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Abstract: The monogenic signal, which is defined as a linear combination of a signal and its
Riesz-transformed one, provides a great opportunity for synthetic aperture radar (SAR) image
recognition. However, the incredibly large number of components at different scales may result in
too much of a burden for onboard computation. There is great information redundancy in monogenic
signals because components at some scales are less discriminative or even have negative impact on
classification. In addition, the heterogeneity of the three types of components will lower the quality
of decision-making. To solve the problems above, a scale selection method, based on a weighted
multi-task joint sparse representation, is proposed. A scale selection model is designed and the Fisher
score is presented to measure the discriminative ability of components at each scale. The components
with high Fisher scores are concatenated to three component-specific features, and an overcomplete
dictionary is built. Meanwhile, the scale selection model produces the weight vector. The three
component-specific features are then fed into a multi-task joint sparse representation classification
framework. The final decision is made in terms of accumulated weighted reconstruction error.
Experiments on the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset
have proved the effectiveness and superiority of our method.

Keywords: monogenic signal; scale selection; multi-task sparse representation

1. Introduction

Synthetic aperture radar (SAR) automatic target recognition (ATR) is becoming increasingly
important as the development of radar technology continues [1]. Much research has been based on
SAR images [2]. However, the traditional pixel intensity cannot be always treated as a reliable feature
in the classification field. In recent years, the monogenic signal has been used for SAR ATR because of
its ability to capture the characteristics of SAR images. The monogenic signal is a generalized extension
of the analytic signal in high-dimensional space,, and was first introduced by Felsberg and Sommer
in 2001 [3]. Similarly to the Hilbert transform to a one-dimensional (1-D) analytic signal, the original
signal can be orthogonally decomposed into three components with the Riesz transform. The three
components are local energy, local phase, and local orientation. The decomposed operation is usually
used for high-dimensional signal analysis and processing. This decoupling strategy makes it possible
to deal with many problems in the field of image processing, especially when the traditional pixel
intensity can not be treated as a reliable feature in the classification field. Furthermore, the monogenic
signal has the ability to capture broad spectral information, which is useful for SAR image recognition.
Then, the monogenic scale space is proposed to unify scale-space theory and the phase-based signal
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processing technique [4,5]. The monogenic signal has provided a new viewpoint and method in the
field of low-level image processing, due to its ability to provide local features of the phase-vector and
attenuation in scale space. In [6], the monogenic approach allows for analyzing the local intrinsic
two-dimensional (2-D) features of low image data through the information fusion of monogenic signal
processing and differential geometry. In [7], a new complex wavelet basis is constructed from the
complex Riesz operator to specify multiresolution monogenic signal analysis. A novel application of
wavelets to coherent optical imaging is also shown. In [8], the monogenic signal is applied to color
edge detection and color optical flow. In recent years, the application of the monogenic signal has been
extended into the field of pattern recognition as research continues. In [9], the random monogenic signal
is used to distinguish between unidirectional and nonunidirectional fields. In [10], the monogenic
signal is exploited at multiple scales to extract features from subtle facial micro-expressions and a linear
support vector machine (SVM) is used for classification. In [11], the texture and motion information
which is extracted from the monogenic signal is used for facial expression recognition.

Since multiple features, including the monogenic signal and Gabor wavelets, can be extracted from
original images, there is a growing tendency to combine the multiple features for image recognition.
Multiple features extracted from original images can provide different information with respect to
target characteristics when compared with a single-feature approach. Therefore, approaches based on
the combination of feature modalities can fuse their benefits and have better classification capability
and higher classification accuracy [12]. Much of the study has been focused on multiple kernel
learning, and the core ideas on the similarity functions between images are linearly combined [13,14].
Since sparse representation classification (SRC) methods have powerful expressive ability and
simplicity, other studies on feature combination aim at building a multi-task joint sparse representation
classification (MTJSRC) model. The SRC concept was firstly introduced in [15]. Then, the application of
SRC was rapidly extended to classification in other domains [16,17]. In [18], SRC with optimizing kernel
principal component analysis (PCA) is used to perform pattern classification task based on a data set
of SAR images. Recently, multiple views of SAR images or multiple feature extracted from SAR images
were employed as inputs in the SRC field. Multi-view images carry more information than single-view
images. The multi-view image-based approaches can fuse the benefits and improve the performance
of target recognition. Similarly, feature combination based on an MTJSRC model can also achieve
better recognition performance. According to the idea mentioned above, a multi-task joint sparse
representation classification approach is proposed [19]. In [20], a joint sparse representation-based
multi-view method is proposed to exploit the inter-correlations among the multi-view images and
improve the performance of a recognition system. In [21], the component-specific feature descriptor of
a monogenic signal is proposed and the multiple features are then fed into the MTJSRC to make the
final decision.

A large number of components of the monogenic signal can be acquired from the original SAR
images because of three components (local amplitude, local phase, and local orientation) and their
multiple scales. This characteristic of the monogenic signal provides a valid option for MTJSRC.
Meanwhile, MTJSRC can effectively fuse the benefits of the multiple features and improve the
recognition accuracy. As a result, there are many advantages with respect to the joint use of the
monogenic signal and MTJSRC. However, the large data size produced by the monogenic signal
makes the computation load increase rapidly. Moreover, different scales of the monogenic signal carry
different amounts of information for target classification. In particular, some scales of the monogenic
signal have little or even a negative impact on the recognition accuracy. Hence, a measurement model
is needed to calculate the informativeness of each component at different scales. On the other hand,
the traditional sparse representation algorithms based on monogenic signal make the final decision
by accumulating the total reconstruction error directly, which totally ignores the heterogeneity of the
three components of the monogenic signal. Since a measurement model for the informativeness of
each component at different scales is established, the weight vector associated with the reconstruction
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error can be also determined adaptively. The process of making decisions based on the measurement
model becomes more reasonable and the recognition accuracy is improved.

