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Abstract: Integration of Landsat images and multisource data using spatial statistical analysis and
geographical detector models can reveal the individual and interactive influences of anthropogenic
activities and ecological factors on concentrations of atmospheric particulate matter less than
2.5 microns in diameter (PM2.5). This approach has been used in many studies to estimate biomass
and forest disturbance patterns and to monitor carbon sinks. However, the approach has rarely
been used to comprehensively analyze the individual and interactive influences of anthropogenic
factors (e.g., population density, impervious surface percentage) and ecological factors (e.g., canopy
density, stand age, and elevation) on PM2.5 concentrations. To do this, we used Landsat-8 images
and meteorological data to retrieve quantitative data on the concentrations of particulates (PM2.5),
then integrated a forest management planning inventory (FMPI), population density distribution
data, meteorological data, and topographic data in a Geographic Information System database,
and applied a spatial statistical analysis model to identify aggregated areas (hot spots and cold
spots) of particulates in the urban area of Jinjiang city, China. A geographical detector model
was used to analyze the individual and interactive influences of anthropogenic and ecological
factors on PM2.5 concentrations. We found that particulate concentration hot spots are mainly
distributed in urban centers and suburbs, while cold spots are mainly distributed in the suburbs
and exurban region. Elevation was the dominant individual factor affecting PM2.5 concentrations,
followed by dominant tree species and meteorological factors. A combination of human activities
(e.g., population density, impervious surface percentage) and multiple ecological factors caused
the dominant interactive effects, resulting in increased PM2.5 concentrations. Our study suggests
that human activities and multiple ecological factors effect PM2.5 concentrations both individually
and interactively. We conclude that in order to reveal the direct and indirect effects of human activities
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and multiple factors on PM2.5 concentrations in urban forests, quantification of fusion satellite data
and spatial statistical methods should be conducted in urban areas.

Keywords: multisource data fusion; aerosol retrieval; urban scale; vegetation dust-retention; multiple
ecological factors; geographical detector model

1. Introduction

As industrialization and urbanization have intensified, so has the concentration of fine particulates
in the atmosphere. These particulates, known as PM2.5 (aerodynamic diameters < 2.5 µm [1]),
originate from vehicle exhaust, coal-fired power plants, building construction (dust), and domestic
heating (coal). Fine particulates are not only detrimental to human health (respiratory problems, lung
disease, etc. [2,3]), but they also cause global atmospheric changes [4].

At present, most studies of PM2.5 focus on their sources and methods for monitoring them [5].
However, studies examining the degree to which urban forests trap particulates, combined with
data from forest management planning inventories (FMPI), remote sensing imagery, population
density, and impervious surface percentages, are rare. These types of environmental data could be
extremely helpful for managing urban forests and improving air quality [6]. Focusing on urban forests
is important because urban forests help protect human health and improve environmental quality
by improving air quality (e.g., forests absorb pollutants and reduce chemical reaction rates [7,8]).
Tiwary [9] has linked urban forests with human health effects. In one study of a 10 × 10 km grid in
London with a tree coverage of 25%, the urban forest was estimated to remove 900 t of PM10 annually,
which is the equivalent of preventing two deaths and two hospital admissions each year [10].

Most studies have investigated the effects of ecological factors (e.g., canopy density, leaf area
index (LAI), and Normalized Difference Vegetation Index (NDVI)) on PM2.5 concentrations at ground
level using a variety of instruments and statistical approaches. For instance, Jin [11] measured canopy
density and LAI with a laser dust monitor and applied a mixed-effect model to quantitatively analyze
the effect of particulates on vegetation. Similarly, Liu [12] used a TH-150C particulate sampler to
obtain PM2.5 concentrations in sample plots and applied a multiple regression model to analyze
the relationship between PM2.5 concentrations and NDVI and LAI. Although particle collectors can
accurately capture PM2.5 concentrations in real time, these instruments are expensive to operate.
Furthermore, because particle collectors require many sampling points to ensure accuracy, sampling is
extremely labor intensive [13]. In addition, these ground-based studies used remote sensing indices
and traditional statistical analyses, both of which have a number of limitations. First, single remote
sensing indices (e.g., NDVI, Enhanced Vegetation Index (EVI), and LAI) are indicators of physiognomic
parameters of vegetation, but cannot be used to quantify important site-specific parameters, such as
soil depth, stand age, canopy density, and dominant tree species. Second, past studies have not
considered that different tree species have significantly different PM-retaining capacities. Gao [14]
pointed out that forest type and tree species differ significantly in their settlement rate of particulates.
Finally, traditional statistical analyses only reveal the effects of single or multiple environmental factors
and remote sensing indices on PM2.5 concentrations, ignoring anthropogenic factors. Past studies
have also not considered whether multiple impact factors act individually or synergistically on PM2.5

