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Abstract: In this work, a framework is proposed to build topological models in mobile robotics,
using an omnidirectional vision sensor as the only source of information. The model is structured
hierarchically into three layers, from one high-level layer which permits a coarse estimation of
the robot position to one low-level layer to refine this estimation efficiently. The algorithm is
based on the use of clustering approaches to obtain compact topological models in the high-level
layers, combined with global appearance techniques to represent robustly the omnidirectional
scenes. Compared to the classical approaches based on the extraction and description of local
features, global-appearance descriptors lead to models that can be interpreted and handled more
intuitively. However, while local-feature techniques have been extensively studied in the literature,
global-appearance ones require to be evaluated in detail to test their efficacy in map-building tasks.
The proposed algorithms are tested with a set of publicly available panoramic images captured
in realistic environments. The results show that global-appearance descriptors along with some
specific clustering algorithms constitute a robust alternative to create a hierarchical representation of
the environment.

Keywords: computer vision; omnidirectional imaging; global-appearance descriptors; environment
modeling; clustering

1. Introduction to Map Building Using Vision Sensors

Over the last few years, mobile robots have become a crucial technology to solve a variety of tasks.
Creating an optimal model of the environment where they are moving is one of the most important
abilities they must be endowed with, so that they can estimate its position and navigate towards the
target points. With this aim, robots must be equipped with sensors that enable them to collect the
necessary information to model the environment. In this work, the robot is equipped with a catadioptric
vision sensor which provides it with omnidirectional images from the environment. Owing mainly to
the large quantity of information they can capture with only one snapshot (360◦ around the camera
axis), omnidirectional vision systems have become a popular option in the implementation of mapping
algorithms such as the SLAM method presented by Caruso et al. [1], who prove that even at relatively
low resolutions, the model built with omnidirectional images provides a good localization accuracy.
Additionally, if the movement of the robot is contained in the floor plane, the models built from
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omnidirectional scenes would permit implementing localization algorithms which work correctly
independently of the orientation of the robot. This is a key feature to obtain fully functional models.

Working with visual sensors entails some other difficulties, because omnidirectional images are
high-dimensional data which may change substantially not only when the robot moves but also under
other circumstances, such as changes in the lighting conditions. Also, realistic indoor environments
are prone to the perceptual aliasing problem, that is, images which have been captured from different
positions may have a similar appearance, which would lead to confusion about the position of
the robot. Taking these facts into account, a processing step is necessary to extract relevant and
distinguishable information from the scenes which is able to cope with these events. This processing
step must lead to compact visual descriptors that permit building useful models with computational
efficiency. Traditionally, researchers have made use of methods based on the extraction, description
and tracking of relevant landmarks or local features, such as SIFT (Scale Invariant Feature Transform),
SURF (Speeded-Up Robust Features) or ORB (Oriented FAST and Rotated BRIEF) features [2–4].
They can be considered mature methods, and some analyses of their performance can be found in
the literature, such as the one developed by Jiang et al. [5], who make a comparative evaluation in
stereovisual odometry tasks. More recently, a new family of methods that process the image as a
whole, with no local feature extraction, have emerged. These global-appearance methods build one
unique, compact descriptor per scene, and a number of alternatives can be found in the literature [6–8].
Since each image is represented with a sole descriptor, these methods usually lead to more simple
models of the environment and relatively straightforward localization algorithms, based on the direct
comparison between pairs of descriptors. Nevertheless, they contain no metrical information and
therefore, they have been used typically to construct topological models, which have proved to be
enough for most applications [9,10].

In this work, a framework to create a topological hierarchical model of the environment is
proposed and tested. In the literature, some developments can be found about hierarchical mapping.
Galindo et al. [11] present a method to build a map that includes two hierarchies, a spatial one,
which consists of a grid map obtained from range sensors, and a semantic one, constructed from
the data captured by a set of sonars and a video camera. Also, Pronobis and Jensfelt [12] develop
a hierarchical approach to categorization of places, using a variety of input data, and they cluster
places using a door detector. In our work, only visual information is used. A set of images captured
from several points of view of the a-priori unknown environment are available. Starting from them,
a hierarchical map is created, by arranging the information into several layers, with different degrees of
detail: (a) one high-level map, which reflects the general structure of the environment (that is, the rooms
that compose it); (b) one or more intermediate-level maps, containing information on the different
regions that exist in each room; and (c) a low-level map which contains the original set of images and
the connectivity relationships between them. The creation of the high-level and intermediate-level
maps requires compacting the visual information, trying to extract common patterns that permit
organizing it correctly. In this field, some authors have proposed data-compression strategies to
build efficient maps based on local features [13–15]. Amongst the compression methods, clustering
algorithms can be used to compact the information because they are potentially able to group the
visual information into several clusters containing visually similar scenes, and represent each cluster
with a representative instance. Previous works have made use of such algorithms to create visual
models of an environment, using local features, such as Zivkovik et al. [16], Valgren et al. [17] and
Stimec et al. [18]. Ideally, to create useful maps, the clustering algorithm should group images that
have been captured from geometrically close positions. However, visual aliasing could lead to errors
in the model if only visual information is used.

The main contribution of this work consists in developing a comparative evaluation of several
well-known global-appearance descriptors to create the hierarchical model. Also, some clustering
methods are tested and their performance to create each layer of the map is assessed. Since only visual
information and global-appearance descriptors are used, the framework will lead to purely topological
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models and it must be able to cope with the visual aliasing phenomenon. A publicly available set of
images, captured in a realistic indoor environment, is used to test the algorithms developed and to
tune all the parameters involved. Finally, to prove the validity of the mapping method, the hierarchical
localization problem is also solved and its performance is compared with the performance of an
absolute localization method.

The current work continues and expands the scope of the research presented in [19], where a
comparative evaluation between some global description methods is carried out to obtain a low-level
map and to create the topological relationships between the images of this level. Now, this evaluation
is extended and generalized, and a method is proposed to create hierarchical maps which
arrange the information more optimally, into several layers, which would permit an efficient
localization subsequently.

The remainder of the paper is structured as follows. In Section 2, a succinct outline of the
global-appearance approaches that will be used throughout the paper is made. After that, Section 3
presents the framework proposed to create hierarchical maps and the clustering methods used to
compact the visual information in the high-level layers. Section 4 presents the set of experiments
that have been conducted to validate the proposal. To conclude, a final discussion is carried out in
Section 5.

2. State of the Art of Global Appearance Descriptors

In this section, some methods to describe the global appearance of a set of scenes are presented.
The performance of these methods in hierarchical mapping will be evaluated throughout the
subsequent sections. Five families of techniques are used to obtain the global-appearance descriptors
in this work: the discrete Fourier transform (Section 2.1), principal component analysis (Section 2.2),
histograms of oriented gradients (Section 2.3), the gist of the scenes (Section 2.4) and convolutional
neural networks (Section 2.5). A detailed description of the methods can be found in [19,20].

2.1. Fourier Signature

The Fourier signature is a method to describe the global appearance of an image f (x, y) ∈ RNx×Ny

and was initially proposed in [21,22]. It consists of calculating the discrete Fourier transform of each
row of the initial image. The result is a transformed, complex matrix F(x, v) ∈ CNx×Ny (v is the
frequency variable) where the most relevant information is concentrated on the first components of
each row. Additionally, the last components are prone to be contaminated by the possible presence of
high-frequency noise in the original image, so only the first columns are usually retained, having a
compression effect. Furthermore, the matrix F(x, v) can be decomposed into a magnitudes matrix
A(x, v) ∈ RNx×k1 and an arguments matrix Θ(x, v) ∈ RNx×k2 . The magnitudes matrix contains
information on the overall structure of the image. Also, if the image f (x, y) is panoramic, then A(x, v)
is invariant against changes of the robot’s orientation in the ground plane and Θ(x, v) can be used to
estimate these changes, thanks to the shift theorem of the discrete Fourier transform [22]. Considering
this, the magnitudes matrix can be considered as a global feature that describes the appearance of the
environment as observed from the capture point of the image f (x, y). This matrix can be arranged
to compose a vector ~gPos ∈ RNx ·k1×1, where k1 is the number of columns retained in the magnitudes
matrix, and is an important parameter whose impact upon the mapping process must be evaluated.

