-only model by 9% (R2 = 0.81 and R2 = 0.72, respectively).

Our results, however, also showed that the Landsat-based models were generally slightly better
than their SAR-based counterparts in identifying the other three targeted savannah land cover types.
Walker et al. [72], in their study in the southeastern Brazilian Amazon, along with Laurin et al. [73],
who compared SAR and optical classifications of 8 land cover classes in the West African region,
have found that Landsat-based models performed better than PALSAR-based ones. In a more similar
savannah environment in the Limpopo Province of South Africa, Higginbottom et al. [28] also tested
the performance of models incorporating Landsat and PALSAR data. They mapped the fractional
woody vegetation cover and used the global annual PALSAR mosaics, rather than the actual data
we use here (http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm). They found that the
Landsat-based models outperformed the PALSAR-based ones. However, the amount of Landsat
imagery available, which makes the use of metrics more effective [32], renders the comparison with
the relatively sparse PALSAR archive somewhat disproportionate: the SAR only models and the
respective dry and wet season GLCM texture variables were developed from data gathered over one
year only (2008; Table 2), while hundreds of Landsat images were involved in the calculations of the
spectral-temporal variability metrics (Table 1). Still, the top five variables of the best-performing model,
out of a total of 130, were all calculated from the PALSAR data (Figure S1), which is a clear indication
of the importance of incorporating radar data in savannah land cover mapping efforts.

We found that multi-sensor combinations performed better than optical- or radar-only models:
our dry season Landsat result (Figure 7(A5,B5,C5)) was improved by ~10% when the dry season
SAR data were included in the model (Figure 7(A3,B3,C3)), bringing the overall accuracy up from
~81% to ~91%, almost the maximum achieved by any model combinations. This is in agreement with
Naidoo et al. [7] who found that the combination of multi-sensor data produces the highest overall
accuracies, reporting an improvement of 8% and 17% from the PALSAR-only and Landsat-only models,
respectively. Laurin et al. [73] also compared PALSAR and optical (Landsat and AVNIR-2) land cover
classifications in a wet tropical area and reported an improvement from the multi-sensor integration.
In another study in the southeastern Brazilian Amazon, Walker et al. [72] compared PALSAR-based
model results to Landsat ones and concluded that multi-sensor and multi-temporal radar and optical
data is the way forward.

Given the promising results achieved by [26,74] with the RADARSAT-2 C-band when mapping
savannah woody vegetation structure and by [75] who combined the Sentinel-1 C-band and Sentinel-2
data (with improved spatial, spectral and temporal resolutions compared to the Landsat data used
in this study) in order to map land cover in a Mediterranean environment (overall accuracy =~94%,
k = 0.928), it is anticipated that the synergy between the two Sentinels should provide considerable
support in the efforts to accurately map savannah land cover.

4.2. Dry or Wet? or Both?

Using dry season optical data alone to map savannah land cover types, as in the case of most
land cover mapping studies [76,77], produced a very similar overall accuracy (~82 ± 2%) and very
similar omission and commission errors to their wet season counterparts. Wet season data, however,
are inherently problematic due to the fact that cloud contamination and Landsat data availability is
often limited in many dryland regions [78]. It is, therefore, reasonable that most analysts favour the
use of dry season data since the accuracies achieved are relatively high, especially for mapping woody
vegetation (with commission errors in our study of 6%). However, we also found that the combination
of dry with wet season metrics improved results (an overall accuracy improvement of ~4% and
per class statistics improvements throughout) and it is this approach that should be preferred if enough
data are available. This is in agreement with Higginbottom et al. [28] who tested fractional woody
cover estimation models with metrics estimated from the dry and the wet period and reported higher
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accuracies when data from both seasons were used. The higher temporal resolution of the Sentinel-2
data should therefore provide the means for improved savannah land cover mapping endeavours.

The PALSAR dry season model (Model #14 in Table 3) outperformed the wet season one
(Model #15 in Table 3) in all mapped land cover classes (Table S2). It is also worth noting that
the dry season HV backscatter outscored all other parameters as the best-performing model according
to the mean variance Gini index (Figure S1). However, the wet season HV polarisation data were
missing for our area and period of study and, therefore, we are unable to directly compare the dry and
wet season SAR model performances. Nevertheless, we did find that the addition of the wet season
SAR data to their dry season counterparts increased the model performance (Figures 4 and 5; Table S2);
consequently, if radar data from both seasons are available (e.g., Sentinel-1 C-band), this should be the
preferred methodological approach for savannah land cover mapping.

An approach that has not been considered here but could potentially improve results is not to
consider dry and wet season predictors separately, but to combine them. For example, a difference
between a mean wet and a mean dry vegetation index could be calculated for the optical data
and a similar mean index estimated from the different seasons and polarisations of the SAR data.
On a similar note, another approach could be to use a phenological analysis to derive surrogate maps
of the vegetated land cover types by analyzing the temporal evolution of an index (e.g., NDVI; [79]).
High temporal-resolution data are required for this and, as a consequence of this, coarser resolution
data, such as MODIS, have traditionally been employed [80]. However, new approaches that extract
phenology estimates using high-resolution imagery from a single season [81], or that combine high
spatial-resolution data (e.g., GF-1) with phenological parameters from high temporal-resolution sensors
(e.g., MODIS) to classify land cover, have recently been developed [82]. To this end, our ability to now
employ Sentinel-2 data, with their high repeat frequency, offers a promising outlook.

5. Conclusions

Savannah ecosystems cover a fifth of the Earth’s surface and are one of the least studied and
most difficult biomes to map, increasingly undergoing processes of degradation. The most recent
attempts to map the savannah land cover have incorporated optical or radar EO data from the dry
season or from different phenological periods. In this study, we focus on a southern African area
to assess how accurately woody vegetation, grassland, cropland and non-vegetated areas can be
mapped in order to provide assistance in future attempts to characterise and monitor savannah land
cover. Given the overall accuracy and the per class statistics produced from the 15 models tested,
as well as the spatial similarity of an independent finer-scale land cover map with our results, it is safe
to conclude that the main cover types of woody vegetation, grassland and crops can be accurately
mapped, when optical and radar data from the dry and wet seasons are integrated. The recent
developments in EO sensors and the open-access availability of higher spectral, spatial and temporal
resolution data (e.g., the European Space Agency’s Sentinel-1 and Sentinel-2 satellites), offer promising
pathways for accurate multi-sensor and multi-season savannah land cover mapping.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/10/4/499/s1,
Table S1: Availability of cloud-free observations per pixel per 5-year seasonal window. Table S2: Per-class accuracy
statistics for the 15 models tested; Figure S1: Ten most important variables for the “All Landsat All SAR” Random
Forest model (model #9 in Figure 4) according to the Mean Decrease Gini index [61]. fbd_hv: dry season HV
PALSAR backscatter; fbd_hv_variance: the Grey-Level Co-occurrence Matrix (GLCM) variance layer for the dry
season HV backscatter; fbd_hv_mean: the Grey-Level Co-occurrence Matrix (GLCM) mean layer for the dry
season HV backscatter; _9: the 9 × 9 window GLCM statistics calculations; _3: the 3 × 3 window GLCM statistics
calculations; B1, B2, · · · : Landsat bands; p25, p50: 25th, 50th percentiles
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