concentrations [15].
Saebo [16] pointed out that in order to comprehensively understand the individual and interactive

influences of anthropogenic and ecological factors on PM2.5 concentrations, Landsat images and
multisource data must be integrated with a spatial statistical analysis that takes into account physical
parameters of vegetation and underlying surface features. Therefore, in this paper, we use Landsat-8
images and meteorological data to retrieve quantitative PM2.5 concentrations in an urban area.
To do this, we created a GIS database that integrated multisource data (including Landsat-8 images,
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FMPI, population density distribution data, topographic data, and meteorological data) in a spatial
statistical analysis model to identify specific areas of high concentration of PM2.5 (hot spots) and low
concentration (cold spots) in various parts of the urban environment. A geographical detector model
was used to analyze the independent and interactive influences of anthropogenic and ecological factors
on urban forest PM2.5 concentrations.

The goal of this study was to analyze the independent and interactive influences of various factors
on urban forest PM2.5 concentrations. The findings can be used to identify crucial impact factors of
PM2.5 concentrations, which is an important first step for policymakers when managing air pollution,
monitoring pollution, and estimating pollution exposure.

2. Materials and Methods

2.1. Overview

We approached this study in three steps. First, a GIS database was created that integrated
multiple types of data (including Landsat-8 images, FMPI, meteorological data, and population
density distribution data). Second, areas with abnormally high concentrations of PM2.5 (hot spots)
and abnormally low concentrations (cold spots) were identified using Global Moran’s I and Getis-Ord
Gi* algorithms [17,18]. The optimal threshold distance was calculated using an incremental spatial
autocorrelation module. Third, a geographical detector model was used to analyze the individual and
interactive influences of anthropogenic and ecological factors on urban forest PM2.5 concentrations
(these factors included human activities, topographic parameters, soil characteristics, meteorological
factors, and vegetation characteristics).

2.2. Developing a Multiple-Source Spatial Database

The data used to model PM2.5 concentrations consisted of five distinct datasets. The first, obtained
from the National Statistics Bureau, provided data on the population density distribution of Jinjiang,
which was mapped using kernel density. The second dataset was composed of spatially explicit
PM2.5 concentration data, which were retrieved from three Landsat-8 images and verified using
meteorological observation data. The three remote sensing images consisted of Row 119/Path
43 Landsat-8 images from 13 December 2014, 29 December 2014, and 14 January 2015, all acquired
during winter under clear atmospheric conditions at approximately 10:29 a.m., local time. The third
dataset comprised FMPI data obtained from the Jinjiang Forestry Bureau, which were collected
every 10 years. The accuracy of the FMPI data was evaluated using stratified systematic sampling.
The sampling accuracy of total stand volume was 90% and the reliability was 95% [19]. The FMPI of the
attribute database included three parts: (1) forest characteristics (patch area, stand age, canopy density,
and dominant tree species); (2) soil characteristics (soil depth, humus depth, and site index); and
(3) topography (elevation, slope degree, slope position, and slope direction). The fourth dataset was
meteorological data from the China Meteorological Forcing Dataset (doi:10.3972/westdc.0294.db) [20].
This dataset was produced by merging a variety of data sources. Its spatial resolution is 0.1 degree
and its temporal resolution is 3 h, and it can be used for hydrological modeling, land surface
modeling, land data assimilation, and other terrestrial modeling. The dataset included seven parts
(temperature, pressure, specific humidity, wind speed, downward shortwave radiation, downward
longwave radiation, and precipitation rate). Four meteorological factors were studied in our research:
temperature (TEM), pressure (PS), specific humidity (SH), and wind speed (WS). Our dataset can be
obtained at http://westdc.westgis.ac.cn/data/7a35329c-c53f-4267-aa07-e0037d913a21. The format
of our meteorological data is a network common data format file (NetCDF) and we used ArcGIS10.3
(ArcGIS10.3.1) to convert the NetCDF file to a TIFF file. The fifth dataset is meteorological observation
data obtained from the Jinjiang Meteorological Bureau. The PM2.5 spatial data and population density
data were raster-based, while the FMPI data were vector-based. The vector and raster data differed
in structure and form, so it was difficult to integrate these data. In order to solve the integration
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problem, we standardized the data by converting formats, transforming coordinates, and applying
geometric corrections. We used forest patch size as the basic spatial unit and then calculated average
population density and average PM2.5 concentrations for each patch using zonal, statistical tools.

