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Abstract: Real-time target detection for hyperspectral images (HSI) has received considerable interest
in recent years. However, owing to enormous data volume provided by HSI, detection algorithms
are generally computationally complex, thus developing rapid processing techniques for target
detection has encountered several challenging issues. It seems that using a deep pipelined structure
can improve the detection speed, and implementing on field programmable gate arrays (FPGAs)
can also achieve concurrent operations rather than run streams of sequential instruction. This paper
presents a deep pipelined background statistics (DPBS) approach to optimizing and implementing
a well-known subpixel target detection algorithm, called constrained energy minimization (CEM)
on FPGA by using high-level synthesis (HLS). This approach offers significant benefits in terms of
increasing data throughput and improving design efficiency. To overcome a drawback of HLS on
implementing a task-level pipelined circuit that includes a feedback data path, a script based circuit
design method is further developed to make connections between some of the modules created by
HLS. Experimental results show that the proposed method can detect targets on a real-hyperspectral
data set (HyMap Data) only in 0.15 s without compromising detection accuracy.

Keywords: hyperspectral image; deep pipelined background statistics; constrained energy minimization;
high-level synthesis; real-time processing

1. Introduction

Hyperspectral remote sensing imaging acquires three-dimensional (3D) data including two
spatial dimensions with space information of pixels and one spectral dimension with high-dimensional
reflectance vectors [1]. The rich spectral information provided by HSI is very useful and has been
widely used in a range of various applications such as ecology [2], agriculture [3], environmental [4]
and geology [5], where target detection plays a crucial role [6–9]. There are many algorithms have
been developed for target detection in HSI [1], such as matched filter (MF) [10], spectral angle mapper
(SAM) [11], constrained energy minimization (CEM) [12], target-constrained interference-minimized
filter (TCIMF) [13], adaptive coherence estimator (ACE) [14], matched subspace detector (MSD) [15],
orthogonal subspace projection (OSP) [16], and sparsity-based target detector (STD) [17]. Among them,
CEM along with its variants have been widely used for hyperspectral target detection. The effectiveness
of CEM has been shown successfully in many applications such as reconnaissance, rescue, search
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and on-orbit processing [6]. For such applications, the high-speed data processing of HSI is generally
required for finding targets on a timely basis. However, as a trade-off the volume of data in HSI has
also become unmanageable with increasing spectral and spatial resolutions. In this case, CEM needs a
significantly large number of complex matrix computations. The algorithm could be implemented on
one of the widely used platforms like CPUs, GPUs [18], and FPGAs [19]. Among them, FPGAs have
significant advantages in supporting parallel computation and customizable deep pipeline operation
with the cost of low power consumption.

Currently, great progress has been made in implementing target detection algorithms on FPGAs.
For example, Chang described a new FPGA design by using the Coordinate Rotation Digital Computer
(CORDIC) algorithm to solve the matrix inversion problem of the classical CEM [20]. This method
of computing the inverse of a large matrix is unable to support fast target detection. Yang utilized
Streaming Background Statistics (SBS) structure with an idea of continuously updating the inverse of
the correlation matrix on FPGA [21]. Despite that a pixel-by-pixel processing design is realized using
fewer hardware resources, its data processing speed is not high. Recently, Gonzalez C. et al. proposed
an FPGA implementation of the automatic target-generation process based on an orthogonal subspace
projector (ATGP-OSP) using the pseudoinverse operation [22], where Gauss-Jordan elimination method
was selected for computing the inverse of a small square matrix whose size is no more than 32× 32.
Unfortunately, the Gauss-Jordan elimination method consumes too much logic resources for solving
the large matrix inversion problem required by the CEM.

Although FPGAs gain much attention, it is still not widely deployed for accelerating many
algorithms that require high computational complexity such as CEM. The main reason is that the
conventional development methods of FPGAs, which are based on register transfer level (RTL)
hardware description, are much more difficult than that of CPUs or GPUs. It commonly requires
great efforts in achieving highly efficient results on FPGAs. Furthermore, a design method based
on RTL for FPGAs lacks portability and flexibility compared to those based on C/C++ for CPUs or
GPUs. To close this gap, FPGA vendors and developers have begun to take advantage of high-level
synthesis (HLS) to work on FPGA applications. HLS is able to convert high abstraction languages
such as C, C++ and SystemC into VHDL/Verilog hardware description language (HDL) for RTL-level
circuit design. According to the user-defined constraints and C code style, the efficiency of the
converted RTL designs are quite different. Until now, studies on the acceleration of hyperspectral
data processing algorithms with HLS are already available. Santos proposed a novel adaptive and
predictive algorithm for lossy hyperspectral image compression algorithm [23] and Lossy Compression
for Exomars (LCE) algorithm [24] described in Vivado HLS. Domingo R. et al. proposed a hyperspectral
image spatial-spectral classifier accelerator using Intel FPGA SDK for OpenCL [25]. What’s more, HLS
is popularly utilized for hardware acceleration of deep learning algorithms like convolution neural
networks (CNN) [26,27]. However, no research work has been reported for implementing CEM on
FPGA using HLS.

In this work, a DPBS-CEM algorithm is developed to be implemented on FPGA using HLS for
real-time hyperspectral target detection. Like SBS-CEM, the inverse matrix is gradually updated
according to a Sherman-Morrison formula [28]. Different from using sliding windows, DPBS-CEM
takes advantage of cumulative windows instead to greatly reduce the number of calculations. As for
the issue of removing data dependency in updating inverse matrices, separate memories are proposed
to store the results of the successive inverse matrices, which make sure the operations on adjacent pixels
can be processed independently. As a consequence, a deep pipelined implementation of DPBS-CEM
can be further developed, which has an extraordinary performance improvement in terms of data
throughput. Experimental results demonstrate that the proposed algorithm has the capability of
operating at a high-speed rate of more than 200 MHz on FPGA. Setting the same clock frequency, the
algorithm can also achieve a significant speed-up of near 7.3× than SBS-CEM [21] with no compromise
for detection accuracy.

The contributions of this paper can be summarized as follows.
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• A novel deep pipelined architecture is proposed to accelerate the proposed DPBS-CEM algorithm
on FPGA using HLS. It outperforms the previous work designed with RTL in terms of data
throughput performance.