2.2. Principal Component Analysis

Principal component analysis (PCA) constitutes a classical way to extract the most relevant
information from a set of n images [23]. Each image f j(x, y) ∈ RNx×Ny , j = 1, . . . , n can be considered
as a point in a multidimensional space ~xj ∈ RNx ·Ny×1, (n << Nx · Ny). This way, any classical PCA
approach, such as the one proposed by Turk and Pentland [24], can be used to build a transformation
matrix V that permits projecting each point onto a new, lower-dimensional space. Each transformed
point~pj ∈ Rk3×1 is known as a projection, and k3 ≤ n is the number of PCA features retained (those that
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contain the most relevant information). The use of such analysis in mapping and localization is quite
limited mainly because the projections are not invariant against changes of the robot’s orientation
in the ground plane, even if panoramic images are used. This is why Jogan and Leonardis [25,26]
developed the concept of eigenspace of spinning images. When building the transformation matrix V,
they consider a set of NR rotated versions of each initial panoramic image, what permits including in
the model some information about all the possible orientations the robot could have in a specific point
of the environment. Taking advantage of the properties of these images, they decompose the original
problem into a set of lower-order problems. Once the process finishes, the map is composed of (a) one
descriptor per original panoramic image, ~gPos

j ∈ Rk3×1, which are the position descriptors, since they

are invariant against rotations of the robot; (b) one phase vector per image, ~φm ∈ Rk3×1, which permit
calculating the orientation of the robot; and (c) the transformation matrix V ∈ Ck3×Nx ·Ny , where k3

is the number of main eigenvectors retained. The two most relevant parameters in this process are
NR and k3. On the one hand, the higher NR is, the more information on the robot’s orientation is
included in the model, but the slower is the process to build it. On the other, the higher k3 is, the more
information is retained, and if k3 = n, all the information contained in the original set of scenes is kept.
This can be counter-productive, as the most relevant and distinguishing information is in the first
components. Finally, despite being a mathematically optimized process, it is still computationally very
expensive. Owing to this, the eigenspace of spinning images has been used typically to model small
environments, with a reduced number of views. Throughout the paper, this method will be referred to
as rotational PCA.

2.3. Histogram of Oriented Gradients

The histogram of oriented gradients (HOG) method proposes describing the appearance of one
image through the orientation of the gradient in local areas of it. Originally developed by Dalal
and Triggs [27] to perform people detection, it has scarcely been used in the modeling of controlled
and relatively small environments [28]. The method used in the present paper is fully described
in [7], where HOG is redefined to create two global-appearance descriptors of a panoramic image:
a position descriptor, which is invariant against rotations of the robot in the ground plane, and an
orientation descriptor, which permits calculating the relative angle rotated by the robot. On the one
hand, the position descriptor ~gPos ∈ Rk4·b×1 is built by dividing the panoramic image into a set of
k4 horizontal cells. A histogram with b bins per cell is built, from the information of the gradient
orientation of each pixel within it, and all the histograms are arranged in a vector, to compose the
descriptor. On the other hand, the orientation descriptor ~gRot ∈ Rk5·b×1 is obtained after dividing the
image into a set of k5 overlapped vertical cells and obtaining one histogram per cell.

2.4. Gist of the Images

This concept was developed by Oliva et al. [29,30] to obtain low-dimensional descriptors from
the global appearance of the images, inspired by the human process to recognize scenes. More recent
works have established a synergy between it and the prominence concept, which tries to model the
properties that make a pixel to stand out with respect to its neighborhood. It has led to descriptors
built from the intensity, orientation and color information [31]. Some authors have used these concepts
in mapping and localization tasks [32,33], by calculating the gist descriptor in local areas of the images.
In the present work, we use an implementation of the gist descriptor, based on orientation information,
which reflects the global appearance of the scene. A complete explanation can be found in [7].
This implementation leads to one position descriptor and one orientation descriptor per panoramic
image. In brief, several Gabor filters are applied to the panoramic image, with m evenly distributed
orientations and 2 resolution levels. The information is then grouped into (a) k6 horizontal blocks
(by calculating the average value of each block) and arranged into a vector to compose the position
descriptor ~gPos ∈ R2·k6·m×1, and (b) k7 vertical blocks with overlapping to create the orientation
descriptors ~gRot ∈ R2·k7·m×1.
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2.5. Descriptor Based on the Use of Convolutional Neural Networks

In recent years, the success of deep-learning techniques has led to an increase of the use of
convolutional neural networks (CNN) as an alternative to carry out object recognition from the
information contained in digital images, with no need for extracting local features from them.
These neural networks work with the images globally, and their main purpose consists of extracting
information from them, for example, to carry out a classification or object-detection task. Firstly,
the network has to go under a learning process, in which a set of training images, whose category is
previously known, is presented to the network. Thanks to this, the neurons’ weights and biases are
tuned. Secondly, once trained, when an image is presented to the network to extract information from
it, the network starts obtaining the most appropriate description of the image. Several intermediate
descriptors may be obtained, depending on the number of layers in the network.

Convolutional neural networks were initially proposed and developed to carry out object
recognition from digital images. A variety of network architectures can be highlighted owing to their
good performance in this task, such as AlexNet [34], GoogleNet [35] or VGG-16 [36]. More recently,
CNNs have evolved and some alternatives can be found to develop categorization of visual scenes
into types of place. When an image is presented to these networks, they generate visual descriptors
which are useful to solve, subsequently, the categorization task. The descriptors provided by the last
layers of these convolutional networks are specially relevant for the present work, because they can be
considered as global features that contain relevant information from the original image. In the early
stages of this technology, the networks were trained with a wide variety of input data to carry out object
recognition subsequently. However, in the last few years, some CNN frameworks have been proposed
that include networks previously trained in scene-categorization tasks [20]. We propose using an
Alexnet CNN architecture trained on 205 scene categories of a places database with about 2.5 million
images [37]. We make use of this previously trained network with the objective of obtaining a descriptor
for each of the images considered in this work to carry out hierarchical mapping. More concisely,
we consider two alternatives to describe each image: the descriptor provided by the layer fc7 of the
network, which contains 4096 components (that is, ~gPos ∈ R4096×1), and the descriptor provided by
the layer fc8, which contains 205 components (~gPos ∈ R205×1). These are the last two fully connected
layers of the network.

3. Creating a Hierarchical Map from a Set of Scenes

This section concentrates on the creation of a multi-layer hierarchical map from a set of images
captured along the environment. A clustering approach will be used to group sets of images together
and create each topological layer in the hierarchical map. Firstly, a general description of the process
and the contents of the map are outlined in Section 3.1. After that, the clustering algorithms used
throughout the paper are presented in Section 3.2.

3.1. Creating the Low-Level and the High-Level Topological Maps

The objective of this paper consists of developing strategies to create visual hierarchical maps,
using only the information contained in a set of images, which have been captured from several points
of view of a multiroom environment, to cover it completely. This way, the visual information must be
grouped into several layers, by means of any clustering algorithm, with the objective of enabling a
subsequent localization in an efficient way.

To optimize the task, this work proposes building a hierarchical topological map that arranges
the information into three layers:

(a) Low-level map. It represents the images captured within the environment and the topological
relationships between them. Figure 1a shows the low-level map of a sample generic environment.
The green squares represent the capture points of the images.
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(b) Intermediate-level map. It represents groups of images that have been captured from points of the
environment that are geometrically close among them. Every group will be characterized by a
representative image, which identifies the group, and is fundamental to carry out the hierarchical
localization process. Figure 1b shows an example. The intermediate-level map is composed of
several clusters (whose representatives are shown as blue circles in this figure) and connectivity
relationships among them.

(c) High-level map. It represents the rooms that compose the environment and the connectivity
relationships between them (Figure 1c). Ideally, the high-level map contains as many clusters as
rooms in such a way that every cluster contains all the scenes captured within each room.