2.3. Calculation of PM2.5 Concentrations

2.3.1. Satellite-Derived Aerosol Optical Depth (AOD)

We assumed that the land surface could be represented as a Lambert surface and that the
atmospheric level was uniform. Apparent reflectance (ρtoa) at the top of the atmosphere can be
expressed as [21]

ρtoa(θs, θv, φ) = ρ0(θs, θv, φ) + T(θs)·T(θv)·
ρs(θs, θv, φ)

[1− ρs(θs, θv, φ)·S] (1)

where θs is the solar zenith angle; θv is the satellite zenith angle; φ is the azimuth of the scattered
radiation from the solar beam; ρ0 is path radiance; ρs is the angular surface reflectance; S is the
atmospheric backscattering ratio; T(θs) is the normalized downward flux for zero surface reflectance;
and T(θv) represents upward total transmission into the satellite’s field of view. We downloaded
Landsat-8 data from the Geospatial Data Cloud (http://www.gscloud.cn) and then used ENVI5.3
software to preprocess the imagery. The pretreatment process mainly included masking, radiation
calibration, geometric correction, and calculating the apparent reflectance (ρtoa) of the atmosphere.
The mid-infrared (2.12 mm) channel is less sensitive to aerosol scattering (because the wavelengths
are larger than the size of most aerosol particles); however, the channels are sensitive to ground
surface characteristics [22] and the apparent reflectance of mid-infrared at the top of the atmosphere,
the angular surface reflectance of the red band, and the angular surface reflectance of the blue band
have a fixed function, this function was modified using a Dark Dense Vegetation (DDV) algorithm [23].
Next, we used the DDV algorithm to calculate the surface reflectance of the red and blue bands.
An aerosol lookup table (LUT) was constructed using the Second Simulation of the Satellite Signal
in the Solar Spectrum (6S) atmosphere transmission model for the blue and red bands [21]. Finally,
we obtained the atmospheric status of the computed reflectance which best matched the apparent
reflectance of the atmosphere and the corresponding AOD value [22].

2.3.2. Calculation of PM2.5 from AOD Data

AOD values indicate the accumulation of the extinction coefficient in the entire
atmospheric column. The PM2.5 concentrations only represent the near-surface “dry” aerosol
extinction coefficient. An estimate of PM2.5 concentrations from AOD data alone would produce
large uncertainties. Therefore, we had to account for changes in PM2.5 concentrations with elevation
and correct for relative humidity in order to reduce these uncertainties [24]. Vertical and humidity
corrections are needed to calculate PM2.5 concentrations in urban forests from AOD data. To do this,
the Height of Planetary Boundary Layer (HPBL) was incorporated into the vertical correction, while
the effects of hygroscopic growth were used to determine the humidity correction [25,26]. In this study,
AOD data were converted to a near-surface “dry” aerosol extinction coefficient and their correlation
relationships with ground PM2.5 concentrations [27,28]. The correlation between AOD and the surface
aerosol extinction coefficient was affected by the vertical distribution of aerosols, so we determined
the vertical correction for PM2.5 concentrations using horizontal visibility to calculate the surface
aerosol extinction coefficient. We also needed to correct for humidity because the meteorological
stations measured PM2.5 concentrations at a specific relative humidity, so we used relative humidity
data to calculate the “dry” aerosol extinction coefficient. Next, we performed module estimations.
Wang [29] found that it was possible to develop linear correlative models between a “dry” aerosol
extinction coefficient and PM2.5 concentration. We used the “dry” aerosol extinction coefficient and
PM2.5 concentrations collected in real time (at twelve ground monitoring sites) to establish models