• A solution is derived to remove the data dependency existing in SBS-CEM for updating the inverse
matrices, by allowing four adjacent pixels to update their own individual inverse matrices that are
stored in four different memories.

• The proposed structure can be simply rebuilt to support diverse HSI implementations with
different spatial resolution and number of spectral bands through several parameters modified
under HLS. Most importantly, the framework can support various operation modes including
split/non-split data and local/global detection. It is easily adapted to match multiple rates of
hyperspectral imagery.

• Last but not least, alternative solutions to the problems of feedback and high fanout are
also provided.

The remainder of this paper is organized as follows. Section 2 briefly discusses CEM and SBS-CEM
used for target detection. Section 3 describes the principle of DPBS-CEM in great detail. The FPGA
implementation of DPBS-CEM is presented in Section 4. Section 5 conducts a detailed performance
analysis via extensive experiments. Finally, conclusions along with some remarks were drawn in
Section 6.

2. Related Algorithms

In this section, the principles of the classical CEM and SBS-CEM algorithms are described.
Besides, the problems of implementing these two algorithms in practical applications are also analysed.

2.1. CEM Algorithm

2.1.1. Principle of the CEM Algorithm

Let X ∈ RW×H×L denote a HSI with W × H pixels (row of X) and L spectral bands (column of X).
We may interpret X either as a collection of L 2D images (or bands) of size N (N = W × H), or as a
collection of W × H spectral vectors of size L. The entire data matrix X = [x1, x2, x3, ..., xN ], where xi is
the ith sample pixel vector xi = (xi1, xi2, ..., xiL)

T for 1 ≤ i ≤ N and the signature d = (d1, d2, ..., dL)
T

of target is known. The basic purpose of CEM is to design a linear finite impulse response (FIR) filter
with L filter coefficients denoted by an L-dimensional vector w = (w1, w2, ..., wL)

T that minimizes the
energy of the the output yi (1 ≤ i ≤ N) with the following constraint.

s.t.dTw = 1 (1)

min
w

(
wTRw

)
(2)

where R = 1
N

[
∑N

i=1 xixT
i

]
is the global correlation matrix of X. The weighting vector w solved for

Equation (1) and Equation (2) is given by

w =
R−1d

dTR−1d
(3)

which yields the CEM described by

yi = δCEM(xi) = (wCEM)Txi (4)

2.1.2. Problem Analysis

The classical CEM algorithm is a global subpixel target detector, which uses all the pixels in HSI
to calculate the correlation matrix. After the correlation matrix is obtained, the process of calculating
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the inverse matrix is executed through many complicated steps via QR decomposition. This is a typical
large matrix inversion problem, which may be the main cause of a significant latency up to obtaining
the final results.

2.2. SBS-CEM Algorithm

To accelerate the task of target detection using CEM, some researchers choose to calculate local
detection by using a partial set of pixel vectors instead of all data sample vectors [6,29,30]. For instance,
Yang [21] proposed an FPGA-based implementation of SBS-CEM by using a new matrix inversion
method to perform the correlation operation and the inversion operation simultaneously.

2.2.1. Principle of the SBS-CEM Algorithm

Unlike the classical CEM algorithm, SBS-CEM takes the inverse of the correlation matrix of the
K-group pixel vectors to replace the entire pixel vectors. More specifically, SBS-CEM can be described
as follows.

Rn = (1/K)

[
n−1

∑
i=n−K

xixT
i

]
(5)

Sn =

[
n−1

∑
i=n−K

xixT
i

]
(6)

Now, S−1
n is the inverse of the correlation matrix of the K-group pixel vectors. The Sherman-Morrison

formula is used to derive the following two formulas.

C−1 =
(

Sn + xnxT
n

)−1
= S−1

n −
S−1

n xnxT
nS−1

n

xT
nS−1

n xn + 1
(7)

S−1
n+1 =

(
C− xn−KxT

n−K

)−1
= C−1 −

C−1xn−KxT
n−KC−1

xT
n−KC−1xn−K − 1

(8)

Based on this streaming framework, the inverse matrix can be updated by using Equations (7)
and (8). When applying the Sherman-Morrison formula, the initial value of S−1

0 should be set.
Let S−1

0 = β · I; then SK+1 can be expressed as:

SK+1 = (1/β) · I + x1xT
1 + x2xT

2 + · · ·+ xKxT
K (9)

Among them, the matrix (1/β) · I does not affect the performance of the detector. On the contrary,
it makes the detection results be more stable [31]. The detection equation of the SBS-CEM algorithm is
then derived as:

SBS− CEM (x) =
K
(
xTS−1d

)
K (dTS−1d)

=
xTS−1d
dTS−1d

(10)

Since the pixel to be detected is located in the middle of the window, SBS-CEM can also be
expressed as:

SBS− CEM (xn−K/2) =
xT

n−K/2S−1
n d

dTS−1
n d

(11)

2.2.2. Problem Analysis

Sliding window problem. Compared to the classical CEM algorithm, SBS-CEM does not need the
full image data sample vectors to compute the correlation matrix. Instead, a local region of the image
defined by a sliding window is utilized to capture the local statistics. The size of the sliding window is
fixed and set to L2 (square of the number of spectral bands) in the SBS-CEM algorithm. The fixed size of
the sliding window requires the compute-intensive task of calculating the Sherman-Morrison formula
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to be performed twice (as shown in Equations (7) and (8)) for each update of the inverse matrix.
However, the extra calculation of the Equation (8) does not provide appreciable improvements of the
target detection accuracy according to our experimental results.

Data dependency problem. The problem of data dependency exists in the process of updating the
inverse matrix where the calculation for S−1

n+1 cannot be started until the S−1
n is available. Unless S−1

n is
ready, it is not possible to compute S−1

n+1. SBS-CEM divides the process of updating the inverse matrix
into several stages to reduce its complexity. Unfortunately, under such circumstance, several stages’
time consumption has to spend waiting for each inverse matrix updating. This computation overhead
would be the major bottleneck of the SBS-CEM’s data throughput performance.

3. Algorithm Optimization

3.1. Principle of Algorithm Optimization

To solve the problems described above for SBS-CEM, an optimized algorithm is proposed in this
section. The two main improvements are proposed to deal with the use of sliding windows and to
remove data dependency.