The steps we propose to build the complete hierarchical map are:

1. Grouping images together to create the high-level map. The algorithm starts from the complete
set of images, captured by the robot when it goes through the entire environment to map.
Making use of a clustering algorithm, these images must be grouped together in such a way that
the resulting clusters coincide with the rooms of the environment. In this step, the ability of both
the description and the clustering algorithms will be tested to solve the task. Also, the necessary
parameters will be tuned to optimize the results. The main complexity of this task lies in the visual
aliasing phenomenon, which may result in a mix-up between scenes captured from different
rooms (that is, they can be assigned to the same cluster). This analysis is performed in Section 4.3.

2. Creating groups with the images of each room to obtain the intermediate-level map. This step
is repeated for each of the clusters created in the previous step, taking as initial data the images
that each specific cluster contains. Using another clustering algorithm, these images must
be grouped together in such a way that the resulting clusters contain images captured from
geometrically close points. This is a complex problem, as the only criterion to make the groups
is the similitude between the visual descriptors, which are the only data available. Once again,
a series of experiments will be conducted to assess the validity of each description and clustering
method to solve the task. To validate the results, we will check whether the clusters created with
the visual similitude criterion actually contain images that have been captured from geometrically
close points. This problem is analyzed in detail in Section 4.4.

3. Setting topological relationships between the images and the cluster representatives.
The objective is to establish these relationships in order to obtain a complete and functional map at
each level that represents the connectivity between capture points and furthermore, that includes
information on the relative distance between these points.

This is an advantageous approach to create the model of the environment from the point of view
of the subsequent localization task, which can be carried out hierarchically, with a computationally
efficient process. This way, firstly, the different layers permit carrying out the localization task in a
hierarchical way. Secondly, the topological relationships permit navigating towards the target points.
About the localization process, when the robot is at an unknown position, it will capture an image,
describe it and compare the descriptor with the representatives of the clusters that compose the
high-level map. As a result, a coarse localization is obtained in one of the rooms of the environment.
After that, the descriptor is compared with the representatives of the intermediate-level map that
belong to this room, and a more fine localization in an area of the environment is obtained. To finish,
the descriptor is compared with the images of the low-level map that belong to the winning cluster of
the intermediate-level map, obtaining an accurate estimation of the position. Section 4 shows how
the proposed model can be used to solve the localization problem hierarchically, and the accuracy
and computational cost of this process, comparing it to an absolute localization process (with no
hierarchical model available).

The third step was developed in detail in [19], where a method based on a physical system of
forces was proposed to establish topological relationships between the capture points of a set of images,
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using only the visual information to this purpose. The method proved to work correctly and efficiently
with a set of images captured in a real environment and under real working conditions. Considering
this, in this paper, the first and second steps will be addressed. The same dataset will be used in the
experimental section (Section 4) to test the proposed methods. The next subsection lays out these
problems and our approach to them.

(a)

(b)

(c)

Figure 1. Hierarchical topological map built from a set of scenes captured from several rooms of a
sample environment. (a) Low-level; (b) intermediate-level; and (c) high-level map.
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3.2. Compacting Visual Models Using a Clustering Approach

As presented in the previous subsection, the creation of the different layers of the hierarchical map
is addressed from a clustering point of view. Generally speaking, the clustering algorithms enable us
to handle massive amounts of data to extract some relevant information from them, in such a way that
their analysis is more systematic. These algorithms classify a set of entities or data vectors. Each cluster
is characterized by the common attributes of the entities it contains. In this application, the entities
are the position descriptors of the scenes, which have, in general, l dimensions each (as specified in
Section 2 for each description method). To build a topological model of the environment, it is necessary
to choose an appropriate clustering method and test the feasibility of each description method and the
influence of its size upon the correctness of the results.

An exhaustive compilation of clustering algorithms can be found in the works of Everitt et al. [38].
In the present work, two families of methods will be used and tested: hierarchical and spectral
clustering algorithms. To start with, a more detailed description of these algorithms will be included,
and then the experiments will be addressed.

In all the cases, the input data is a set of scenes I = {im1, im2, . . . , imn} which have been captured
from several positions of the environment to map. A global-appearance position descriptor is calculated
from each image and, as a result, a set of visual descriptors is available, G = {~gPos

1 ,~gPos
2 , . . . ,~gPos

n }
where, in general, ~gPos

i ∈ Rl×1. The poses (position and orientation) of the capture positions are also
known, P = {(x1, y1, θ1), (x2, y2, θ2), . . . , (xn, ynθn)}. However, this information will be used only as
ground-truth data to assess the correctness of the results; purely visual information is proposed to be
used during the mapping and localization processes.

To create each layer of the hierarchical map, a clustering approach will be used. The initial dataset
G = {~gPos

1 ,~gPos
2 , . . . ,~gPos

n } will be divided into k clusters C = {C1, C2, . . . , Ck} such that:

Ci 6= ∅, i = 1, . . . , k
k⋃

i=1

Ci = G

Ci ∩ Cj = ∅, i 6= j, i, j = 1, . . . k.

(1)

Once this process has been carried out, a representative descriptor will be calculated for each
cluster, so that a layer of the model will be composed of the set of representatives R = {~r1,~r2, . . . ,~rk}.
Ideally, the clusters must contain images that were captured from geometrically near positions.
Nevertheless, in a real application, this may not be true due to the visual aliasing phenomenon.
Considering both this phenomenon and the high dimensionality of the data, classical clustering
algorithms, such as k-means, would not work optimally. Instead, the algorithms presented in the next
two subsections will be tested.

3.2.1. Hierarchical Clustering

Hierarchical clustering algorithms [39] group the data together, step by step, into a hierarchical
clusters’ tree or dendrogram. To start with, each entity is considered a cluster. Then, in each iteration,
the two most similar clusters are gathered to create a new cluster in the next level. The process finishes
when a cluster that contains all the entities has been created. This process permits deciding the most
appropriate number of clusters for one specific application. To perform a hierarchical clustering,
the next algorithm has to be followed:

1. Initialization:

(a) The initial set of clusters is chosen as C0 = {Ci = {~gPos
i }, i = 1, . . . , n}.

(b) D0 = dist(G). This is the initial distances’ matrix D0 ∈ Rn×n of the dataset G, a symmetric
matrix where each component is Dij = dist(~gPos

i ,~gPos
j ).
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(c) t = 0.

2. Repeat (until all the entities are included in a unique cluster):

(a) t = t + 1.
(b) Among all the possible pairs of clusters (Ca, Cb) in Ct−1, the pair (Ci, Cj) =

mina,b (dist(Ca, Cb)) is detected.
(c) Merge Cr = Ci

⋃
Cj and produce the new set of clusters Ct =

(
Ct−1 − {Ci, Cj}

)⋃{Cr}.
(d) The distances’ matrix Dt ∈ Rn−t×n−t is defined from Dt−1 by deleting the two rows

and columns that belong to the merged clusters, and adding a new row and column that
contain the distance between the new cluster and the other clusters that remain unchanged.

3. Finalization:

(a) Once the tree is built, a cutting level is defined, to decide the final division into clusters.
(b) The branches of this level are pruned and all the entities that are under each cut are

assigned to an individual cluster.

Usually, this kind of algorithm is implemented on the grounds of matrix theory. In every iteration
of the clustering algorithm t, the two most similar clusters are merged to create a new cluster. There are
several criteria that permit calculating the distance between the new cluster Cr (which results from
merging the two clusters Ci and Cj) and a previous cluster Cs. Depending on how we define this
distance, a specific modality of the hierarchical clustering is obtained. Table 1 shows the most common
expressions that can be used to calculate this distance. In this table, nr and ns are the cardinal numbers
of the clusters Cr and Cs, respectively, ~gPos

r,p is the p-th entity in cluster Cr, and ~gPos
s,q is the q-th entity in

cluster Cs.

Table 1. Methods to calculate the distance between two clusters in the hierarchical clustering process.