http://www.gscloud.cn
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based on their correlation and estimate PM2.5 concentrations. Our results indicated that the Landsat
estimation of PM2.5 correlates with ground-based measurements on 13 December 2014, 29 December
2014, and 14 January 2015, with R2 = 0.68, 0.66, and 0.72, respectively (Figure 1). For additional details,
please see Supplementary Materials.

Figure 1. Correlation between kAOD,Dry and PM2.5 concentrations on 13 December 2014,
29 December 2014, and 14 January 2015 (both acquired from Environmental Protection of Jinjiang
kAOD,Dry represents the aerosol extinction coefficient in dry conditions).



Remote Sens. 2018, 10, 521 6 of 17

2.4. Spatial Statistical Analysis

We used Global Moran’s I spatial autocorrelation method to determine the value of the relationship
between a feature’s location and its attributes. We used the Getis-Ord Gi* spatial statistical method
to provide us with a set of weighted values and identify statistically significant hot spots and cold
spots on the ground. (Hot spots represent positions of statistically significant clustering of high
PM2.5 concentrations (p-value < 0.05) and cold spots represent positions of statistically significant
clustering of low PM2.5 concentrations (p-value < 0.05) [30]). Both Moran’s I and Getis-Ord Gi* have
been used in a variety of ways, such as for helping to predict urban development patterns, analyzing
pollution patterns, and examining traffic accident patterns [31,32]. We used the Moran’s I index to
first analyze the spatial autocorrelation of PM2.5. We then used the Getis-Ord Gi* index to identify
areas of aggregated PM2.5 (hot spots and cold spots). However, the Getis-Ord Gi* module demands
that optimal threshold distances (i.e., distances at which spatial processes that promote clustering
are most obvious) be supplied before it can analyze spatial data. Therefore, we used the incremental
spatial autocorrelation module to determine the optimal distance threshold for aggregated areas [33].
Measures of spatial autocorrelation for a range of distances and optimal distances establish a line
graph for those distances and their corresponding z-scores. Z-scores demonstrate the intensity of
spatial clustering. However, statistically significant peak z-scores reveal distances where the spatial
processes that promote clustering are most obvious. We used the incremental spatial autocorrelation
module to determine the optimal distance threshold by increasing the threshold distance from 500
to 7000 m at intervals of 500 m until it reached its maximum value (3500 m). Therefore, we defined
3500 m as the optimal distance threshold in our study.

2.5. Geographical Detector Model Description

The geographical detector is a statistical tool for detecting spatially stratified heterogeneity and
revealing the factors responsible for the heterogeneity [34]. In our study, we used a range of detectors
designed to assess ecological and anthropogenic factors associated with PM2.5 concentrations as
determined by spatial variance analysis (SVA). The fundamental idea of SVA is to measure the spatial
consistency of PM2.5 concentration distribution versus ecological factors (e.g., forest, soils, topography)
and anthropogenic factors (e.g., population density). The power of determinant (PD) of different
impact factors on PM2.5 concentration can be expressed using Equation (2):

PD = 1− 1
N ∗ σ2

L

∑
i = 1

Ni ∗ σi
2. (2)

A detailed explanation of Equation (2) is as follows:

PD = q = 1− ∑l
h = 1 ∑Nh

i = 1 (Yhi −Yh)
2

∑N
i = 1

(
Yi −Y

)2 = 1− ∑l
h = 1 Nhσ2

h
Nσ2 =1− SSW

SST
(3)

where the total sum of squares is

SST =
N

∑
i

(
Yi −Y

)2
= Nσ2 (4)

and the sum of squares within is

SSW =
l

∑
h = 1

Nh

∑
i
( Yhi −Yh)