In this paper, a scale selection method, based on a weighted multi-task joint sparse representation
(abbreviated as WTJSR), is proposed for SAR image recognition. Three components of the monogenic
signal at different scale spaces are extracted from the original SAR images, which carry rich information
for target classification. Meanwhile, the data set becomes enormous. Then, a scale selection model based
on the Fisher discrimination criterion is designed. The higher the score, the more discriminative the
components are at the corresponding scale. A global Fisher score is proposed to measure the discriminative
ability of components at each scale. The less discriminative scales are abandoned and the rest of the
components are concatenated to three component-specific features. Meanwhile, the adaptive weight
vector is provided by the scale selection model. The three component-specific features are then fed into a
tri-task joint sparse representation classification framework. The final decision is made by the cumulative
weighted reconstruction error. Our contributions are shown below:

(1) We introduce a novel joint sparse representation method (WTJSR) with the components of the
monogenic signal

(2) We propose a scale-selection model based on a Fisher discrimination criterion to effectively use
the information contained in monogenic signal and establish the adaptive weight vector due to
the heterogeneity of the three component-specific features.

(3) We perform comparative experiments under different conditions.

The rest of this paper is organized as follows. In Section 2, the SRC and MTJSRC are introduced.
In Section 3, the monogenic signal is introduced and Fisher’s discrimination criterion-based monogenic
scale selection is proposed. The WTJSR is analyzed. Afterwards, several experiments are presented in
Section 4. Conclusions are provided in Section 5.

2. Related Work

This section briefly introduces two prior concepts, SRC and MJSRC. Some necessary terms are
first described to facilitate the following description. Assume that the image size is w by h pixels.
Every image is transformed to a column vector Rm where m = w× h.

2.1. SRC

The sparse signal representation technique has been extensively studied over the last decade.
The resurgent development of many theoretical analysis frameworks [22,23] and effective
algorithms [24] has been witnessed. The applications of the sparse signal representation technique
mainly include radar imaging [25,26], image restoration [27], image classification [28,29], and pattern
recognition [15,30]. The key of sparse signal model is based on the fact that a certain signal can be
represented by an overcomplete basis set (dictionary). The convex strategy is generally adapted to
finding an optimal solution [31,32].

The number of training samples from all the classes is n. Let Xk =
[
xk,1, xk,2, . . . , xk,nk

]
∈ Rm×nk be the

concentration of the training samples from the kth (k = 1, 2, . . . , K) class, where n = n1 + n2 + . . . + nK.
Sparse representation is based on a simple assumption that the new query sample of the same class
lies in the same subspace of training samples with a much lower dimension [33–35]. Therefore, the test
sample y with the kth class can be represented as

y = xk,1αk,1 + xk,2αk,2 + . . . + xk,nk
αk,nk

. (1)

The vector of scalar coefficients is αk =
[
αk,1, αk,2, . . . , αk,nk

]T ∈ Rnk .
As a matter of fact, the class of the test sample is almost unknown initially. Therefore, the test

sample y is represented by the whole training group. Let n =
K
∑

k=1
nk denote the total number of training
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samples and X = [X1, X2, . . . , XK] ∈ Rm×n represent the training set. Based on the whole training set,
the test sample y can be rewritten as

y = X1α1 + X2α2 + . . . + XKαK = Xα (2)

where α = [α1, α2, . . . , αK]
T ∈ Rn is the coefficient vector. Most of the elements in the representative

vector α have values of zero, except those related to the training samples of the kth class. Theoretically,
the target recognition problem is converted into solving the linear system y = Xα.

Frequently, the solution to the equation y = Xα is not unique because of the fact that m < n.
A popularly used solver seeks the sparsest linear combination of the dictionary to represent the test
sample [36]:

min
α
‖α‖0, s.t. ‖y− Xα‖ 6 ε (3)

where ε is the allowed error tolerance. Traditionally, sparsity is measured using the l0-norm by
counting the number of nonzero elements. The problem of finding the optimally sparse representation,
i.e., minimum ‖α‖0, is a combinatorial optimization problem. However, Equation (3) has been proven
to be non-deterministic polynomial (NP) hard and it is difficult to find an optimal solution in theory [37].
Considering the difficulty in solving large combinatorial problems, some algorithms such as orthogonal
matching pursuit and relaxed formulations have been proposed over the years [33,38,39]. Since the
solution is sparse enough, Equation (3) can be relaxed as l1-norm minimization [40]

min
α
‖α‖1, s.t. ‖y− Xα‖ 6 ε. (4)

In the ideal situation, most of the elements in the representative α are zero except those associated
with the ground-truth class. In practice however, the recovered sparse representation vector has most
of its nonzero elements with large absolute values associated with the ground-truth class, while small
or zero values are distributed elsewhere. Hence, the minimum reconstruction error criterion is used to
decide the label of the test sample y with the optimal solution α̂ [41];

class (y) = arg min
k∈(1,2,...,K)

‖y− Xkα̂k‖ . (5)

2.2. MTJSRC

SRC is proposed to deal with the classification problem with a single test sample or feature.
MTJSRC is developed to expand the SRC algorithm in multiple features. Suppose that the number of
features extracted from the original images is P. For each modality (task) index, p = 1, 2, . . . , P, denote
Ap =

[
Ap

1 , Ap
2 , . . . , Ap

K

]
as the pth training feature modality matrix. k = 1, 2, . . . , K refers the columns

associated with the kth class. A multi-task linear representation problem with P modalities of features
extracted from the original data can be described as:

yp = Xpαp, p = 1, 2, . . . , P. (6)

Inspired by SRC, the sparse representation of each modality yp, p = 1, 2, . . . , P can be obtained
from the optimization of the following l1-norm problem:

min
α
‖α‖1, s.t. ‖yp − Xpαp‖ 6 ε (7)

The optimal solution α̂p, p = 1, 2, . . . , P can be obtained by computing the optimization problem
repeatedly P times. Given all of the sparse representation vectors, the minimum reconstruction error
criterion accumulated over all the P tasks is used to decide the label of the original test sample y:
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class (y) = arg min
k∈(1,2,...,K)

P
∑

p=1

∥∥∥yp − Xp
k α̂

p
k

∥∥∥. (8)

When P = 1, SRC is obtained.