Method dist(Cr , Cs)

Shortest distance
(single)

min
(

dist(~gPos
r,p ,~gPos

s,q )
)

where: p ∈ [1, . . . , nr], q ∈ [1, . . . , ns]

Longest distance
(complete)

max
(

dist(~gPos
r,p ,~gPos

s,q )
)

where: p ∈ [1, . . . , nr], q ∈ [1, . . . , ns]

Average unweighted distance
(average) 1

nr ·ns
·∑nr

p=1 ∑ns
q=1 dist(~gPos

r,p ,~gPos
s,q )

Average weighted distance
(weighted)

The distance is obtained recursively:
1
2 ·
(

dist(Ci, Cs) + dist(Cj, Cs)
)

Distance between unweighted centroids
(centroid)

dist( ¯̄gPos
r , ¯̄gPos

s )

where: ¯̄gPos
r = 1

nr
∑nr

p=1~g
Pos
r,p

Distance between weighted centroids
(median)

dist(ĝPos
r , ĝPos

s )

where ĝPos
r = 1

2

(
ĝPos

i + ĝPos
j

)
is built recursively

Minimum intracluster variance
(Ward)

√
2·nrns
nr+ns

· dist( ¯̄gPos
r , ¯̄gPos

s )

Furthermore, to calculate the distance between each pair of entities, several distance measurements
can be used. In the experiments, the performance of the following classical distance measures
will be evaluated: (1) the cityblock or Manhattan distance dist1(~gPos

i ,~gPos
j ); (2) the Euclidean

distance dist2(~gPos
i ,~gPos

j ); (3) a correlation distance, which is obtained from the Pearson correlation
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coefficient of the two vectors dist3(~gPos
i ,~gPos

j ) = 1− simPearson(~gPos
i ,~gPos

j ) (Equation (2)); (4) a cosine

distance, which is obtained from the inner product of the two normalized vectors dist4(~gPos
i ,~gPos

j ) =

1 − simcosine(~gPos
i ,~gPos

j ) (Equation (3)); (5) a weighted distance dist5(~gPos
i ,~gPos

j ) (Equation (4)),
which weights more the difference of the first components of both vectors; and (6) a square-root
distance, dist6(~gPos

i ,~gPos
j ) (Equation (5)), which was proposed by [40] to be used in clustering

applications with highly dimensional data.

simPearson(~gPos
i ,~gPos

j ) =
(g̃Pos

i )T · g̃Pos
j∣∣g̃Pos

i

∣∣ · ∣∣∣g̃Pos
j

∣∣∣ , (2)

simCosine(~gPos
i ,~gPos

j ) =
(~gPos

i )T ·~gPos
j∣∣~gPos

i

∣∣ · ∣∣∣~gPos
j

∣∣∣ , (3)

dist5(~gPos
i ,~gPos

j ) =

(
l

∑
a=1

ωa ·
∣∣∣gPos

i (a)− gPos
j (a)

∣∣∣p) 1
p

, (4)

dist6(~gPos
i ,~gPos

j ) =

√√√√1
l

l

∑
a=1

(
gPos

i (a)− gPos
j (a)

gPos
i (a) + gPos

j (a)

)2

, (5)

where g̃Pos
i =

[
gPos

i (1)− ḡPos
i , . . . , gPos

i (l)− ḡPos
i
]T , ḡPos

i = 1
l ∑l

a=1 gPos
i (a) and gPos

i (a) is the a − th
component of the vector ~gPos

i .
Dendrograms constitute a powerful way to represent the sequence of clusters that an

agglomerative algorithm produces at each step t. As an example, let us suppose that a set of data
is initially available G = [~gPos

1 ,~gPos
2 , . . . ,~gPos

7 ]T . These data have been obtained by calculating the
Fourier signature of seven panoramic scenes captured from three different rooms. Making use of the
correlation distance, the distances’ matrix is calculated (Equation (6)). In this matrix D0 = dist(G),
each component (i, j) represents the distance dist3(~gPos

i ,~gPos
j ). Considering this matrix, the dendrogram

that reflects the hierarchical clustering of the dataset G can be depicted, as Figure 2a shows.

D0 = dist(G) =



0 0.011 0.032 0.184 0.191 0.092 0.090
0.011 0 0.016 0.193 0.120 0.113 0.110
0.032 0.016 0 0.201 0.206 0.119 0.117
0.184 0.193 0.201 0 0.002 0.176 0.186
0.191 0.120 0.206 0.002 0 0.182 0.193
0.092 0.113 0.119 0.176 0.182 0 0.002
0.090 0.110 0.117 0.186 0.193 0.002 0


(6)

In the first step of the clustering algorithm, ~gPos
4 and ~gPos

5 are grouped together. The height of the
horizontal branch that joins them is dist3

(
~gPos

4 ,~gPos
5
)
. This is the first group made by the algorithm,

since these are the two entities that are the most similar. In the second step, ~gPos
6 and ~gPos

7 are grouped
together. Thirdly, the algorithm groups ~gPos

2 and ~gPos
3 and then, in the fourth step, ~gPos

1 is assembled to
the group {~gPos

2 , ~gPos
3 }. The algorithm continues and naturally finishes when all the entities are joined

into a unique cluster.
The height difference between every horizontal line and the one that is directly above gives us

an idea of how natural or forced the creation of this step’s cluster has been. For example, the height
difference between the branches created at steps 3 and 4 is relatively small. This means that the
distance between the two clusters that have been joined to create a unique cluster is small, so this new
cluster has been created in a natural fashion. However, the height difference between the steps 4 and 5
is relatively high, which indicates that the cluster created after the fifth step is forced; two clusters
that are relatively different have been grouped together to create a new, unnatural cluster. Once the
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dendrogram has been built, to obtain the final set of clusters, it must be cut through a specific level.
Choosing correctly this level is essential to obtain a set of clusters that represent in a natural way the
input data. By choosing the cutting level shown in Figure 2b, k = 3 clusters will be obtained which,
additionally, constitutes a natural way to represent the data, as the line cuts vertical branches that are
relatively high.

Once the dendrogram is built, it is advisable to study whether it represents the input data in a
natural fashion. As presented in the previous paragraph, in a hierarchical clusters’ tree, in a specific
iteration, two objects are grouped together to create a new cluster. The height of the branch created in
this step represents the distance between the two clusters that contain these two objects. This height
is known as the cophenetic distance between the two objects. A possible way to measure how well
the tree represents the original data consists of comparing the cophenetic distances with the distances
among the entities, which are stored in the distances’ matrix D0. In this work, we calculate the
Spearman’s rank correlation γcoph between the distances among entities and the cophenetic distances.
The more similar this coefficient is to 1, the more naturally the dendrogram represents the initial data.

Finally, once the cutting level has been selected and therefore the data have been split into clusters,
the consistency of the clusters should be evaluated. To this purpose, the height of each branch can
be compared with the heights of the neighbors that are situated beneath. If the height of one specific
link is approximately equal to the height of the links below it, that indicates that there is no distinctive
separation between the objects grouped in this level of hierarchy. This means that these links have a
low consistency, and pruning them would lead to unnatural clusters. In the same way, inconsistent
links point out the limit of a natural division of the dataset. The relative consistency of each link in a
hierarchical clustering tree can be quantified through an inconsistency coefficient δinconsist. This value
is the result of comparing the height of the links situated in the pruned level with the average height
of the links beneath it. Therefore, it is a measurement of the consistency of a specific division into
k clusters from the original data. In each experiment, this coefficient has been normalized to take
a maximum value equal to 1. This way, the higher this coefficient is, the more natural the final
clusters are.

(a) (b)

Figure 2. (a) Dendrogram that reflects the hierarchical clustering of the dataset G = [~gPos
1 ,~gPos

2 , . . . ,~gPos
7 ]T

and (b) cutting level that results in k = 3 clusters.
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3.2.2. Spectral Clustering

The algorithms based on spectral clustering have proved to perform successfully with
high-dimensional data [41], including images [17,18]. The implementation used in this work was
proposed by Ng et al. [42].