2
=

l

∑
h = 1

Nhσ2
h (5)
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where PD is the power of determinant of impact factors on PM2.5 concentration; N is the number

of forest patches and is stratified into h = 1, . . . , 2, L strata; stratum h is composed of Nh units;
Yi and Yhi denote the value of unit i in the population and in stratum h, respectively; the stratum

mean is Yh = ( 1
Nh

)∑Nh
i = 1 Yhi; the stratum variance is σ2

h =
(

1
Nh

)
∑Nh

i (Yhi − Yh)
2; the population

mean is Y = ( 1
Nh

)∑N
i = 1 Yi; and the population variance of PM2.5 concentrations of the entire region

is σ2 =
(

1
Nh

)
∑Nh

i (Yi − Y)2. PD ∈ [0,1], where PD approaches 0, implies that the determinant
is completely unrelated to the PM2.5 concentrations. Where PD approaches 1, the determinant
completely controls PM2.5 concentration. PD has a corresponding p-value that can be used to evaluate
uncertainty [35]. For additional details, please see Supplementary Materials. Based on this idea,
we used geographical detector tools (factor detector and interaction detector) to detect various factors
that may influence PM2.5 concentrations, the degree of influence of each factor, and the interactions
between factors based on spatial analysis of variance [36]. The factor detector quantifies the impact of
ecological and anthropogenic factors on an observed spatial PM2.5 pattern. The interaction detector
probes whether two impact factors taken together enhance or weaken each other, or whether they
affect PM2.5 concentrations independently [37].

Enhance, nonlinear : PD(X1 ∩ X2 = X3) > PD(X1) + PD(X2), (6)

Independent : PD(X1 ∩ X2 = X3) = PD(X1) + PD(X2), (7)

Enhance, bi : PD(X1 ∩ X2 = X3) > Max(PD(X1), PD(X2), (8)

where X1, X2, and X3 represent the impact factors. PD(X1), PD(X2), and PD(X1 ∩ X2 = X3) are
the power of determinants of the impact factors on PM2.5 concentrations. Max(PD(X1), PD(X2))

represents the maximum value of PD(X1), PD(X2). So, the PD value of each impact factor and the
PD value of their interactions are used to quantitatively evaluate the relationships between potential
impacts and their determinants. The geographical detector models used in this study are freely
available from http://www.sssampling.org/Excel-geodetector/. According to the geographical
detector input rules, all independent variables should be discrete. Therefore, the rules in the
FMPI instruction manual and the natural breaks method were chosen as the classification method.
Multiple environmental factors and population density were applied as independent variables in the
geographical detector model. Specifically, PM2.5 concentration is the dependent variable. We used
geographical detector models to examine the individual and interactive effects of multiple ecological
and anthropogenic factors on urban forest PM2.5 concentrations.

3. Results

3.1. Spatial Distribution Pattern of Urban Forest PM2.5 Concentrations

The spatial distributions of PM2.5 concentrations on 13 and 29 December 2014 and 14 January 2015
showed significant spatial clustering (Global Moran’s I = 0.192, z-score = 63.412 on 13 December 2014;
Global Moran’s I = 0.336, z-score = 110.860 on 29 December 2014; Global Moran’s I = 0.185,
z-score = 95.761 on 14 January 2015) (Table 1). The aggregated areas (hot spots and cold spots) of
PM2.5 identified by Getis-Ord Gi* showed that PM2.5 hot spots were concentrated in urban centers and
suburbs (n = 1917 on 13 December 2014; n = 2283 on 29 December 2014; n = 1887 on 14 January 2015) and
cold spots were mainly distributed in the suburbs and exurban regions (n = 1082 on 13 December 2014;
n = 1212 on 29 December 2014; n = 1337 on 14 January 2015) (Figure 2).

http://www.sssampling.org/Excel-geodetector/
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Figure 2. Spatial distributions of urban forest PM2.5 concentrations on three different days at the optimal distance threshold of 3500 m.
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Table 1. The global spatial autocorrelation statistics (Moran’s I) of PM2.5 concentrations on 13 December
2014, 29 December 2014, and 14 January 2015.