Non-sliding window. We choose not to use sliding windows to update calculations of the inverse
matrix, which is quite different from the SBS-CEM algorithm. With no requirement for moving out the
oldest pixel, the Equation (8) can be removed and thus a large number of calculations can be therefore
reduced. When a new pixel vector xn is loaded into the window, we can obtain the output value S−1

n+1
by Equation (12).

S−1
n+1 =

(
Sn + xnxT

n

)−1
= S−1

n −
S−1

n xnxT
nS−1

n

xT
nS−1

n xn + 1
(12)

Data segmentation for deep pipeline. As mentioned above, the SBS-CEM algorithm runs
calculations of matrix inversions in serial. Since data dependency exists between S−1

n+1 and S−1
n , there

is a great increase in processing time. To solve this problem, we need to complete the computation
of Equation (12) in four stages and apply pipeline optimization for achieving pipeline acceleration.
However, updating the inverse matrix between adjacent pixels is not independent, which prevents
the use of the optimization strategy of deep pipeline. If we want to achieve a deep pipelined design,
we have to make sure there is no feedback or iterations among the stages. In this case, we solve the
data dependency by means of data segmentation. As a result, the current input pixel can be processed
directly with no need of waiting for the previous pixel to be completed. By making the inverse
calculations between neighbouring pixels independent, we are able to carry out a deep pipelined
architecture, which can achieve 8× speed-up compared to SBS-CEM in theory.

Table 1, derived from the evaluation of hardware calculation, shows that the number of
computations for each stage is different, but the number of clock cycles consumed by each stage
is approximately equal after being parallelized. Where xn

(
P = xT

n
)

represents a column of X, T and Q
are scalars. S−1

n is denoted by U, which is an L-dimensional matrix. In addition, the detail procedure
of DPBS-CEM algorithm is shown as Algorithm 1.

Table 1. Four stages of the inverse matrix update.

Stage Number Formula Flop (× : ±) Parallelism Clock Cycles

1 h = UpT (
L2 : L2) L L

2 T = ph (L : L) 1 L

3 F = hhT (
L2 : 0

)
L L

Q = 1
T+1 (0 : 1)

4 S−1
n+1 = U− FQ

(
L2 : L2) L L
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Algorithm 1 The deep pipelined background statistics (DPBS) target detection CEM algorithm
Input: Initialize the following parameters.
(1) HSI data size: W × H × L = N × L;
(2) the value of β;
(3) the desired signature d;
(4) the number of inverse matrices: M = 4;
(5) bn indicates the index of number;
(6) K indicates the number of pixel vectors collected before starting target detection;
Output: the final target detection results.
define an initial inverse matrix S−1

0 : S−1
0 = β · I

data segmentation:
for i = 1 ; i ≤ N + K ; i ++ do

bn = i % M
calculate the inverse matrix:
if i ≤ N then(

S−1)bn
=
(

Sbn + xixT
i

)−1
=
(
S−1)bn − (S−1)

bn
xixT

i (S−1)
bn

xT
i (S−1)

bn
xi+1

endif
calculate the target detection results:
if i ≥ K then

DPBS− CEM (xi−K) =
xT

i−K(S−1)
bn

d

dT(S−1)
bn

d
endif

endfor

3.2. Design Challenges

Feedback. There is a feedback problem in updating the inverse matrix. In fact, the inverse matrix
updated in the fourth stage has to be transmitted back to the first stage as an input operand for
the next updating. All of the stages are described by individual C/C++ functions. To substantially
accelerate the process of updating the inverse matrix, we have to apply the data flow optimization
directly to these functions so that the HLS tool can be guided to implement a task-level pipelining.
Unfortunately, the HLS tool will not take place if it detects a feedback among the functions. As a result,
the task-level pipelining cannot be achieved only using HLS directly.

Fanout. Due to the use of a large number of bands, there are some high fanout cases where some
registers need to drive lots of loads like multipliers, which result in longer path delay and lower clock
frequency. For example, in the fourth stage as described in Table 1, the scalar Q needs to be multiplied
by L elements of a column in the matrix F simultaneously after parallel computation applied. It means
that the element of the scalar Q has a high fanout to drive as much as L slave modules. It is simple to
solve the high fanout problem by means of duplicating registers when designing with RTL, but it is
not easy with HLS.

4. FPGA Implementation

In this section, an overall hardware structure of DPBS-CEM is given in Section 4.1. Section 4.2
describes the internal architecture of the inverse matrix updater in detail along with its workflow of
deep pipeline. The difficulties in developing the hardware framework of DPBS-CEM using the HLS
tool and their solutions are discussed in Section 4.3. Section 4.4 briefly introduces a few particular
features of the proposed FPGA implementation of DPBS-CEM.

4.1. Overall Hardware Architecture of DPBS-CEM

As shown in Figure 1, the framework of DPBS-CEM mainly consists of three components including
an off-chip memory, a processor core, and a scheduler. The off-chip memory (DDR3 SDRAM) is utilized
to cache the hyperspectral image pixels. The processor core is responsible for the data processing of
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DPBS-CEM, which involves three modules: the first module is an inverse matrix updater, dedicated to
update the inverse matrix in five stages; the second module is a spectral pixel filter, applied to filter
pixels in four stages; and the last module is a storage component, utilized to cache the inverse matrix.
Finally, the third component is scheduler which is designed to schedule the two modules of inverse
matrix updater and spectral pixel filter.

Off-chip Memory(DDR3 SDRAM)

FPGA

Processor Core

S-1

Scheduler

Inverse Matrix 
Updater 

Spectral Pixel
Filter

UPD_stg1

UPD_stg4

UPD_stg3

UPD_stg2

UPD_stg5 FIR_stg4

FIR_stg3

FIR_stg1

FIR_stg2

Storage 

Bridge
PCIe

HSI

W

H

L

CPU

Memory controller

Result

W

H

Figure 1. Overall hardware structure of DPBS-CEM.

4.2. Update Process of Inverse Matrix

4.2.1. Internal Architecture

As described in Figure 2, the inverse matrix updater contains five processing stages for updating
the inverse matrices and four memory buffers for independently caching inverse matrices associated
with four successive pixels. The four individual memories are allocated for solving the problem of data
dependency described in Section 2.2.2. The specific calculations of each stage, the data flow, and the
access mode of inverse matrices are clearly displayed in Figure 2. In addition, we arrange five blocks
(Block A in Figure 3a, Block B in Figure 4a, Block C in Figure 5a, Block D in Figure 6a, and Block E in
Figure 7a) to realize the last four processing stages in Figure 2, and we also provide pieces of C/C++
code written in HLS for these blocks on the right side of the Figures. In the Appendix A, the features
of the #pragma used in these pieces of code are explained in Table A1.