The spectral clustering algorithms take the mutual similitude among all the entities into account.
This is why they have proved to be more effective than traditional methods, which only consider the
similitude between each entity and the k representatives. The algorithm starts obtaining the similitude
between each pair of entities Sij to build the similarity matrix S, where:

Sij = e−

∣∣∣∣ ~gPos
i − ~gPos

j

∣∣∣∣2
2σ2 . (7)

The input to this algorithm is this matrix and the number of clusters k. The algorithm consists of
the following steps:

1. Calculate a diagonal matrix H from the similarity matrix: Hii = ∑n
j=1 Sij.

2. Obtain the Laplacian matrix L = I−H−1/2SH1/2.
3. Diagonalize the matrix L and arrange the k main eigenvectors (those with the largest eigenvalues)

in columns, to compose the matrix U.
4. Normalize the rows of U to create the matrix T.
5. Perform a k-means clustering, considering as entities the rows of T,~ti, i = 1, . . . n. The outputs are

the clusters A1, . . . , Ak.
6. The outputs of the spectral clustering algorithm are the clusters C1, . . . , Ck such that

Ci = ~gPos
j |~tj ∈ Ai.

The diagonalization involved in the third step may be computationally expensive when the
number of entities n is very high. One possible solution to this problem consists of cancelling some of
the components of the similitude matrix, to obtain a sparse matrix, and using sparse-matrix methods
to obtain the required eigenvectors [41]. To do that, in the matrix S, only the components Sij such that
j is among the t nearest neighbors of i or vice versa, t being a low number, are retained in this work.
After that, the Lanczos/Arnoldi factorization is used to obtain the first k eigenvectors of the Laplacian
matrix L. Once the clusters have been created, the representatives are obtained as the average visual
descriptor of all the descriptors included in each cluster.

To conclude this section, Figure 3 shows the block diagram of the framework proposed to create
a hierarchical model of the environment, with the purpose of clarifying the goal of the subsequent
experimental sections. This is the set of operations that will be carried out to obtain a hierarchical map
in the next section.
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Hierarchical clustering
(k clusters)

Set of scenes
ℑ = {𝑖𝑚&, 𝑖𝑚(, … , 𝑖𝑚*}

Calculate global-
appearance descriptors

Set of clusters
ℭ = {𝐶&, 𝐶(, … , 𝐶-}

Set of descriptors
𝔊 = {�⃗�&123, �⃗�(123, … , �⃗�*123}

for i = 1 to i = k
i > k

i <= k

Spectral clustering with the
descriptors contained in cluster 𝐶4

(ki clusters)

Complete 
hierarchical
map

Set of clusters
ℭ(4) = 	 {𝐶&

4 , 𝐶(
4 , … , 𝐶-8

(4)}

High-level
map

Low-level
map High-level map (k clusters):

𝔐1 = {𝐶&, 𝐶(, … , 𝐶-}

Low-level map (ki clusters per 
each high-level cluster):
𝔐2 = ℭ & , ℭ ( , … , ℭ -

where ℭ(4) = {𝐶&
4 , 𝐶(

4 , … , 𝐶-8
(4)}

END

Figure 3. Block diagram of the complete proposed framework to build a hierarchical map from a
set of images.

4. Experiments

In this section, a comparative evaluation is carried out to test the performance of the two clustering
methods and the five description approaches in the hierarchical mapping problem. Firstly, the sets of
images used to develop the experiments are described. Secondly, the preliminary experiments that
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permit selecting the appropriate clustering method for each task are outlined. After that, the two main
experiments are addressed: the creation of the high-level and the intermediate-level maps.

4.1. Sets of Images

Throughout this section, some publicly available sets of images captured by Möller et al.,
and described in [43], are used. They are composed of several groups of panoramic gray-scale
images, captured on a regular grid in several spaces of Bielefeld University and rooms of an apartment.
A robot, ActivMedia Pioneer 3-DS, with a catadioptric system mounted on it, was used to capture the
images. The catadioptric system consists of an ImagingSource DFK 4303 camera pointing towards an
Accowle Wide View hyperbolic convex mirror. The rooms used to perform the experiments in this
paper and the main features of the images are shown in Table 2. It is worth highlighting the fact that
the capture points of the images form a regular grid whose size is different for each room (the higher
the size of the room, the longer the distance between capture positions). Also, the area of each room is
substantially different to the others. This permits testing the validity of the algorithms independently
of these features. These sets of images are referred to as the Bielefeld set throughout the remainder
of the paper.

Table 2. Main features of the sets of images used to perform the experiments.

Room Type Number of Images Grid Size (cm) Room Size (m) Resolution (pixels)

Laboratory 170 30× 30 3× 5 81× 561
Hall 200 50× 50 5× 10 81× 561

Kitchen 108 10× 10 1.2× 1.0 81× 561
Living room 242 10× 10 2.2× 1.2 81× 561

Total 720

4.2. Preliminary Experiments

Before conducting a complete bank of experiments, preliminary tests were carried out to select the
most useful clustering algorithm to solve each task. Firstly, the high-level clustering task was addressed,
with the objective that the clusters coincide with the rooms of the environment. The preliminary tests
performed with the Bielefeld set show that either pure k-means or the spectral algorithm are not useful
to separate correctly the images that compose the four rooms. However, the hierarchical algorithm has
provided, in general, relatively accurate results in this task, so it is worth studying its performance in
depth and trying to tune the parameters to optimize the process. As an example, Figure 4 shows the
results obtained after a global clustering using the Bielefeld set, gist as description method and the
spectral algorithm. This figure shows that the kitchen and one area of the hall are grouped together
into the same cluster, and also, some of the images of the laboratory are classified as belonging to
the living room. Such a result was achieved only after a process to tune the parameters to optimize
the results, and it was not possible to improve it. Meanwhile, the experiments carried out with the
hierarchical algorithm showed, in general, relatively good results. This is why this algorithm will be
analyzed in detail in Section 4.3.

As for the creation of the intermediate-level map, the objective is that the algorithm groups
together images that have been captured from geometrically close positions within each room.
The preliminary tests have shown the inability of the hierarchical algorithm to solve this task. As an
example, Figure 5 shows the result obtained after applying the hierarchical clustering algorithm to
obtain the intermediate-level maps in the kitchen and the laboratory of the Bielefeld set. When this
experiment was repeated in different rooms, it tended to create one cluster containing a high number
of images, and some other clusters which had very few images or even a unique image. This behavior
was almost independent of the configuration of the parameters. However, the experiments carried out
with the spectral clustering showed a more consistent and more balanced separation, both considering
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the number of scenes per cluster and the geometrical closeness between capture points. The use of this
algorithm in the intermediate-level mapping will be studied in Section 4.4.

Considering these preliminary tests, the hierarchical algorithm will be the reference method for
the creation of the high-level model and the spectral one for the intermediate-level layer (as the block
diagram in Figure 3 shows). In the next two subsections, a comparative evaluation of the performance
of both algorithms is presented, considering the impact of the most relevant parameters upon the
results (both the parameters of the descriptors and those of the clustering method).

Figure 4. Results of the high-level clustering process using the spectral algorithm and gist with the
Bielefeld dataset.

Figure 5. Results of the intermediate-level clustering in the kitchen and laboratory, using the
hierarchical algorithm and gist. Bielefeld dataset.
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4.3. Experiment 1: Creating Groups of Images to Obtain a High-Level Map

To make an exhaustive analysis of the hierarchical clustering method in the creation of a high-level
map, the influence of the next parameters will be assessed.

• Image description method. The performance of the five methods presented in Section 2 and the
impact of their parameters is assessed: k1 (number of columns retained) in the Fourier signature;
k3 (number of PCA components) and NR (number of rotations of each panoramic image) in the
case of rotational PCA; k4 (number of horizontal cells) in the HOG descriptor; k6 (number of
horizontal blocks) and m (number of Gabor masks) in gist; and finally, the descriptors obtained
from the layers fc7 and fc8 in CNN.