Time 13 December 2014 29 December 2014 14 January 2015

Moran’s I Index 0.192 ** 0.336 ** 0.185 **
z-score 63.412 110.860 95.761
Pattern Clustered Clustered Clustered

Note: p < 0.001 in all regions in 2014 and 2015; ** represents significant values.

3.2. Population Density and Stand Structure

The human population density of Jinjiang was 1530 people km−2 and the density distribution
demonstrated a significant spatial autocorrelation (Moran’s I = 0.642, z-score = 269.293) in 2014
(Figure 3). The Getis-Ord Gi* statistics revealed that the spatial distributions of the population and
PM2.5 concentrations were similar in the northwest and on the central coast, but were different in the
south. According to the FMPI data, the total area of forest in the study region was 9565.68 ha, average
canopy density was 0.393, and average tree age was 20.123 ± 5.857 years. The dominant tree species in
the urban forests were Casuarina pusilla, Acacia crassicapa, Eucalyptus robusta Smith, Acacia confusa Merr,
Cunninghamia lanceolate, and Pinus massoniana.

Figure 3. The spatial distribution of population density in 2014 (mapped using kernel density in Arc
GIS 10.3).
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3.3. Influences of Anthropogenic and Ecological Factors on Urban Forest PM2.5 Concentrations

We compared the locations of PM2.5 hot and cold spots on three dates. Our results showed
that elevation (a topographic factor), dominant tree species (a forest characteristic factor), and wind
speed (a meteorological factor) were the main factors related to urban forest PM2.5 concentrations.
These three factors influenced the model more than population density (Figure 4, Table 2). In addition,
the interaction between elevation and dominant tree species showed enhancement as did the interaction
between elevation and impervious surface percentage. Dominant tree species and population density
showed enhancement as did dominant tree species and impervious surface percentage. The influence
of ecological factors on the model differed among the three dates. For example, on 13 December 2014,
the main influential factors were dominant tree species (PD = 0.044), wind speed (PD = 0.038), and
elevation (PD = 0.030). On 29 December 2014, the main influential factors were elevation (PD = 0.108),
wind speed (PD = 0.107), and dominant tree species (PD = 0.103). On 14 January 2015, the main
influential factors were elevation (PD = 0.077), dominant tree species (PD = 0.075), and forest patch
area (PD = 0.063). Compared with the independent effect of population density, the interactive
effect was significant. Although the independent effect of population density was weak, we cannot
simply assume that population density was not crucial. Spatial heterogeneity is complex in urban
environments and human activities have a significant impact on urban ecosystems. The interactive
effect could be more than the sum of the independent effects of any two factors. For example, the
interactive effect of dominant tree species and population density (0.154) is greater than the sum of the
individual effects of dominant tree species and population density (0.071). With the acceleration of
urbanization, the interactive effects of population density, impervious surface percentage, and other
factors could result in increased air pollution (Figure 5). The datasets in this study were limited by
the availability of remote sensing image archives and the cloud-prone climate in southern China,
which allowed us to select only three qualified scenes (i.e., 13 December 2014, 29 December 2014, and
14 January 2015) under relatively clear and stable atmospheric conditions.

Table 2. The power of determinant (PD) of forest attributes, soil, topography, meteorological factors,
and population on PM2.5 concentrations on three different days.

Factors Factor Composition 13 December 2014 29 December 2014 14 January 2015

Forest Characteristics

PA 0.013 0.063 0.063
DS 0.044 0.109 0.078
CD 0.016 0.019 0.009
SA 0.004 0.010 0.008

Soil
SI 0.005 0.011 0.006
SD 0.001 0.017 0.019
HD 0.001 0.001 0.001

Topography

ELE 0.030 0.117 0.086
SDe 0.029 0.077 0.058
SPo 0.018 0.061 0.050
SDi 0.011 0.018 0.020

Human Activity PopD 0.029 0.042 0.029
ISP 0.024 0.044 0.035

Meteorological factors

TEM 0.012 0.100 0.057
SH 0.028 0.107 0.057
PS 0.038 0.093 0.049
WS 0.038 0.107 0.057
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Figure 4. The power of determinants of different impact factors (forest, soils, topography,
meteorological factors, and population) on PM2.5 concentrations in Jinjiang. (PA = patch area,
DS = dominant species, CD = canopy density, SA = stand age, SI = site index, SD = soil depth,
HD = humus depth, ELE = elevation, SDe = degree of slope, SPo = slope of position, SDi = slope aspect,
PopD = population density, ISP = impervious surface percentage, TEM = temperature, SH = specific
humidity, PS = pressure, WS = wind speed), p-values < 0.1 for all factors.