Stage1 Stage2 Stage3 Stage5Stage4

DDR3 SDRAM
(S-1)1

(S-1)2

(S-1)3

(S-1)4

F
I
F
O

F
I
F
O

F
I
F
O

F
I
F
O

Q=1/(T+1)

U

F=hhT

S-1=U-FQ

h

T=ph

U

p

h=UpT 

U=S-1

p=xT

Figure 2. Block diagram of inverse matrix updater.



Remote Sens. 2018, 10, 516 8 of 20

(b)

void Block_A(datatype_mid h[L],datatype_in pt[L],
datatype_mid S_1_i[L][L][4],int v){

#pragma HLS INTERFACE ap_none port=h
#pragma HLS ARRAY_PARTITION variable=h complete dim=1
#pragma HLS INTERFACE ap_none port=pt
#pragma HLS ARRAY_PARTITION variable=pt complete dim=1
#pragma HLS INTERFACE ap_memory port=S_1_i
#pragma HLS ARRAY_PARTITION variable=S_1_i complete dim=1

datatype_mid S_1_col[L]={0};
#pragma HLS ARRAY_PARTITION variable=S_1_col complete dim=1

datatype_mid h_mid1[L]={0};
#pragma HLS ARRAY_PARTITION variable=h_mid1 complete dim=1

datatype_mid h_mid2[L]={0};
#pragma HLS ARRAY_PARTITION variable=h_mid2 complete dim=1

for(unsigned char l=0;l<L;l++)
#pragma HLS UNROLL

h_mid1[l]=0;
for(unsigned char m=0;m<L;m++){

#pragma HLS PIPELINE II=1
for(unsigned char l=0;l<L;l++){

S_1_col[l]=S_1_i[l][m][v%4];
if (v<4){

S_1_col[l]=0;
if(l==m)

S_1_col[l]=P;
}
h_mid2[l]=pt[l]*S_1_col[l];
h_mid1[l]+=h_mid2[l];

}
}
for(unsigned char l=0;l<L;l++)

#pragma HLS UNROLL
h[l]=h_mid1[l];

}(a)

l=m?

·
·
·

h1

·
·
·

O1

·
·
·

×

h

+ acc

·
·
·

·
·
·

·
·
·

IC1

IC1 h2O2× + acc

hLICL
OL× + acc

0

0

v<4?

1

1

0

1

0

0

sel

sel

sel

1

0

sel

·
·
·

s12···s1L s11

S-1

β

sL1sL2···sLL

0

β

β

1

0

sel

s21s22···s2L

1

0

sel

·
·
·

·
·
·

·
·
·

·
·
··

·
·

·
·
·

pL ··· p2 p1 IA

pT

Figure 3. (a) Hardware structure and (b) C/C++ code in HLS of Block A. (v represents the pixel number,
l represents the row number of the matrix S−1, and m represents the column number of the matrix S−1).

IB

IA

× OpL ··· p2 p1

p

+ acc

T

hL ··· h2 h1

h

void Block_B(datatype_in h[L],datatype_mid p[L],
datatype_mid T){

#pragma HLS INTERFACE ap_none port=h
#pragma HLS ARRAY_PARTITION variable=h complete dim=1
#pragma HLS INTERFACE ap_none port=p
#pragma HLS ARRAY_PARTITION variable=p complete dim=1
#pragma HLS INTERFACE ap_none port=T

datatype_mid T_mid1=0;
datatype_mid T_mid2=0;
T_mid1=0;
for(unsigned char m=0;m<L;m++){

#pragma HLS PIPELINE II=1
T_mid2=h[m]*p[m];
T_mid1+=T_mid2;

}
T=T_mid1;

}

(b)(a)

Figure 4. (a) Hardware structure and (b) C/C++ code in HLS of Block B.

void Block_C(datatype_mid h[L],
datatype_mid F[L][L]){

#pragma HLS INTERFACE ap_none port=h
#pragma HLS ARRAY_PARTITION variable=h complete dim=1
#pragma HLS INTERFACE ap_fifo port=F
#pragma HLS ARRAY_PARTITION variable=F complete dim=1

for(unsigned char m=0;m<L;m++)
#pragma HLS PIPELINE II=1

for(unsigned char l=0;l<L;l++)
F[l][m]=h[m]*h[l];

}

(b)(a)
hL

·
·
·

h2

h1

 h

h2··· h1hL

hT

IBL

·
·
·

IB2

IB1 O1

IA

OL

·
·
·

O2

×

×

×

·
·
·

f12···f1L

fL1fL2···fLL

·
·
·

·
·
·

·
·
·

·
·
·

f21

f11

f22···f2L

 F

Figure 5. (a) Hardware structure and (b) C/C++ code in HLS of Block C.

T T_1

÷

1

Q

+

1
void Block_D(datatype_mid T,

datatype_mid Q){
#pragma HLS INTERFACE ap_none port=T
#pragma HLS INTERFACE ap_none port=Q

datatype_mid T_1=0;
T_1=T+(datatype_mid)1;
Q=(datatype_mid)1/T_1;

} (b)
(a)

Figure 6. (a) Hardware structure and (b) C/C++ code in HLS of Block D.
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void Block_E(datatype_mid F[L][L],
datatype_mid U[L][L],datatype_mid Q,
datatype_mid S_1_o[L][L][4],int v){

#pragma HLS INTERFACE ap_fifo port=F
#pragma HLS ARRAY_PARTITION variable=F complete dim=1
#pragma HLS INTERFACE ap_fifo port=U
#pragma HLS ARRAY_PARTITION variable=U complete dim=1
#pragma HLS INTERFACE ap_memory port=S_1_o
#pragma HLS ARRAY_PARTITION variable=S_1_o complete dim=1

datatype_mid S_1_col_mid1[L]={0};
#pragma HLS ARRAY_PARTITION variable=S_1_col_mid1 complete dim=1

datatype_mid S_1_col_mid2[L]={0};
#pragma HLS ARRAY_PARTITION variable=S_1_col_mid2 complete dim=1

for(unsigned char m=0;m<L;m++){
#pragma HLS PIPELINE II=1

for(unsigned char l=0;l<L;l++){
S_1_col_mid1[l]=Q*F[l][m];
S_1_col_mid2[l]=U[l][m]-S_1_col_mid1[l];
S_1_o[l][m][v%4]=S_1_col_mid2[l];

}
}

}
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Figure 7. (a) Hardware structure and (b) C/C++ code in HLS of Block E.