3. Monogenic Scale Selection-Based Weighted Multitask Joint Sparse Representation Classification

3.1. Monogenic Signal

The monogenic signal is an extension from analytic signal theory and Hilbert transform theory [3].
The analytic signal is a complex-valued representation of a 1-D real valued signal f (1) (x):

fa (x) = f (1) (x) + i fH (x) , x ∈ R. (9)

where fH(x) = f (1) ∗ 1
πx denotes the Hilbert-transformed signal. In the above definition, the local

amplitude A(x) and the local phase φ(x) are shown in another appearance of the analytic signal:

A(x) =
√

f (1)(x)2 + fH(x)2

φ(x) = atan2
(

fH (x) , f (1) (x)
) (10)

where the local amplitude A(x) represents the local energy, and the local phase ϕ(x) changes if the
local structure varies.

In order to deal with high-dimensional signals like images and videos, the monogenic signal has
been developed. The monogenic signal is built around the Reisz transform, which is an extension of
the Hilbert transform from 1-D to N-D. In the 2-D case, the spatial representation of the Riesz kernel is

(
Rx (z) , Ry (z)

)
=

(
x

2π|z|3
,

y

2π|z|3

)
, z = (x, y) ∈ R2 (11)

and its frequency response is

(Hu (u) , Hv (u)) =
(
−i

u
|u| ,−i

v
|u|

)
, u = (u, v) ∈ R2. (12)

The expression of Riesz-transformed signal in the spatial domain is

fR (z) = − z

2π|z|3
∗ f (z) (13)

where ∗ denotes the convolution.
For an image f (z), the monogenic signal is composed of the image signal f (z) itself and its Riesz

transformed one fR (z):
fM (z) = f (z)− (i, j) fR (z) (14)

where i and j are the imagery units, and {i, j, 1} forms an orthonormal basis in R3. Similarly to the
analytic signal, the original image signal is decomposed orthogonally into three components: local
amplitude A, local phase φ, and local orientation θ, which can be generated as

A =

√
f (z)2 + | fR (z)|2

φ = atan2 (| fR (z)| , f (z)) ∈ (−π, π]

θ = atan
(

fy (z)
/

fx (z)
)
∈
(
−π

2
,

π

2

] (15)
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where fx (z) = f (z) ∗ hx (z) denotes the i-imaginary component and fy (z) = f (z) ∗ hy (z) represents
the j-imaginary component. Similarly to the analytic signal, the local amplitude A describes the local
energetic information and the local phase φ denotes the local structural information. The major difference
is that the monogenic signal has one more component, i.e., local orientation, which describes the
geometric information.

The signals are usually of finite length in applications. Therefore, in order to extend the signal to
be infinite, a bandpass filter is used before the Reisz transform. Then, the monogenic signal can be
rewritten as

fM (z) = (hb (z) ∗ f (z))− (i, j) (hb (z) ∗ fR (z)) (16)

where hb (z) denotes the bandpass filter. The log-Gabor filters have the ability to catch broad spectral
information [42]. Hence, the log-Gabor filter bank is employed in this paper. The frequency response
of the log-Gabor filter can be generated as

G (ω) = exp

{
−
[

log
(

ω

ω0

)]2
/[

log
(

σ

ω0

)]2
}

(17)

where ω0 is the center frequency and σ is the scaling factor of the bandwidth. Given that s is the
scale index, the multiresolution monogenic signal representation can be acquired, which forms the
monogenic scale space. The monogenic signal with scale S (S = 10) is shown in Figure 1.

Suppose the scale parameter is S. The monogenic scale space f = {fA, fφ, fθ} of local amplitude,
local phase, and local orientation can be described as

{A1, A2, . . . , AS, φ1, φ2, . . . , φS, θ1, θ2, . . . , θS} . (18)

3.2. Fisher Discrimination Criterion-Based Monogenic Scale Selection

As we can see from Equation (3), the data size of the feature set f is increased by a factor of 3S
compared with that of the original image data set. The feature set normally leads to considerable
computational complexity because of redundancy and high dimensions, which makes it difficult to
be applied in the recognition system directly. In order to deal with this problem, a multitask joint
sparse representation strategy based on a scale selective model is proposed in this paper without
concatenating all the features at S scales together in the learning system [21,43]. The features at some
scales may be less discriminative or even have a negative effect on classification. In order to verify
this statement, a typical example and some analyses will be given later.

A monogenic scale selection method based on Fisher’s discrimination criterion is proposed to
solve this problem. This method is aimed at finding the most discriminative features in monogenic
scale space. As we discussed before, the three components of the monogenic signal, i.e., local amplitude,
local phase, and local orientation are three different types of features. Fisher’s discrimination criterion is
employed separately to the scale space of each component.

In the scale space of the amplitude features, let the training samples of the kth class in the sth
scale be As

k. The within-class and between-class distances (denoted as ΥW(As
k) and ΥB(As

k)) in the
scale space of the amplitude features with the kth class are, respectively, defined as

ΥW (As
k) = ∑

ai∈As
k

(ai −ms
k)

T (ai −ms
k) (19)

ΥB (As
k) = nk (m

s
k −ms)T (ms

k −ms) (20)

where ms
k and ms are the mean vectors of As

k and As, respectively, which are defined as

ms
k =

1
nk

∑
ai∈As

k

ai (21)
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ms =
1
n ∑

ai∈As
ai. (22)

where nk is the number of training samples of the kth class in the scale space of the amplitude features,
and n is the number of training samples in the scale space of the amplitude features. (·)T denotes the
transpose of a matrix or vector.

(a)

(b)

(c)

(d)

Figure 1. Monogenic signal with scale S (S = 10). (a) original SAR image; (b) amplitude scale space;
(c) phase scale space; and (d) orientation scale space.