• Method to calculate the distance dist(Cq, Cs). All the traditional methods in hierarchical clustering
(Table 1) have been tested:

– Single. Method of the shortest distance.
– Complete. Method of the longest distance.
– Average. Method of the average unweighted distance.
– Weighted. Method of the average weighted distance.
– Centroid. Method of the distance between unweighted centroids.
– Median. Method of the distance between weighted centroids.
– Ward. Method of the minimum intracluster variance.

• Distance measurement between descriptors. All the distances presented in Section 2 are considered in
the experiments. The notation used is:

– d1. Cityblock distance.
– d2. Euclidean distance.
– d3. Correlation distance.
– d4. Cosine distance.
– d5. Weighted distance.
– d6. Square-root distance.

To analyze the correctness of the results provided by each experiment, the next data will be
shown on the figures: (a) the accuracy of the classification; (b) how good the dendrogram represents
the original entities; and (c) the consistency of the final clusters. Firstly, to calculate the precision of
the classification, the NMI (normalized mutual information) algorithm has been used. It obtains the
confusion matrix of the resulting groups and, from the information of the principal diagonal (correctly
classified entities) and the rest of the information, it provides us with an index c that takes values in the
range [0, 1] and which indicates the accuracy of the resulting clusters. In this application, the value 1
indicates that the resulting clusters reflect perfectly the rooms that compose the environment. The lower
this value is, the more mixed the information is in the resulting clusters (that is, images captured
from several rooms are classified into the same cluster). Secondly, the correlation γcoph between
the cophenetic distances and the distance among entities is obtained to estimate how naturally the
dendrogram represents the visual data. High values indicate that the dendrogram build during the
clustering process reflects faithfully the descriptors of the original scenes. Thirdly, the consistency of the
final clusters is evaluated through the inconsistency coefficient δinconsist, as presented in Section 3.2.1.

Figure 6 shows the results obtained with the Fourier signature, using (a) k1 = 8, (b) k1 = 32 and
(c) k1 = 128 components per row in the magnitudes’ matrix. The blue bars show the accuracy of the
classification c, the red tendency is the correlation coefficient γcoph and, finally, the green tendency
reflects the inconsistency coefficient δinconsist. The value of the inconsistency coefficient has been
normalized to the interval [0, 1]. The higher this coefficient is, the more natural is the final division into
clusters. These figures show that the best results are those provided by the shortest distance method
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(single). Nevertheless, the maximum accuracy is under 90% in all the cases. Analyzing this method
in depth, if we increase k1 (size of the descriptor), it leads to more consistent trees, because there is a
general improvement in the correlation coefficient. However, the accuracy of the classification does
not change as the size of the descriptor increases. This is a general effect that can be observed in
Figure 6; increasing k1 (size of the Fourier signature descriptor) does not lead to a clear improvement
of the classification results. The centroid and median methods tend to present especially unsuccessful
classification results. As a conclusion, the Fourier signature has not been able to create clusters that
separate completely and accurately the rooms of the Bielefeld dataset while creating the high-level map.
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Figure 6. Legend: � Accuracy c; −◦− Correlation γcoph; −◦− Inconsistency δinconsist. Results of the
high-level clustering using the Fourier signature as global-appearance descriptor and (a) k1 = 8;
(b) k1 = 32; and (c) k1 = 128. In the horizontal axes, d1 to d6 represent the distance measures.

Next, the Figure 7 shows the results obtained with the rotational principal component analysis,
considering that the number of eigenvectors is k3 = 50 and the number of rotations is (a) NR = 4,
(b) NR = 16 and (c) NR = 64. In this experiment, the size of the descriptor k3 is kept constant because
preliminary experiments showed that this parameter had little influence on the results. The results
obtained with rotational PCA are somewhat similar to those obtained with the Fourier signature.
Figure 7 shows that the correlation distance (d3) along with the single method provides an accuracy
near 1. However, in this case, the correlation coefficient has a significantly low value. It indicates that
the dendrogram does not reflect well the original visual data. Therefore, the clustering process has not
been carried out in a natural fashion.
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Figure 7. Legend: � Accuracy c; −◦− Correlation γcoph; −◦− Inconsistency δinconsist. Results of the
high-level clustering using rotational PCA as global-appearance descriptor, k3 = 50 and (a) NR = 4;
(b) NR = 16; and (c) NR = 64.

The next experiment has been carried out with the HOG descriptor. Figure 8 shows the results
obtained when considering: (a) k4 = 1; (b) k4 = 4; and (c) k4 = 16 horizontal cells. Further experiments
considering a higher number of cells have shown no improvement. These figures show that the results
obtained with the k4 = 1 cell are predominantly unsuccessful. The results of the single method stand
out due to their wrongness. Nevertheless, the cosine method distance (d4) along with the methods
weighted, centroid and Ward, provide remarkably good results, but they do not arrive at 100% success
rate, and the correlation takes comparatively low values in the three cases. Therefore, considering only
the k4 = 1 cell leads to a descriptor that does not contain distinctive-enough information to carry out
the global mapping process successfully. Notwithstanding that, a clear improvement is shown when
the number of cells increases and very accurate results are obtained when considering k4 = 16 cells.
With this configuration, several experiments have provided an accuracy equal to 100%, with relatively
good correlation coefficients (around 0.8) and inconsistency coefficients near 1. This indicates that
this cluster division is not only perfect but also consistent. The images captured in each room have
been assigned to separate clusters, and this division reflects the visual input data in a natural way.
It is worth highlighting the performance of the methods single and weighted (except when using the
correlation distance d3) and the Ward method.



Remote Sens. 2018, 4, 522 19 of 36

d1 d2 d3 d4 d5 d6
0

0.2

0.4

0.6

0.8

1

Single

d1 d2 d3 d4 d5 d6

Complete

d1 d2 d3 d4 d5 d6

Average

d1 d2 d3 d4 d5 d6

Weighted

d1 d2 d3 d4 d5 d6

Centroid

d1 d2 d3 d4 d5 d6

Median

d1 d2 d3 d4 d5 d6

Ward

(a)

d1 d2 d3 d4 d5 d6
0

0.2

0.4

0.6

0.8

1

Single

d1 d2 d3 d4 d5 d6

Complete

d1 d2 d3 d4 d5 d6

Average

d1 d2 d3 d4 d5 d6

Weighted

d1 d2 d3 d4 d5 d6

Centroid

d1 d2 d3 d4 d5 d6

Median

d1 d2 d3 d4 d5 d6

Ward

(b)

d1 d2 d3 d4 d5 d6
0

0.2

0.4

0.6

0.8

1

Single

d1 d2 d3 d4 d5 d6

Complete

d1 d2 d3 d4 d5 d6

Average

d1 d2 d3 d4 d5 d6

Weighted

d1 d2 d3 d4 d5 d6

Centroid

d1 d2 d3 d4 d5 d6

Median

d1 d2 d3 d4 d5 d6

Ward

(c)

Figure 8. Legend: � Accuracy c; −◦− Correlation γcoph; −◦− Inconsistency δinconsist. Results of the
high-level clustering using HOG (Histogram of Oriented Gradients) as global-appearance descriptor
and (a) k4 = 1; (b) k4 = 4; and (c) k4 = 16.

After that, the results obtained with the gist descriptor are shown. In this case, the influence of
the two main parameters of the descriptor is assessed: the number of horizontal blocks k6 and the
number of Gabor masks m. On the one hand, Figure 9 shows the results obtained when considering
the gist descriptor, m = 4 masks and (a) k6 = 4; (b) k6 = 8; and (c) k6 = 16 blocks. On the other hand,
Figure 10 shows the results obtained with m = 16 masks and (a) k6 = 8; (b) k6 = 16; and (c) k6 = 32
blocks. From Figures 9 and 10, several conclusions can be reached. First, the number of masks m is of
utmost importance to obtain accurate groups. In general, the results obtained with m = 16 are better
than those obtained with m = 4. Second, the influence of the number of horizontal blocks k6 is not
remarkable. Some methods, along with several specific distances, show a higher accuracy when the
number of cells increases, but this is not usually accompanied by an improvement of the correlation
and inconsistency coefficients. Third, the method of the longest distance (complete) does not perform
well, independently of the distance measure used. Finally, when gist is used, the best absolute results
are obtained with m = 16 masks and (a) single method and cityblock distance; (b) average method
along with correlation or cosine distances; and (c) weighted method with cosine distance. All these
combinations provide us with an accuracy of the classification equal to 100% and comparatively good
values of the correlation and inconsistency coefficients. Also, it is not necessary to build the descriptor
with a high number of horizontal cells. This will rebound to a low dimension of the descriptor and a
reasonably good computational cost.
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Figure 9. Legend: � Accuracy c; −◦− Correlation γcoph; −◦− Inconsistency δinconsist. Results of the
high-level clustering using gist as global-appearance descriptor and (a) m = 4, k6 = 4; (b) m = 4,
k6 = 8; (c) m = 4, k6 = 16.