In what follows, the complete updating process of the inverse matrices by using these blocks can
be summarized in five stages as depicted in Figure 2.

Stage1 All elements of vector xT
n read from the DDR3 SDRAM are loaded sequentially and passed on

to the next stage.
Stage2 According to the index of the current pixel, we read a corresponding matrix S−1 from the

storage module. When dealing with the first four pixels of an image, we need to overwrite
the matrix S−1 with initialized matrix β · I. Then, we take matrix U and vector pT as input
operands into the Block A to calculate product h. Subsequently, p, h, and U are passed to the
next stage.

Stage3 We count T by applying the Block B, then transmit U, T, and h to the next stage.
Stage4 The Block C is utilized to work out the product F of two vectors. We calculate Q by employing

the Block D. Then U, F, and Q are delivered to the next stage.
Stage5 We figure out the new matrix S−1 through utilizing the Block E and write it to the

corresponding location of the storage module according to the current pixel.

Besides, it is worth noting that the following design optimization strategies play an important
role in improving the performance of the FPGA implementation.

(1) In the process of updating the inverse matrices, we allocate a single divider and execute it once for
each inverse matrix updating. Thanks to such operation, a lot of logic resources and computation
time consumed by the divider can be saved.

(2) There are three types of data that need to be cached between two stages, the scalar data, the vector
data, and the matrix data. In order to attain the capability of parallel computation, the matrix is
cached in L first in first out (FIFO) memories (In HLS, we use the STREAM directive to map these
sorts of data into FIFOs). While the elements of a vector are realized as registers. In addition,
L simple dual port RAMs (simple DPRAMs) are deployed to implement the storage module.

(3) The data type of input data is 16 bits signed fixed-point (15 bits fractional part), while the data
type of intermediate data and detection results are not easy to assign. Due to the precision
of intermediate data and detection results have a significant impact not only on the detection
accuracy but also on the resource consumption, we performed some experiments to explore the
relationship between the data precision and the detection accuracy. The experimental results
demonstrate that the detection accuracy goes up with the increase of the bit-width of the fractional
part. To better balance the trade-off between the detection accuracy and the resource consumption,
we use different data types in different stages. As shown in Figure 2, the variable T and Q are
defined as 38 bits signed fixed-point type (14 bits integer part, 23 bits fractional part). The elements
of the matrix F are 32 bits signed fixed-point type (14 bits integer part, 17 bits fractional part).
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All the other intermediate data are represented as 32 bits signed fixed-point type (7 bits integer
part, 24 bits fractional part). T and Q have the significant impact on the detection accuracy.
Therefore, they are assigned high data precision up to 38 bits. The elements of the matrix F are
obtained by the accumulation operations, and more bits should be assigned to the integer part for
avoiding data overflow. Though T and Q have larger bit-width up to 38 bits, it almost does not
increase the logic resource consumption compared with the data type of 32 bits signed fixed-point.
The reason is that only one single accumulation adder is allocated to compute T while one single
adder and one single divider are placed to calculate Q. It is worthwhile to highlight that these
data types can be defined and modified by HLS ap_fixed type easily.

4.2.2. Deep Pipeline

As shown in Figure 8, a full pipeline for updating inverse matrices is comprised of Task1, Task2,
Task3, Task4, and Task5. These five tasks correspond to Stage1, Stage2, Stage3, Stage4, and Stage5 in
Figure 2 respectively.

Task1 Task2 Task3 Task4

Task1 Task2 Task3 Task4

Task1 Task2 Task3 Task4

Task1 Task2 Task3 Task4

(S-1)1 (S-1)2

Time

Task5

Task5

Task5

Task5

Task1 Task2 Task3 Task4 Task5

x6 Task1 Task2 Task3 Task4 Task5

··· ···

H
S

I 
d

at
a

x2

x3

x4

x5

x1

(S-1)1(S-1)3 (S-1)4 (S-1)2

Figure 8. Timing diagram of the process of updating inverse matrix.

(1) For the purpose of reducing logic resources without compromising accuracy, we implement a
high-precision division with the price of long latency. It takes near 30 clock cycles to output the
division result. If the division operation is assigned to Task3, the running time of Task3 will
increase a lot. As a result, Task3 will turn out to be a bottleneck in the pipeline. Therefore, we
assign the division operation to Task4. Note that, the division and multiplication operations in
Task4 are carried out simultaneously.

(2) For each task, it does not start until all input data are ready and all output FIFOs are not full.
It can be simply realized in HLS by writing C/C++ code as shown in Figure 9. To make the
pipeline run efficiently, these FIFOs, which are dedicated to bridging two adjacent tasks, are
designed a little bit larger. In this work, the depth of FIFO for vector is 2, while the depth of FIFO
for the matrix is L× 2. Besides, the depth of simple DPRAM for the storage module is L× 2× 4.

(3) With regard to the execution time of each task, it is consistent with L + 12 times of the system
clock period. Among them, the input time of an L-dimensional vector is L clock cycles, the delay
time of the multiplier is one clock cycle, and the remaining 11 clock cycles are used to control
input/output of the task. Especially, because two extra clock cycles are required for overwriting
the matrix S−1 with the initialized matrix β · I, the total execution time of Task2 is L + 14 clock
cycles.
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void task(stream<bool>& task_cntrlfpre,stream<bool>& task_cntrl2nxt){
bool end_flag;
while(1){

while(1)             
if((!task_cntrlfpre.empty())&&(!task_cntrl2nxt.full())) break;

/*the calculations of this task,thus omitted*/
... 
task_cntrlfpre.read_nb(end_flag);
task_cntrl2nxt.write_nb(end_flag);
if(end_flag==1) break;

}
}

/******************************************************************************/
//parameter:task_cntrlfpre,task_cntrl2nxt
//implementation:The parameter task_cntrlfpre actually represents
//               a FIFO, and when the previous task is completed, the value
//               of end_flag is written to the FIFO. The value is 1 when 
//               processing the last pixel of an image, 0 otherwise. The 
//               parameter task_cntrl2nxt is similar to task_cntrlfpre.
/******************************************************************************/

Figure 9. Sample code used for implementing the data flow control of a task in HLS (The omitted lines
of code are the specific computations of each stage described in Section 4.2.1).