According to Fisher’s linear discriminant analysis, the classification accuracy is associated with the
within-class and between-class distance. Furthermore, the within-class distance should be minimized
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and the between-class distance should be maximized in order to achieve high recognition accuracy.
Inspired by previous work, the Fisher score of the kth class in the sth amplitude scale is defined as

ACs
k =

ΥB (As
k)

ΥW (As
k)

. (23)

The matrix AC ∈ RS
K of the Fisher score in the amplitude scale space can be described as

AC1
1 AC2

1 · · · ACS
1

AC1
2 AC2

2 · · · ACS
2

...
...

. . .
...

AC1
K AC2

K · · · ACS
K

 . (24)

Each row vector of the local Fisher score matrix AC is normalized to obtain the feature weight
in each class and scale space. Obviously, the larger the value of ACs

k, the more discriminative the
amplitude feature of the kth class in sth scale. Therefore, the matrix AC provides the indicator for
choosing the most discriminative features of each class in the scale space. The global Fisher score in s
scale can be generated as

ACs = ACs
1 + ACs

2 + · · ·+ ACs
K. (25)

AC can be rewritten as
AC = (AC1, AC2, · · · , ACS) . (26)

Clearly, AC is the vector of global Fisher score, which has provided the information of how
representative the features are in the scale space. Similarly, it is easy for us to acquire weight vector of
the phase scale space and the orientation scale space, respectively

PC = (PC1, PC2, · · · , PCS) (27)

OC = (OC1, OC2, · · · , OCS) . (28)

The row vectors, AC, PC, and OC are sorted in descending order. Supposing V is the number of
selected scales in each component scale space, the chosen features of 3V scales will be applied in the
classification system rather than the whole monogenic scale space. Hence, the chosen scale matrix D
can be generated as AD1 AD2 · · · ADV

PD1 PD2 · · · PDV
OD1 OD2 · · · ODV

 (29)

where the elements ADv, PDv, and ODv are the chosen scale numbers of the amplitude, phase and
orientation scale space, respectively. The component with the corresponding scale can be described asAE1 AE2 · · · AEV

PE1 PE2 · · · PEV
OE1 OE2 · · · OEV

 . (30)

3.3. Classification via Tri-Task Joint Sparse Representation of Monogenic Signal

The data size is still too large for classification after scale selection. Therefore, the independent
and identically distributed (IID) Gaussian random project matrix is employed for the components of the
monogenic signal (local amplitude, local phase, local orientation) at V scales. This projection is aimed at
reducing the dimension and redundancy. After projection, each component is then transformed into vectors.
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Finally, the obtained vectors are concatenated to generate a component-specific feature vector,
which can be described as

χA = [vec(AE1); vec(AE2); · · · ; vec(AEV)]

χP = [vec(PE1); vec(PE2); · · · ; vec(PEV)]

χO = [vec(OE1); vec(OE2); · · · ; vec(OEV)]

(31)

where vec(·)denotes the reshaping operation from a matrix to a vector. The generation of monogenic-specific
features based on scale selection is shown in Figure 2.

Test 

Sample

Phase

Amplitude

Orientation

Scale Place

Scale 

Selection

Projection

Normalization

Concatenation

Figure 2. Generation of monogenic component-specific features with scale selection.

After scale selection and feature concatenation, the multi-task joint sparse representation
turns out to be a tri-task joint sparse representation. Three overcomplete dictionaries can be
built based on the training sample set Xk =

[
xk,1, xk,2, . . . , xk,nk

]
∈ Rm×nk . Let the monogenic

component-specific feature corresponding to the test sample xk,j be (χA(xk,j), χP(xk,j), χO(xk,j)) by
Equation (31). The overcomplete dictionary can be formulated as

X1 = [χA(x1,1), χA(x1,2), · · · , χA(xK,nK )]

X2 = [χP(x1,1), χP(x1,2), · · · , χP(xK,nK )]

X3 = [χO(x1,1), χO(x1,2), · · · , χO(xK,nK )]

. (32)

The test sample y can be also described as

y1 = χA(y), y2 = χP(y), y3 = χO(y). (33)

Similarly to the multi-task joint sparse representation, the minimum reconstruction error criterion
accumulated over all the three task is used to decide the label of the original test sample:

class (y) = arg min
k∈(1,2,...,K)

3

∑
p=1

wp

∥∥∥yp − Xp
k α̂

p
k

∥∥∥. (34)
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where W = (w1, w2, w3) denotes the weight vector. Since the three components of monogenic signal
show different characteristics, the elements of the weight vector W should not be considered equally as
usual. Moreover, the weight vector should be adaptive when the training data set changes. The value
of wp is larger when the corresponding component is more discriminative. The elements of weight
vector are the global Fisher scores of each component-specific feature, which can be generated as

w1 =
V

∑
v=1

ACv

w2 =
V

∑
v=1

PCv

w3 =
V

∑
v=1

OCv

. (35)

The proposed method in this paper, i.e., monogenic scale selection-based weighted tri-task joint
sparse representation classification (WTJSRC), is outlined in Algorithm 1.

Algorithm 1 Monogenic scale selection-based WTJSRC for SAR image classification.

Input:
SAR image data R, original training set X ∈ Rm×n (with n samples) and test set Y ∈ Rm×l

(with l samples) from K classes;
The number of total scales S;
The number of selected scales V;

Output:
Identity ς for all test samples;

1: BEGIN
2: Acquire the monogenic signal of all the original training samples by (8) and (9), from which the V

discriminative scales can be selected by Fisher discrimination criterion;
3: Build the weight vector W = (w1, w2, w3) with global Fisher score of each component;
4: Generate the monogenic component-specific features with scale selection by (31);
5: Build three overcomplete dictionaries X1, X2, X3;
6: for j = 1 to l do

7: ς j = arg min
k∈(1,2,...,K)

3
∑

p=1
wp

∥∥∥yp − Xp
k α̂

p
k

∥∥∥.