Figure 5. Scores for the interactive effects of impact factors sensitivity rankings at the three
periods studied calculated based on simulations using multisource data ((A) 13 December 2014;
(B) 29 December 2014; (C) 14 January 2015).

4. Discussion

4.1. Significance

Integration of Landsat images and multisource data using spatial statistical analysis and a
geographical detector model can reveal the individual and interactive influences of anthropogenic
and ecological factors on PM2.5 concentrations. The results of this study emphasize the importance
of human activities and ecological factors in determining PM2.5 concentrations and the different
strengths of these factors. Our study provides a more comprehensive analysis of human and ecological
influencing factors through the use of remote sensing data, statistical analysis, and monitoring data at
an urban scale.
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4.2. Individual Functions

The ecological factors of elevation, dominant tree species, and meteorological factors significantly
influenced particulate concentrations in urban areas. Many studies have shown that, at small spatial
scales, elevation affects particulate concentrations by influencing air flow, pressure, temperature,
and precipitation [38,39]. There are several possible explanations for this finding: (1) Particulates are
more buoyant in the air at low elevation (over time, PM2.5 at high elevations will sink down to low
elevations, adding to the concentration of PM2.5 at the lower elevation); (2) Each 100 m increase in
elevation coincides with a 0.6 ◦C drop in temperature, which affects particulate concentrations [40].
At higher elevations, the ground absorbs more radiation from the sun, which warms air near the ground
and causes it to rise, creating convection currents in the upper atmosphere. This meteorological process
encourages the proliferation of atmospheric pollutants (including particulates); (3) As atmospheric
pressure decreases with increasing elevation [41,42], air volume expands and the atmosphere becomes
less stable, thus leading to a widespread diffusion of air pollutants.

Tree species composition significantly affected particulate concentrations, presumably because
the dust-removing ability of plants differs significantly by species [43,44]. The variations in particulate
retention among tree species in this study were consistent with those found by Liu [12] and
Yang [45] and may be explained by variations in morphological characteristics that enable plants
to trap particulates (e.g., canopy structure, leaf density, leaf surface roughness, and wax) [16].
The three-dimensional structure of tree canopies encourages turbulent air movement and the
more complex the canopy structure, the more particulates are deposited onto leaf surfaces [46].
Conifers retain more particulates than broadleaf trees because of their smaller, more densely packed
leaves and more complex stem arrangements [47]. Rough leaf surfaces are also more effective than
smooth leaf surfaces in accumulating particulates [48].

Wind speed is also an important factor affecting the diffusion of PM2.5 concentrations.
In general, higher wind speeds contribute to PM2.5 diffusion. Under zero wind speed conditions,
PM2.5 particulates aggregated at the surface layer [49].

4.3. Interactive Functions

Our study found that human activities significantly enhanced the effects of ecological factors on
PM2.5 concentrations. This suggests that human activities might be the dominant factor affecting PM2.5

concentrations in Jinjiang, China, which is consistent with previous research [50]. Of the anthropogenic
factors, we found that population density was most responsible for enhancing the effects of elevation
and dominant tree species on PM2.5 concentrations. The increase in population density caused by
increased residential areas and increased impervious surface percentage could significantly increase the
PM2.5 concentrations in central urban areas [51]. Populations and industries tend to settle and build at
low elevations. The resulting heavy human and industrial activity could therefore significantly increase
PM2.5 concentrations in central urban areas [52]. The interactive effects between impervious surface
percentage and other factors were similar to those just described for population density. These findings
show that the combined influences of anthropogenic activities and multiple ecological factors on PM2.5