4.3. Difficulties with Using HLS

4.3.1. Feedback

The function of task-level pipelining is available in HLS by applying DATAFLOW directive.
However, one of the major difficulties with HLS is that HLS does not support to generate a task-level
pipelined structure if data dependency (feedback) exists. Unfortunately, there is a feedback in the
process of updating the inverse matrix as explained in Section 3.2. To solve this problem, we exploit a
design method with a hybrid of RTL and HLS. As shown in Figure 10, HLS is applied to create the
two complex modules, inverse matrix updater and spectral pixel filter. A small piece of RTL code is
written to complete the scheduler whose function is quite simple. Verilog’s generate statement is used
to circularly instantiate all of the simple DPRAMs allocated in the storage module. Moreover, a TCL
script for automatically connecting the above-mentioned modules is employed. When using HLS to
realize the inverse matrix updater module, we define separate interface variables representing the
input and output inverse matrices respectively. This separation strategy allows HLS to understand
there is no data feedback in accessing the inverse matrix. In fact, the input and output inverse matrices
are pointed to the same memory location in the storage module.

Inverse 
Matrix 

Updater
(HLS)

Scheduler
(RTL)

Spectral 
Pixel
Filter
(HLS)

S-1

(Generate Statement)
ap_hs(TCL)

L

L

4*2

ap_hs(TCL)

ap_memory ap_memory

Storage 

(TCL)
(TCL)

Figure 10. Diagram of development with multiple tools.
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4.3.2. High Fanout

Register duplication is one of the most common ways to solve high fanout violation. It can be
applied to relieve the fanout challenge as described in Section 3.2. However, the difficulty is how to make
HLS replicate registers automatically since there is no inherent support of such feature in HLS. To solve
this problem, we modify part of C/C++ code in HLS to split the high fanout task into two or more
identical subtasks, which allows HLS to generate duplicated circuits for reducing the fanout. With this
optimization, our FPGA implementation is able to work at a rate of speed higher than 200 MHz.

4.4. Specific Features

4.4.1. Scalability and Portability

Parallel computation and memory units are placed in the stages of the core architecture of
DPBS-CEM to accelerate the related operations of matrix multiplication. The number of the parallel
units is equal to the value L. By modifying the value L, we can easily scale the core framework of
DPBS-CEM with HLS to support different HSIs with different number of bands. Parameter customized
design method with HLS greatly improves the scalability of the system. Simultaneously, the framework
does not rely on any specific underlying physical devices of FPGA and vendor-provided IP cores.
Thus it can be easily ported to other types of FPGAs.

4.4.2. Flexibility

The flexibility feature is referred to as multiple work modes supported by the proposed DPBS-CEM.
The default work mode is high-speed, at which the pipeline is fully operating. Besides, DPBS-CEM is
also allowed to be configured working at low-speed mode. Then it can produce global detection results
with no need to split image data into four parts for applying deep pipeline. Furthermore, through
altering the control of the pipeline between the two processes of inverse matrix updater and spectral
pixel filter, DPBS-CEM can output detection results while part of the image pixels are obtained.

5. Experimental Results and Analysis

A Virtex7 FPGA board (Alpha-Data ADM-PCIE-7V3) is chosen as our development platform,
which provides more logic resources than the Kintex-7 board used in [21]. Besides the FPGA
implementation of DPBS-CEM, the simulation versions were also implemented using the MATLAB
and C++ languages. The code of MATLAB and C++ are executed on Windows 7 operating system
equipped with the Intel Core (TM) quad CPU @3.2 GHz and 4 GB main memory. We compare the
performance of DPBS-CEM with SBS-CEM [21] under the same condition of FPGA implementation.
The rest of this section is organized as follows. Section 5.1 describes two hyperspectral data sets used
in the experiment. Section 5.2 shows the detection accuracy of the DPBS-CEM algorithm evaluated
on both of the hyperspectral data sets. Section 5.3 gives a comparison of the processing time of the
DPBS-CEM algorithm in MATLAB, C++ and FPGA. Finally, compared to the FPGA implementation
of SBS-CEM [21], we analyze the advantages of the FPGA implementation of DPBS-CEM in terms of
logic resources utilization and data processing speed.

5.1. Hyperspectral Image Data Set

5.1.1. TE1 Image

As shown in Figure 11a, 25 panels created with five United States Geological Survey (USGS,
Reston, VA, USA) reflectance hyperspectral signatures: alunite (A), buddingtonite (B), calcite (C),
kaolinite (K), and muscovite (M). Each row of the five panels in Figure 11b is simulated by the same
mineral signature and each column of five panels has the same size [32,33]. Among 25 panels are: five
4× 4-pure pixel panels, pxi

4×4 for i = 1, . . . , 5 in the first column; five 2× 2-pure pixel panels, pxi
2×2 for
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i = 1, . . . , 5 in the second column; five 2× 2-mixed pixel panels,
{

pxi
3,jk

}2,2

j=1,k=1
for i = 1, . . . , 5 in the

third column; five subpixel panels, pxi
4,11 for i = 1, . . . , 5 in the fourth column; and five subpixel panels,

pxi
5,11 for i = 1, . . . , 5 in the fifth column. Table 2 tabulates the mixing details of mineral composition in

the 20 panels in the third column, while subpixel panels in the fourth and fifth columns are simulated
with their abundance fractions tabulated in Table 3, where the background (BKG) is simulated by the
sample mean of the real cuprite image scene in USGS [33]. The Synthetic image TE1 is 200× 200 pixels,
189 bands from 0.4 um to 2.5 um.

(a) (b) (c)

Figure 11. (a) Cuprite Airborne Visible/Infra Red Imaging Spectrometer (AVIRIS) image scene with
spatial positions of five pure pixels corresponding to minerals: alunite (A), buddingtonite (B), calcite
(C), kaolinite (K) and muscovite (M); (b) Synthetic image simulated by Scenario TE1; (c) Five reflectance
USGS ground-truth mineral spectra.