8: end for
9: return ς;

10: END

4. Experimental Results

The Moving and Stationary Target Acquisition and Recognition (MSTAR) public database is used
to evaluate the performance of the proposed method. SAR images in MSTAR dataset have a resolution
of 0.3 m × 0.3 m with HH polarization. The azimuth angles of SAR imagery are from 0◦ to 360◦ and
adjacent angle intervals are from 1◦ to 2◦. The SAR images are of 128× 128 pixels in size and are
cropped in pretreatment process to extract 64× 64 patches from the center. After pretreatment, all the
SAR images are of 64× 64 pixels in size. The IID Gaussian random project matrix is used to reduce
the dimension of each component from 64× 64 to 12× 12. For the multiresolution monogenic signal
representation, 10 is the scale index (S = 10) in this paper. To verify the effectiveness of our proposed
method, several methods shown in Table 1 are studied.

In the rest of the section, several experiments are carried out to evaluate the performance of our
method proposed in this paper.
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Table 1. Approaches to be compared in this paper.

Abbreviation Full Name Reference

CondGauss conditional Gaussian model [44]
SVM support vector machine [45]

AdaBoost feature fusion via boosting on radial basis function net classifiers [46]
IGT iterative graph thickening [47]
SRC sparse representation classification [15]
TJSR joint sparse representation classification of monogenic signal [43]

WTJSR weighted tri-task joint sparse representation -

4.1. Scale Parameter Experiments

First of all, the estimation of the selected scale parameter (V) in a 10-scale space is considered.
Since monogenic signal is acquired from the original SAR images, it is essential to determine the
optimal value of V. The dataset in Table 2 is used to compare the performance of our method with each
V (from 1 to 10). As shown in Table 2, three targets (BMP2, BTR70, T72) are employed. Among them,
BMP2 and T72 have several variants with small structural modifications (denoted by series number).
Training set is composed with the standards (sn c9563 for BMP2, sn c71 for BTR70 and sn 132 for T72)
at the depression angle of 17◦.

Table 2. Data set 1.

Type Training Set (17◦) Testing Set (15◦)

BMP2
195(Sn 9563)

233(Sn 9563) 196(Sn 9566)

196(Sn c21)

BTR70 233(Sn c71) 196(Sn c71)

T72
196(Sn 132)

232(Sn 132) 195(Sn 812)

191(Sn s7)

The determination of V is based on data set 1 by comparing the performance of our method with
each V (from 1 to 10). The component-specific features vary with each V (from 1 to 10), which is shown
in Figure 3. In order to get rid of the influence of the IID Gaussian matrix, the same Gaussian random
matrix is employed to process both the training and testing samples. In addition, 10 Gaussian matrices
are used separately, and the final decision is made by the residual value in each class.

The recognition rate of the value of V is shown in Table 3 and the computational time of each V is
shown in Figure 4.

V=1 V=2 V=10

Tri-task

Features

Figure 3. Component-specific features with each selected scale parameter (V). The darker color of
components indicates a larger global Fisher score.
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Table 3. Recognition rate with each V.

V BMP2 (%) BTR70 (%) T72 (%) Average (%)

1 88.08 98.47 79.73 86.10

2 91.99 99.49 86.60 90.77

3 94.21 99.49 90.21 93.26

4 95.74 100 91.92 94.72

5 96.59 100 94.50 96.19

6 96.25 100 95.19 96.34

7 96.25 100 94.67 96.11

8 96.25 100 93.70 95.70

9 94.88 100 93.70 95.11

10 95.25 100 93.35 95.12

1 2 3 4 5 6 7 8 9 10
Value of V

5

10

15

20

25

30

35

40

45

50

Ti
m

e 
(s

)

Figure 4. Computational time of each V on data set 2.

4.2. SAR Image Classification under Standard Operating Conditions

We focus on performance evaluation of our method under standard operating conditions (SOCs).
The testing data set is a collection of images with all ten classes acquired at the depression angle of 15◦.
The training data set is a collection of images with all ten class acquired at the depression angle of 17◦.
Similarly to the data set 1, only the variants of BMP2 and T72, Sn 9563, and Sn 132 (in bold in Table 4),
are available for training. The confusion matrices under SOCs are shown in Figure 5. The computation
costs of sparse representation-based approaches under SOCs are shown in Table 5.
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Table 4. Data set 2.

Type Training Set (17◦) Testing Set (15◦)

BMP2
233(Sn 9563) 195(Sn 9563)

232(Sn 9566) 196(Sn 9566)

233(Sn c21) 196(Sn c21)

BTR70 233(Sn c71) 196(Sn c71)

T72
232(Sn 132) 196(Sn 132)

231(Sn 812) 195(Sn 812)

228(Sn s7) 191(Sn s7)

BTR60 256 195

2S1 299 274

BRDM2 298 274

D7 299 274

T62 299 273

ZIL131 299 274

ZSU234 299 274

The series numbers for BMP2 and T72 are in parentheses. The bold of BMP2 and T72 are used for training.

86.60           CondGauss (%) 

BMP2 89 3 2 1 0 1 0 3 0 1 

BTR70 2 88 0 5 0 0 3 1 0 1 

T72 3 0 92 0 0 0 3 0 2 0 

BTR60 2 0 3 90 0 0 5 0 0 0 

2S1 0 0 0.4 0 82 0 0 0 0 0 

BRDM2 8 2 5 1 0 75 1 5 0 3 

D7 3 2 0 0 0 0 89 4 0 3 

T62 3 3 2 0 0 5 0 84 3 1 

ZIL131 3 0 3 0 0 5 1 1 85 2 

ZSU234 1 0 2 0 3 0 0 4 3 87 

 BMP2 BTR70 T72 BTR60 2S1 BRDM2 D7 T62 ZIL131 ZSU234 

 