Finally, the results obtained with the CNN descriptor are shown in Figure 11. Some configurations
of this descriptor also offer an accuracy equal to 100%. It is worth highlighting the behavior of the
descriptor obtained from the layer fc8 along with the Ward method, because not only does it provide
an accuracy equal to 100%, but the clustering also presents a high consistency. The distance d6 provides
in all the cases relatively bad results with the CNN descriptor.

To conclude the high-level mapping experiments, Table 3 summarizes the best results obtained
with each descriptor (optimal configurations that appear in Figures 6–11). This table includes the
configuration of the descriptor’s parameters, the clustering method and the distance measure that have
provided the best results. Also, the value of the accuracy, the inconsistency coefficient δinconsist and
the correlation coefficient γcoph are shown. In light of these results, the performance of the descriptors
HOG, gist and CNN can be highlighted in the task of global clustering to separate images considering
the room they have been captured in, because all of them provided an accuracy equal to 1, and also
relatively high consistency and correlation coefficients. Despite the visual aliasing phenomenon that
is present in most indoor environments, when any of these descriptors are used, a high number of
configurations of the algorithms provide us with successful results.
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Figure 10. Legend: � Accuracy c; −◦− Correlation γcoph; −◦− Inconsistency δinconsist. Results of the
high-level clustering using gist as global-appearance descriptor and (a) m = 16, k6 = 8; (b) m = 16,
k6 = 16; (c) m = 32, k6 = 32.
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Figure 11. Legend: � Accuracy c; −◦− Correlation γcoph; −◦− Inconsistency δinconsist. Results of the
high-level clustering using CNN as global-appearance descriptor and (a) layer fc7 (4096 components);
(b) layer fc8 (205 components).
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Table 3. Optimal results of the high-level clustering for each description method.

Descriptor and Configuration Results

Descriptor Configuration Method Distance Accuracy δinconsist γcoph

Fourier sig. k1 = 128 Single d2 0.8780 1.0000 0.7189
Rot. PCA NR = 4 Single d3 0.9606 1.0000 0.5142

HOG k4 = 16 Centroid d2 1.0000 1.0000 0.6869
Gist m = 16, k6 = 16 Average d4 1.0000 1.0000 0.7941
CNN Layer fc8 Ward d3 1.0000 0.9897 0.8188

4.4. Experiment 2: Creating Groups of Images to Obtain an Intermediate-Level Map

In the previous subsection, a complete evaluation has been carried out to study the performance
of the descriptors and the clustering methods in the high-level mapping task. This evaluation has
permitted knowing the optimal configurations to separate completely the images in cluster, so that each
cluster represents one room. Once this task has been solved, the next step consists of creating groups
with the images that belong to each room, to create smaller groups, with the purpose of obtaining
the intermediate-level map. With this aim, the only source of information will be the global visual
appearance of the panoramic scenes, like in the previous experiment. This second-level clustering will
be carried out by means of the spectral clustering, because the preliminary experiments showed its
viability (Section 4.2).

As a result, the intermediate-level clustering process is expected to create groups that contain
images that have been captured from geometrically near points. Since the criterion to cluster the images
is the similitude of their global-appearance descriptors, the result may not be the expected one, owing
to the visual aliasing phenomenon. Therefore, the main purpose of the experiment laid out in this
subsection is to know if any description method is able to cope with this effect and create geometrically
compact groups from pure visual information. This is a challenging problem, and finding a successful
solution to it would be crucial to enable a robust and efficient localization subsequently.

First of all, this section analyzes the kind of experiments that will be carried out, and the results
to obtain. They are different from those of the previous section because the objective is also different.
To measure the correctness of the resulting clusters, two parameters will be used: the silhouette of the
descriptors (entities) after having classified them into clusters, and the silhouette of the coordinates of
the points from which the images of each cluster were captured. The silhouette is a classical method
to interpret and validate clusters [44]. It provides a succinct graphical representation of the degree
of similitude between each entity and the other entities of the same cluster, comparing it with the
similitude with the entities belonging to the other clusters. The silhouette value si for a specific entity
~gPos

i after the clustering process can be calculated with Equation (8),

si =
bi − ai

max(ai, bi)
, (8)

where ai is the average distance between the entity ~gPos
i and the other entities contained in the same

cluster, and bi is the minimum average distance between ~gPos
i and the entities contained in the rest

of the clusters. The Euclidean distance is used in this section to make this calculation. The silhouette
takes values in the range si ∈ [−1, 1]. High values of si indicate that ~gPos

i fits well within the cluster
it has been assigned to and is relatively different from the entities in the other clusters. In contrast,
low values denote that ~gPos

i is quite similar to the entities in the other clusters and does not belong
consistently to the cluster it has been assigned to. After the clustering process, if the majority of entities
have a high silhouette, the result of the clustering process can be considered successful. However,
if many entities present a low (or even negative) silhouette, the result can be considered a failure.
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This may be produced by an incorrect choice of the parameters, the number of clusters or the clustering
method. The complexity of the input data could also make them prone to be incorrectly clustered.

To illustrate the kind of results to obtain, Figure 12 shows the groups created after clustering the
kitchen of the Bielefeld dataset. On the left, the capture points are shown as colored squares. The colors
indicate the cluster they have been assigned to. Considering this, the result could be reported as
unsuccessful, because several clusters are not geometrically compact; the capture points of the images
within them are quite dispersed. The center of the figure also shows the silhouette calculated by
considering the global-appearance descriptors as entities (which is the only information used during
the clustering process). This silhouette diagram shows the data of each cluster with different colors.
The vertical axis contains the number of each cluster. Within each cluster, the entities appear ordered
from the higher to the lower silhouette, which is the value that appears in the horizontal axis. As an
example, the cluster 5 has an average silhouette that is negative, which indicates that this cluster is
extremely unnatural and inconsistent.

However, it is worth highlighting that the objective of this step consists of grouping together
images that have been captured from neighboring or close points. The silhouette calculated from the
descriptors does not provide this kind of information; images that were captured far away may be
assigned to the same cluster, owing to the visual aliasing. For this reason, an additional silhouette
value has been calculated, but considering the coordinates of the capture points ~pi = [xi, yi]

T as
entities. This value contains information on how geometrically compact are the clusters, considering
the capture points of the images. This information is used only with validation purposes, and it is not
considered during the clustering process. The right side of Figure 12 shows this silhouette graphically.
Those clusters that are geometrically sparser present a lower average silhouette (as clusters 3, 4 and
5 do), and compact clusters tend to exhibit a higher average silhouette (such as the cluster 1).

Next, Figure 13 shows the result of an intermediate-level clustering process that has offered more
successful results than the previous case. The figure shows that the resulting clusters are geometrically
more compact, and the silhouettes computed from the coordinates reflect that evidence, in general
terms (they are substantially higher than in the previous case).

All this information considered, a complete set of experiments has been conducted. In each
experiment, the images belonging to each room have been considered as the input data (since this
is the result of the high-level mapping). The output variables that permit evaluating the correctness
of the process are the average silhouette calculated (a) considering the descriptors as entities,
and (b) considering the coordinates of the capture points as entities. The experiment has been repeated
with all the rooms, the five description methods and different configurations for the parameters that
define the size of the descriptors. The results obtained with all the description methods are shown in
Table 4. All these results are discussed hereafter.