Table 2. Simulated 20 mixed panel pixels in the third column.

Row1 px1
3,11 = 0.5A + 0.5B px1

3,12 = 0.5A + 0.5C px1
3,21 = 0.5A + 0.5K px1

3,22 = 0.5A + 0.5M
Row2 px2

3,11 = 0.5B + 0.5A px2
3,12 = 0.5B + 0.5C px2

3,21 = 0.5B + 0.5K px2
3,22 = 0.5B + 0.5M

Row3 px3
3,11 = 0.5C + 0.5A px3

3,12 = 0.5B + 0.5C px3
3,21 = 0.5C + 0.5K px3

3,22 = 0.5C + 0.5M
Row4 px4

3,11 = 0.5K + 0.5A px4
3,12 = 0.5K + 0.5B px4

3,21 = 0.5K + 0.5C px4
3,22 = 0.5K + 0.5M

Row5 px5
3,11 = 0.5M + 0.5A px5

3,12 = 0.5M + 0.5B px5
3,21 = 0.5M + 0.5C px5

3,22 = 0.5M + 0.5K

Table 3. Abundance fractions of subpixel panels in the fourth and fifth columns.

Row Fourth Column Fifth Column

1 px1
4,11 = 0.5A + 0.5BKG px1

5,11 = 0.25A + 0.75BKG
2 px2

4,11 = 0.5B + 0.5BKG px2
5,11 = 0.25B + 0.75BKG

3 px3
4,11 = 0.5C + 0.5BKG px3

5,11 = 0.25B + 0.75BKG
4 px4

4,11 = 0.5K + 0.5BKG px4
5,11 = 0.25K + 0.75BKG

5 px5
4,11 = 0.5M + 0.5BKG px5

5,11 = 0.25M + 0.75BKG

5.1.2. HyMap Reflectance Image

The hyperspectral data set is provided by the Digital Imaging and Remote Sensing Group, Center
for Imaging Science, Rochester Institute of Technology [34]. Figure 12 shows the HyMap reflection
map of Cook City, Montana, USA with a resolution of 280× 800 and a total of 126 bands distributed
between 0.4 and 2.4 um. There is a grass area and four real panels of fabric in the data set as shown in
Table 4, where the area of interest is highlighted with a red circle.
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F2

F4b

F4a
F1F3b

F3a

 (a)

 (b)  (c)

 (a)

Figure 12. (a) HyMap reflectance image of Cook City in Montana, USA, and locations of the real targets;
(b) Enlarged figure of red box area; (c) Spectral signatures of four targets.

Table 4. The characteristics of targets in the real scene of HyMap.

Name F1 F2 F3a F3b F4a F4b

Size (m) 3 × 3 3 × 3 2 × 2 1 × 1 2 × 2 1 × 1
Fabric type Red cotton Yellow nylon Blue cotton Blue cotton Red nylon Red nylon

5.2. Analysis of Target Detection Accuracy

In this part, we evaluate the detection accuracy of the FPGA implementation of DPBS-CEM
by using the simulation/real HSI data sets described above. CEM and SBS-CEM are evaluated as
well for comparison. The detection accuracy can be evaluated via Receiver Operating Characteristics
(ROC) [35]. However, the ROC curves of different algorithms may be too close to determine which
algorithm has better performance. Therefore, in this paper, we choose another way commonly used
in medical diagnosis to calculate the area under a ROC curve, referred to as the area under the curve
(AUC) [36]. The AUC values corresponding to the detection results can further quantify the differences
in the accuracy of the algorithms. The higher the AUC, the better the detection accuracy.

5.2.1. Detection Accuracy of TE1

Figure 13 shows five detection maps produced by DPBS-CEM using the five-panel signatures A,
B, C, K, and M in Figure 11c as the desired target signatures. The two-dimensional (2-D) results of
real-time detection of target A illustrated in Figure 14. The experimental results show that all the AUC
values of five desired targets detected by DPBS-CEM are one, indicating that the detection results are
extremely satisfactory.

KA B C M

Figure 13. Detection maps of DPBS-CEM using A, B, C, K and M as desired target signature.
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da b c e

Figure 14. Real-time detection results with A used as desired target signature.

5.2.2. Detection Accuracy of HyMap

In order to further measure the performance of DPBS-CEM, we also focus on the detection results
of HyMap data set. Figure 15 shows the results of the target F4 obtained by Global-CEM, SBS-CEM,
and DPBS-CEM, respectively. For a more accurate representation of the detection results, we have an
enlarged target region of interest, as shown in red boxes of target F4 and Figure 16 of target F1, F2, and
F3. As we expected, in comparison to the target detection accuracy of SBS-CEM, DPBS-CEM has the
same or even better performance. This conclusion is further verified by the AUC values in Table 5.

Table 5. AUC obtained by different algorithms for the targets.

F1 F2 F3 F4

Global-CEM 0.9107 1 0.9067 0.9987
SBS-CEM [18] 0.9783 1 0.9862 0.9972

DPBS-CEM 0.9997 0.9999 0.9992 0.9994

Global-CEM

SBS-CEM

DPBS-CEM

Figure 15. Detection results for target F4 obtained by different algorithms.
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SBS-CEMGlobal-CEM DPBS-CEM

(a)
SBS-CEMGlobal-CEM DPBS-CEM

SBS-CEMGlobal-CEM DPBS-CEM
(b)

(c)

Figure 16. Detection results obtained by different algorithms for targets: (a) F1; (b) F2; and (c) F3.

5.3. Cross-Platform Performance Comparison

From the previous section, we can see that the proposed DPBS-CEM is very close to SBS-CEM [18]
in detection accuracy, some detection results of DPBS-CEM are even superior to the latter one. Table 6
shows the processing time comparison of the proposed DPBS-CEM on different platforms (such as
MATLAB, C++, and FPGA). The version of MATLAB used here is R2014a. The C++ environment
directly uses the software simulation environment of Vivado HLS 2017.3. The clock frequency of FPGA
is set at 200 MHz. As shown in Table 6, the processing time of DPBS-CEM implemented on FPGA
has achieved significant improvements compared to MATLAB and C++ implementations. On the
other hand, the processing time of our software versions is also superior to that of SBS-CEM software
implementations [21] since the proposed DPBS-CEM algorithm is less computationally expensive than
the SBS-CEM algorithm.