84.28                  SVM (%) 

BMP2 84 5 4 1 0 2 0 3 0 1 

BTR70 2 83 0 5 3 2 1 1 0 3 

T72 3 5 87 0 0 3 1 0 0 1 

BTR60 4 4 0 86 3 0 3 0 0 0 

2S1 6 4 3 4 75 5 1 1 1 0 

BRDM2 8 2 3 2 0 74 0 9 1 1 

D7 3 2 0 0 2 0 91 2 0 0 

T62 4 3 5 1 0 0 0 85 2 0 

ZIL131 2 3 3 0 0 0 0 0 89 3 

ZSU234 1 0 0 2 0 0 8 4 0 85 

 BMP2 BTR70 T72 BTR60 2S1 BRDM2 D7 T62 ZIL131 ZSU234 

 

 

87.42               AdaBoost (%) 

BMP2 84 5 4 1 0 2 0 3 0 1 

BTR70 2 83 0 5 3 2 1 1 0 3 

T72 3 5 87 0 0 3 1 0 0 1 

BTR60 4 4 0 86 3 0 3 0 0 0 

2S1 6 4 3 4 75 5 1 1 1 0 

BRDM2 8 2 3 2 0 74 0 9 1 1 

D7 3 2 0 0 2 0 91 2 0 0 

T62 4 3 5 1 0 0 0 85 2 0 

ZIL131 2 3 3 0 0 0 0 0 89 3 

ZSU234 1 0 0 2 0 0 8 4 0 85 

 BMP2 BTR70 T72 BTR60 2S1 BRDM2 D7 T62 ZIL131 ZSU234 

 

88.84                 IGT (%) 

BMP2 89 3 2 1 0 1 0 1 1 1 

BTR70 1 91 4 0 0 3 0 0 0 1 

T72 2 1 93 2 0 0 0 1 1 0 

BTR60 3 2 1 92 0 0 0 1 0 1 

2S1 4 2 4 2 77 5 0 3 0 3 

BRDM2 1 3 0 3 0 88 2 0 2 1 

D7 1 2 0 1 0 0 89 2 5 0 

T62 0 0 4 5 0 0 0 88 1 2 

ZIL131 4 0 3 0 0 2 0 2 88 1 

ZSU234 2 0 3 0 0 3 0 1 0 91 

 BMP2 BTR70 T72 BTR60 2S1 BRDM2 D7 T62 ZIL131 ZSU234 

 

92.94           CondGauss (Pose) (%) 

BMP2 93 1 2 0 1 2 0 0 1 0 

BTR70 3 91 2 0 0 2 0 0 0 2 

T72 2 1 95 1 0 0 0 0 1 0 

BTR60 2 0 1 95 0 0 2 0 0 0 

2S1 3 4 1 0 87 2 0 2 0 1 

BRDM2 4 3 1 0 0 89 3 0 0 0 

D7 0 0 0 0 1 0 98 0 0 1 

T62 1 0 0 0 0 0 0 92 5 2 

ZIL131 2 2 0 0 0 0 0 0 95 1 

ZSU234 1 2 0 1 0 1 0 0 2 93 

 BMP2 BTR70 T72 BTR60 2S1 BRDM2 D7 T62 ZIL131 ZSU234 

 

90.42             SVM (Pose) (%) 

BMP2 90 2 3 1 1 2 0 0 1 0 

BTR70 3 90 3 0 0 2 0 0 0 2 

T72 2 1 93 3 0 0 0 0 1 0 

BTR60 2 2 1 92 0 0 3 0 0 0 

2S1 5 2 2 0 81 3 2 3 0 1 

BRDM2 6 8 2 1 0 79 0 3 0 1 

D7 0 0 0 0 1 0 98 0 0 1 

T62 1 0 0 1 0 0 0 91 4 3 

ZIL131 2 1 0 0 0 0 0 0 95 2 

ZSU234 0 1 0 3 0 0 1 0 3 92 

 BMP2 BTR70 T72 BTR60 2S1 BRDM2 D7 T62 ZIL131 ZSU234 

 

92.96            AdaBoost (Pose) (%) 

BMP2 92 2 2 0 1 2 0 0 1 0 

BTR70 3 93 0 0 0 2 0 0 0 2 

T72 2 1 96 1 0 0 0 0 0 0 

BTR60 2 0 2 93 0 0 3 0 0 0 

2S1 3 4 1 0 87 2 0 2 0 1 

BRDM2 5 3 2 0 0 85 5 0 0 0 

D7 0 0 0 0 1 0 98 0 0 1 

T62 1 0 0 0 0 0 0 93 3 3 

ZIL131 2 2 0 0 0 0 0 0 94 2 

ZSU234 1 0 0 1 0 0 0 0 2 96 

 BMP2 BTR70 T72 BTR60 2S1 BRDM2 D7 T62 ZIL131 ZSU234 

 

94.76              IGT (Pose) (%) 

BMP2 95 1 1 0 1 1 0 0 1 0 

BTR70 2 94 0 0 0 2 0 0 0 2 

T72 2 1 96 1 0 0 0 0 0 0 

BTR60 1 0 1 97 0 0 0 1 0 2 

2S1 3 4 1 0 89 0 0 0 0 0 

BRDM2 2 1 4 0 0 90 2 0 0 1 

D7 0 0 0 0 1 0 99 0 0 0 

T62 1 0 0 0 0 0 0 95 3 1 

ZIL131 2 2 1 0 0 0 0 0 95 0 

ZSU234 1 0 0 1 0 0 0 0 2 96 

 BMP2 BTR70 T72 BTR60 2S1 BRDM2 D7 T62 ZIL131 ZSU234 

 

92.73      SRC (with 3 consecutive views) (%) 
BMP2 90.1 5.1 0.9 1.4 1.4 0.3 0 0.5 0.2 0.2 
BTR70 0 100 0 0 0 0 0 0 0 0 

T72 2.4 5.7 70.3 0 6.0 0 0 13.4 1.7 0.5 
BTR60 0 0 0 99.5 0 0 0 0 0 0.5 

2S1 0 0 0 0 100 0 0 0 0 0 
BRDM2 0 0 0 0 0 99.6 

 