concentrations should be considered when developing pollution monitoring and control strategies in
Jinjiang, China. Previous studies used multivariate statistics to study the individual impacts of multiple
ecological factors (such as tree species composition, NDVI, etc.) on PM2.5 concentrations [53,54].
However, these studies ignored the interactions of these factors. Furthermore, multivariate statistical
analyses have not considered the spatial heterogeneity of PM2.5 concentrations and have only focused
on nonspatial features and attributes. Thus, we used geographical detector models to examine the
individual and interactive influences of anthropogenic and ecological factors. This approach assesses
the multiple ecological and anthropogenic factors associated with PM2.5 concentrations by means of
spatial variance analysis (SVA).
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4.4. Limitations and Advantages of the Study

There are several limitations of the present study. First, the correlation between AOD and
particulates was complex. We found that it varied at different temporal and spatial scales. In the
future, we need to improve our understanding of the chemical properties of AOD and particulates to
improve the model’s accuracy. Second, because the urban ecosystem is complex and factors that affect
pollution in cities differ spatially, we need to identify functional areas (e.g., clean areas, traffic areas,
industrial areas) and study the different dust-retention mechanisms within them. Third, because of
data limitations, the anthropogenic factors included only population density and impervious surface
percentage, which cannot comprehensively express the characteristics of human activities. Fourth,
future research should focus on integrating longer time series of remote sensing images to more
accurately delineate the interactions between multiple ecological factors and their effects on urban
forest PM2.5 concentrations, while also using remote sensing data fusion methods to achieve high
temporal and spatial resolution simultaneously at the city scale. Finally, the process of comparing
quantitative impact factors with qualitative impact factors is subjective, because arbitrary methods of
discretization (e.g., standard deviation, equal interval, Jenks, and quantile) may not characterize the
actual associations between impact factors and PM2.5 concentrations [55–57].

Despite these limitations, this study has several advantages. First, we integrated detailed
datasets (including FMPI, Landsat-8 images, population density distribution data, topographic data,
and meteorological data). Second, we analyzed the spatial distribution of PM2.5 concentrations and
described their spatial heterogeneity. Finally, we revealed the individual and interactive influences of
anthropogenic and ecological factors on PM2.5 concentrations, which improves our understanding of
PM2.5 pollution distribution patterns in Jinjiang, China.

5. Conclusions

At present, most studies of PM2.5 concentrations are conducted at large spatial scales, have a
broad research scope, and use remote sensing images with coarse image resolution. Here, we focus
on urban ecosystems, using a case study to create a methodology for quantifying the interactions
between human activities and multiple ecological factors at an urban scale. Our method reveals
the individual and interactive influences of these factors on PM2.5 concentrations by integrating
field surveys with satellite-derived PM2.5 data and population density data. We used a spatial
statistical analysis model to identify aggregated areas (hot spots and cold spots) of particulates in
an urban environment. A geographic detector model was used to quantify the impact of ecological
and anthropogenic factors on observed spatial PM2.5 patterns and to probe whether two impact
factors enhance, weaken, or remain independent of each other when considering their combined
impacts on PM2.5 concentrations. FMPI can provide vegetation attribute information (e.g., forest, soil,
topography, and other attribute information) and model input parameters. Spatial statistics describe
the spatial heterogeneity of particulate concentrations. We found that fine particulate concentration
hot spots are mainly distributed in urban centers and suburbs, while cold spots are mainly distributed
in the suburbs and exurban regions. Elevation was the dominant individual factor affecting PM2.5

concentrations, followed by dominant tree species and meteorological factors. In terms of interactive
effects, the combination of human activities (e.g., population density, impervious surface percentage)
and multiple ecological factors led to the largest increases in PM2.5 concentrations in our study area.
In conclusion, in order to reveal the direct and indirect effects of human activities and multiple factors
on PM2.5 concentrations in urban forests, quantification of fusion satellite data and spatial statistical
methods should be conducted in urban areas. These findings extend our understanding of the factors
influencing the spatial distribution of PM2.5 concentrations and may help guide efforts to manage air
pollution, monitor pollution, and estimate pollution exposure.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/10/4/521/s1,
This section describes in detail the calculation of PM2.5 concentrations and Geographical detector model.
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