Table 6. Processing time measured for DPBS-CEM methods in MATLAB, C++, and FPGA implementations.

Platform MATLAB (s) C++ (s) FPGA (s)

HyMap 60.7378 58.135 0.1568

5.4. Performance Comparison between DPBS-CEM and SBS-CEM

The FPGA design of DPBS-CEM is implemented on a Virtex7 XC7VX690T FPGA. This FPGA
contains 108,300 slices, 433,200 six-input LUTs, 1470 BRAMs, and 3600 DSPs. To facilitate the performance
comparison between DPBS-CEM and SBS-CEM, we selected HyMap, the same hyperspectral data source
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used by SBS-CEM, as our input HSI. Next, we compare the FPGA implementations of SBS-CEM and
DPBS-CEM from two aspects of logic resources utilization and data processing speed.

Table 7 shows the resource utilization corresponding to SBS-CEM and DPBS-CEM. The right-hand
side lists the unit’s ratios and average ratios of DPBS-CEM and SBS-CEM. As Table 7 illustrates, the
average resource utilization of DPBS-CEM is 5.21 times more than that of the SBS-CEM algorithm,
which is caused by the deep pipelined structure. As aforementioned in Section 4.2.1, the intermediate
data precision has a dramatic impact on the detection accuracy. Table 8 shows the relationship between
the detection accuracy represented by AUC and the intermediate data precision. In Table 8, we set the
data precision as fixed-point type with total of 32, 34, 36, 38, 40, and 42 bits, and identical 14 bits integer
part. The experimental results demonstrate that the detection accuracy goes up sharply with the
increase of data precision from 32 to 38 while keeps the same from 38 to 42. Due to the same bit-width
of the integer part, it can be concluded that the bit-width of the fractional part mainly determines the
detection accuracy. According to the experimental results, the bit-width of the fractional part should
be more than 23.

The performance of DPBS-CEM has been greatly improved compared with SBS-CEM. Table 9
shows the number of clock cycles occupied by SBS-CEM and DPBS-CEM and the ratio between them.
At the same clock frequency of 200 MHz, the number of clock cycles consumed by SBS-CEM is nearly
7.3 times more than that of DPBS-CEM. In other words, when processing the same image, the data
processing speed of DPBS-CEM is 7.3 times faster than that of SBS-CEM. It is worthwhile to mention
that our work is conducted by mainly using HLS.

Table 7. Comparison of resource utilization for the FPGA implementations of SBS-CEM and DPBS-CEM.

SBS-CEM Units (G) DPBS-CEM Units (Z) Ratio
(

Z
G

)
Number of DSP48Es 265 1396 5.27
Number of Block RAM 120 379 3.16
Number of Slices 12,088 58,167 4.81
Number of Flip Flops 28,245 217,958 7.72
Number of LUTs 21,730 111,073 5.11
Average Ratio – – 5.21

Table 8. Corresponding AUC values with different intermediate data accuracy of algorithm (we set F1
in HyMap image as the desired target).

Precision (Bit) 32 34 36 38 40 48

AUC 0.2530 0.4779 0.5463 0.9997 0.9997 0.9997

Table 9. Comparison of data processing speed for the FPGA implementations of SBS-CEM and
DPBS-CEM.

SBS-CEM DPBS-CEM Speedup

Frequency (MHz) 200 200 7.3×Number of clock periods 229,607,996 31,360,557

6. Discussion

CEM is an effective algorithm for subpixel target detection in hyperspectral imagery. The classical
CEM needs to solve a large matrix inversion problem. SBS-CEM takes the Sherman-Morrison formula
to update the inverse matrix for each pixel, which can avoid the complex calculation of large matrix
inversion. However, SBS-CEM still uses sliding windows and has data dependency problems, which
prevents its further performance improvement on target detection in terms of processing speed.
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To solve these problems, we proposed an optimized algorithm called DPBS-CEM. It follows the
same way that is used to update the inverse matrix gradually according to the Sherman-Morrison
formula [28] but uses cumulative windows instead of sliding windows to reduce the number of
calculations. Pixel data splitting and separating inverse matrix memories are utilized to remove the
data dependency existing in the process of updating the inverse matrix. Moreover, we provide an
FPGA implementation of the proposed DPBS-CEM whose deep pipelined architecture can be realized
by using HLS.

According to the experimental results presented in this paper, the target detection accuracy of the
proposed DPBS-CEM algorithm on two data sets are nearly the same. Compared to SBS-CEM, it has
the same or even better detection accuracy. Regarding the processing speed performance, DPBS-CEM
gained about 7.3 times speedup than that of SBS-CEM. It is worth noting that the proposed architecture of
DPBS-CEM can also gain benefits in terms of scalability, portability, and flexibility with the help of HLS.
This is particularly suitable for the real-time hyperspectral target detection applications on satellite.

7. Conclusions

In this paper, an optimized algorithm , referred to as DPBS-CEM for hyperspectral target detection,
is proposed. A deep pipelined architecture of DPBS-CEM on FPGA is developed by using HLS as
well. The experimental results show that the proposed FPGA implementation of DPBS-CEM has
an extraordinary performance improvement in terms of data throughput without compromising for
detection accuracy. Under the same test conditions, the detection speed of our proposed DPBS-CEM is
about 7.3 times faster than that of SBS-CEM.
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Abbreviations

The following abbreviations are used in this manuscript:

HSI Hyperspectral image
FPGA Field programmable gate array
CEM Constrained energy minimization
HLS High-level synthesis

Appendix A

Table A1. Vivado HLS optimization pragmas.

Directive Description

#pragma HLS INTERFACE Specifies how RTL ports are created from the function description.

#pragma HLS PIPELINE Reduces the initiation interval by allowing the concurrent execution
of operations within a loop or function.

#pragma HLS ARRAY_PARTITION
Partitions large arrays into multiple smaller arrays or into
individual registers, to improve access to data and remove block
RAM bottlenecks.

#pragma HLS UNROLL Unroll for-loops to create multiple independent operations rather
than a single collection of operations.

#pragma HLS DATAFLOW Enable task level pipelining, allowing functions and loops to execute
concurrently. Used to minimize interval.
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