0 0.4 0 0 
D7 0 0 0 0 0 0 100

0 

0 0 0 
T62 0 0 0 0 0 0 0 100 0 0 

ZIL131 0 0 0 0 0 0 0 0 100 0 
ZSU234 0 0 0 0 0 0 0 0 0 100 

 BMP2 BTR70 T72 BTR60 2S1 BRDM2 D7 T62 ZIL131 ZSU234 

 

92.53      TJSR (without scale selection) (%) 
BMP2 91.0 0.5 5.1 0.3 1.4 0.5 0 1.0 0.2 0 
BTR70 0 100 0 0 0 0 0 0 0 0 

T72 3.6 0.7 77.0 0.3 3.4 0.5 0 13.9 0.5 0 
BTR60 1.0 1.0 0.5 94.9 1.0 0 0.5 1.0 0 0 

2S1 0.7 0 0 0 93.4 0.4 0 5.1 0 0.4 
BRDM2 0.7 0.4 0.7 1.5 0.4 94.5 0 0 1.5 0.4 

D7 0 0 0.4 0 0 0 99.3 0 0.4 0 
T62 0.4 0 0 0 0.4 0 0 97.8 0.7 0.7 

ZIL131 0 0 0 0 0.4 0 0 0 99.3 0.4 
ZSU234 0 0 0 0 0 0 0 0 0 100 

BMP2 BTR70 T72 BTR60 2S1 BRDM2 D7 T62 ZIL131 ZSU234 

92.53      TJSR (scale selection based) (%) 
BMP2 90.8 0.9 3.9 0.7 2.4 0.7 0.2 0.5 0 0 
BTR70 0 99.0 0 0.5 0.5 0 0 0 0 0 

T72 3.1 0.7 77.5 0.3 3.4 0.5 0 13.6 0.5 0.3 
BTR60 0 1.0 0 96.4 0 0 0 1.0 0 1.5 

2S1 0.4 0 0.4 0 96.0 0.7 0 2.6 0 0 
BRDM2 2.6 0.4 0 2.2 0.7 92.3 0 0 1.5 0.4 

D7 0 0 0.4 0 0 0 99.3 0 0.4 0 
T62 0 0 0 0 0.7 0 0 96.3 2.9 0 

ZIL131 0 0 0 0 0 0 0 0 100 0 
ZSU234 0 0 0 0 0 0 0 0 0 100 

BMP2 BTR70 T72 BTR60 2S1 BRDM2 D7 T62 ZIL131 ZSU234 

94.29      WTJSR (scale selection based) (%) 
BMP2 94.7 1.0 2.0 0.3 1.0 0.2 0.2 0.5 0 0 
BTR70 0 100 0 0 0 0 0 0 0 0 

T72 3.3 0.3 79.3 0.2 2.4 0 0 12.9 1.4 0.2 
BTR60 0 0 0 97.9 0 0 0.5 0 0 1.5 

2S1 0.4 0 0 0 97.1 0.4 0 2.2 0 0 
BRDM2 0.7 0.4 0 2.9 0.7 94.5 0 0 0.7 0 

D7 0 0 0.4 0 0 0 99.3 0 0.4 0 
T62 0 0 0 0 0.4 0 0 98.9 0.7 0 

ZIL131 0 0 0 0 0 0 0 0 100 0 
ZSU234 0 0 0 0 0 0 0 0 0 100 

BMP2 BTR70 T72 BTR60 2S1 BRDM2 D7 T62 ZIL131 ZSU234 

Figure 5. Confusion matrices under SOC. Each row in the subfigures denotes the ground-truth class
of the test sample. Each column in the subfigures shows the class predicted by different methods.
The element in bold in the upper left corner represents the overall recognition rate. The diagonal
elements except for the one in the upper left corner describe the recognition rate of each class. The rest
of the elements denote the misclassification rate of each class.



Remote Sens. 2018, 10, 504 14 of 18

Table 5. Computational cost under SOCs.

Methods Offline Training (s) Testing (s)

SRC 5.6 7.4

TJSR 74.1 47.9

WTJSR 130.7 25.4

4.3. SAR Image Classification under Extended Operating Conditions

Two experiments are designed to evaluate the performance of our proposed method under
extended operating conditions (EOCs). First all, three types of targets (2S1, BRDM2, and ZSU234) in
the MSTAR data set at depression degree of 30◦ are used as test data set, which is shown in Table 6.
The corresponding confusion matrices are shown in Table 7.

Table 6. Test data set under extended operating condition-1 (EOC-1; large depression variation).

Type Serial Number Depression Angle Number of Images

2S1 b01

30◦

288

BRDM2 E-71 287

T72 A64 288

ZSU234 d08 288

Table 7. Confusion matrices under EOC-1 (large depression variation).

Type 2S1 (%) BRDM2 (%) T72 (%) ZSU234 (%)

2S1 97.2 1.4 4.2 1.4
BRDM2 4.2 88.9 1.4 5.6

T72 6.9 3.1 86.5 3.5
ZSU234 1.0 0 1.6 97.4

Total (%) 92.6

In another EOC test scenario, the algorithm is evaluated with respect to target configuration and
version variants. Considering several variants of BMP2 and T72, the SAR images of BMP2 (Sn 9563)
and T72 (Sn 132) collected at the depression degree of 17◦ are used as the training data set, while the
testing data set includes SAR images of BMP2 (Sn 9566, Sn c12) and T72 (Sn 812 and Sn s7) collected
at the depression degree of of 15◦. The data set under EOC-2 is shown in Table 8. The corresponding
confusion matrices are shown in Table 9.

The recognition rate of our proposed method is compared with three widely cited methods
including k-nearest neighbor (KNN) and three sparse representation-based methods under EOC,
as shown in Table 10. TJSR(1) denotes the TJSR method without scale selection, while TJSR(2) represents
the scale selection-based TJSR method.

Table 8. Test data set under EOC-2 (version variants).

BMP2 T72 BTR60 T62 Depression

Train 233(Sn 9563) 232(Sn 132) 256 299 17◦

Test
196(Sn 9566) 195(Sn 812)

195 273 15◦
196(Sn c21) 191(Sn s7)
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Table 9. Confusion matrices under EOC-2 (version variants)

Type BMP2 (%) T72 (%) BTR60 (%) T62 (%)

BMP2 94.1 4.8 0.3 0.8
T72 4.4 74.1 0.8 20.8

BTR60 0 0.5 99.5 0
T62 0 0 0. 100

Total (%) 90.4

Table 10. Comparison of methods under EOCs

Method KNN SVM IGT TJSR(1) TJSR(2) WTJSR

EOC-1 (%) 79 81 85 88 90 93
EOC-2 (%) 86 85 88 87 89 90

5. Discussion

5.1. Scale Parameter Analysis

From Table 3, the recognition rate increases with the value of V up to V = 7. The recognition
rate drops after the value of V increases to 8. The main reason is that the features at some scales are
less discriminative and even have a negative effect on classification. The result also indicates that the
features of the low Fisher score reduce the recognition rate of our method, which partly improves the
effectiveness of Fisher’s discrimination criterion.

The computational time of each V on data set 2 is shown in Figure 4. The computation time was
recorded using a personal computer with a 4-core Intel processor of 4.0 GHz and 8 GB RAM. The results
are the average of 30 experiments. We can see that the computation time increases with the increase
of the value V. The reason is that the dimensions of component-specific features increase with the
increase in the value V, as shown in Figure 3. Experimental results show that Fisher’s discrimination
criterion-based monogenic scale selection reduces the computation load and improves the accuracy of
the identification as compared with the method adapting all the scale space into the classification.

Based on the above analysis, we may assess that there is a appropriate tradeoff between the
recognition rate and the computation load when V = 5.

5.2. Analysis of the Recognition Rate under SOC

We first compare our proposed scale selection-based WTJSR approach with the other three
methods based on sparse representation. As we can see from Figure 5, the total recognition rates for
our proposed approach are 1.39% and 1.40% better than for TJSR with and without scale selection,
respectively. This means our scale selection and weight vector based on Fisher’s discrimination
criterion contribute positively to the classifier. Although the recognition rates of BTR60, 2S1, BRDM2,
D7 and T62 based on our approach are lower than with SRC, the overall recognition rate of our
proposed approach is 1.56% higher than for SRC with three consecutive views. Since multi-view
images carry more information than a single-view image, the recognition rates with multiple-view
images are higher than those with a single-view image in sparse representation-based approaches.
Our method based on a single-view image not only closes the gap but also achieves a higher overall
recognition rate. The recognition rate of scale selection-based TJSR is a little bit higher than for TJSR
without scale selection. As the weight vector can be acquired offline from the training data set, we may
assess that the less informative features are abandoned and the computation load decreases to nearly
50% by scale selection (Figure 4). The scale selection-based TJSR has a smaller computation with no
recognition rate impairments as compared with TJSR without scale selection.

We also compare scale selection-based WTJSR with four widely cited approaches in ATR literature.
The methods, including the conditional Gaussian model (CondGauss), SVM, AdaBoost, and iterative
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graph thickening (IGT) with and without a pose estimator as proposed in [46], are studied. As we
can see, the pose estimator can significantly improve the performance of the four methods. In other
words, the performance of the four methods depends strongly on the accuracy of pose estimation.
The performance of our proposed method is much better than the four methods without pose
estimation. Even in the case when the CondGauss, SVM, and AdaBoost algorithms use a pose
estimator as a preprocessing step, the recognition rate of our method is still 1.35%, 3.87%, and 1.33%
better than that of the three methods, respectively. The recognition rate of our method is slightly
lower than that of IGT with pose estimation. All the results under SOCs prove the superiority of our
proposed method.

In addition, we compare the computational costs of sparse representation-based approaches.
The computational cost mainly involves two parts: the offline training and online testing.
The computational cost of training is of little importance for SAR ATR because the process of training
can be run offline. As we can see, the computational cost of TJSR and WTJSR is higher than for SRC.
The reason is that the monogenic signal has large number of components at different scales and causes
too much of a burden for computation onboard. The computational cost of WTJSR is lower than
for TJSR due to the scale selection model of WTJSR. This result proves the effectiveness of the scale
selection model of WTJSR.

5.3. Analysis of the Recognition Rate under EOCs

The experiment under EOCs aims to investigate the practicability of the method proposed in
this paper. Under EOC-1, the overall recognition rate of the proposed WTJSR method is 14%, 12%, 8%,
5%, and 3% better than for the competing methods KNN, SVM, IGT, TJSR, scale selection-based
TJSR, and WTJSR, respectively. Under EOC-2, the proposed WTJSR method still achieves the
highest recognition rate at 90%. There are visible signs of the improvement in the recognition rate
under EOCs. The experimental results indicate that our method is more robust with respect to large
depression variation and version variants than the competitors.

6. Conclusions

This paper presents a scale selection-based tri-task joint sparse representation method for SAR
image recognition. Our proposed approach can effectively process the huge data volume of the
monogenic signal and reduce the negative effect of the less informative scale space. In addition,
the adaptive weight vector is proposed based on the scale selection model due to the heterogeneity
among the three component features of the monogenic signal.

We also illustrate the recognition rate of our method by experiments under SOCs and EOCs.
The results of our method are compared with not only state-of-art algorithms such as SVM, AdaBoost,
CondGauss, and IGT, but also sparse representation-based algorithms such as SRC and TJSR.
The recognition rate of our method is 1.39% and 1.40% better than that of TJSR with and without
scale selection, respectively. The scale selection-based TJSR has a smaller computational load but no
recognition rate impairments as compared to TJSR without selection. Furthermore, the weight vector
based on Fisher’s discrimination criteria can effectively improve the recognition rate. The experimental
results show the effectiveness of our method. We conclude that it is necessary to evaluate the reliability
of the components of the monogenic signal at different scales, and the adaptive weight process is a very
important step in classification algorithms based on the monogenic signal due to the heterogeneity
among the three component features.
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