Figure 12. Results of a sample unsuccessful clustering process performed with the images of the
kitchen room. Bird’s eye view of the capture points, showing with colors their belonging to the
resulting clusters, silhouette calculated from the visual descriptors and silhouette calculated from the
coordinates of the capture points.
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Figure 13. Results of a sample successful clustering process performed with the images of the kitchen
room. Bird’s eye view of the capture points, showing with colors their belonging to the resulting clusters,
silhouette calculated from the visual descriptors and silhouette calculated from the coordinates of the
capture points.

Table 4. Results of the intermediate-clustering process. Average silhouette calculated from the
descriptors sdescr (and standard deviation σdescr) and from the coordinates of the capture points scoor

(and standard deviation σcoor).

Silhouette
Descriptors

Silhouette
Coordinates

Descriptor Configuration sdescr σdescr scoor σcoor

Fourier sig.

k1 = 4 0.2811 0.0021 0.3323 0.0276
k1 = 8 0.2160 0.0036 0.3284 0.0055

k1 = 16 0.2211 0.0070 0.3662 0.0075
k1 = 32 0.1990 0.0065 0.3666 0.0154
k1 = 64 0.1833 0.0037 0.3379 0.0163
k1 = 128 0.1870 0.0038 0.3521 0.0101

Rot. PCA

NR = 4 0.2532 0.0011 0.3962 0.0027
NR = 8 0.2464 0.0032 0.2845 0.0083

NR = 16 0.1880 0.0076 0.2404 0.0268
NR = 32 0.1681 0.0118 0.1571 0.0167
NR = 64 0.1541 0.0091 0.2165 0.0193

HOG

k4 = 2 0.1375 0.0034 0.1039 0.0089
k4 = 4 0.2893 0.0000 0.2564 0.0000
k4 = 8 0.2886 0.0022 0.2880 0.0022

k4 = 16 0.2114 0.0040 0.3000 0.0029
k4 = 32 0.1630 0.0037 0.3217 0.0059

Gist
m = 4

k6 = 2 0.1363 0.0058 -0.0537 0.0162
k6 = 4 0.1779 0.0090 0.1045 0.0165
k6 = 8 0.2368 0.0070 0.2479 0.0190

k6 = 16 0.2680 0.0152 0.1667 0.0106
k6 = 32 0.2733 0.0000 0.1271 0.0000

Gist
m = 16

k6 = 2 0.2068 0.0168 0.2924 0.0397
k6 = 4 0.2262 0.0045 0.4277 0.0222
k6 = 8 0.1878 0.0154 0.3103 0.0267

k6 = 16 0.2071 0.0091 0.3921 0.0287
k6 = 32 0.2125 0.0113 0.3887 0.0215

Gist
m = 32

k6 = 2 0.1707 0.0033 0.2894 0.0091
k6 = 4 0.1997 0.0149 0.3728 0.0403
k6 = 8 0.2066 0.0162 0.3660 0.0415

k6 = 16 0.1716 0.0179 0.2620 0.0464
k6 = 32 0.1923 0.0093 0.2631 0.0375

CNN Layer fc7 0.2577 0.1082 0.3557 0.2075
Layer fc8 0.2401 0.1196 0.3061 0.2382
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Table 4 shows that the best absolute results are obtained with the gist descriptor when considering
m = 16 masks and k6 = 4 horizontal cells. These results are shown in bold font. In this case,
the silhouette calculated from the coordinates of the capture points is scoor = 0.4277, which is the
maximum value obtained. This would indicate that the resulting clusters are geometrically compact.
A bird’s eye view of the resulting clusters will be shown hereafter to confirm this extent. Additionally,
some other conclusions can be extracted from the table, if we analyze the silhouette calculated from
the coordinates of the capture points. First, k1 has little influence on the performance of the Fourier
signature. Relatively good results are obtained independently of the size of the descriptor. Meanwhile,
the behavior of rotational PCA changes substantially as the number of rotations NR does. As this
number increases, the results tend to get worse. However, if this number is too low, the final model will
not include enough information about the rotation of the robot. If NR = 4 this means that the model
includes information on robot rotations of 0, 90, 180 and 270 degrees around each capture point, but no
further information about intermediate angles. Considering this, the model could not be useful to
estimate the position of the robot if its orientation changes substantially with respect to these four ones.

When HOG is used, the clustering algorithm tends to present low silhouette values, unless the
number of horizontal cells is relatively high. Notwithstanding that, HOG exhibits a less-favorable
performance than the Fourier signature under all circumstances. About gist, the number of masks m
are of paramount importance to achieve successful results. If this number is low (m = 4), the results
are particularly poor, especially when the number of horizontal cells k6 is also low. Finally, in the case
of the CNN descriptor, the best results are obtained with the layer fc7, which provides a silhouette
calculated from the coordinates of the capture points equal to 0.3577.

To complete the experimental section, some additional figures are included to illustrate how
compact the clusters created in the intermediate-level map are. Four of the configurations that have
provided successful results in Table 4 have been selected and studied in depth: (a) gist with m = 16,
k6 = 4 (this is the optimal result as far as scoor is concerned); (b) Fourier signature with k1 = 32;
(c) HOG with k4 = 32; and (d) CNN descriptor obtained from the layer fc7.

Firstly, Figure 14 shows the shape of the clusters of the intermediate-level map, considering the
four rooms of the Bielefeld dataset and gist with m = 16, k6 = 4. The capture points of the images are
shown as small squares, whose colors indicate the cluster they belong to. Each room was previously
separated through a high-level mapping process and then the images of every room underwent an
intermediate-level clustering process. The results of this process are shown with an independent code
of colors per room. All the clusters are noticeably compact and the number of images per cluster is
balanced, independent of having different grid sizes per room (Table 2). This result could be reported
as successful, and it confirms the capability of the gist descriptor to address mapping tasks. Continuing
with this descriptor and configuration, Figure 15 shows graphically the silhouettes of the descriptors
(top row, one graphical representation per room) and the silhouettes of the coordinates of the capture
points (bottom row). In general terms, they take relatively high values, and this confirms the validity
of this configuration.

Secondly, Figure 16 shows graphically the clusters created in the intermediate-level layer when
using the HOG descriptor with k4 = 32 cells. Thirdly, Figure 17 presents the results of the clustering
process with the Fourier signature and k1 = 32 components per row in the magnitudes’ matrix. Finally,
Figure 18 shows the intermediate-level clusters obtained with the CNN descriptor associated with
the layer fc7.
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Figure 14. Results of the intermediate-level mapping using gist with m = 16 masks and k6 = 4
horizontal blocks. Bird’s eye view of the four rooms of the Bielefeld set. The colors of the capture points
indicate the cluster they belong to.

Figure 15. Results of the intermediate-level mapping using gist with m = 16 masks and k6 = 4
horizontal blocks. Top row: silhouettes of the entities (visual descriptors). Bottom row: silhouettes of
the coordinates of the capture points.
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Figure 16. Results of the intermediate-level mapping using HOG with k4 = 32 horizontal cells. Bird’s
eye view of the four rooms of the Bielefeld set. The colors of the capture points indicate the cluster they
belong to.

Figure 17. Results of the intermediate-level mapping using Fourier signature with k1 = 32 components
per row. Bird’s eye view of the four rooms of the Bielefeld set. The colors of the capture points indicate
the cluster they belong to.
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Figure 18. Results of the intermediate-level mapping using CNN and the layer fc7 (4096 components).
Bird’s eye view of the four rooms of the Bielefeld set. The colors of the capture points indicate the
cluster they belong to.

These figures reveal that either gist, HOG or the Fourier signature can be configured to arrive at
successful results since visually, no substantial difference can be appreciated between the distribution
of the clusters in these three cases. The clusters tend to be geometrically compact and the number of
entities of each group is balanced among clusters, despite the different grid sizes and the visual aliasing
phenomenon. Notwithstanding that, gist with an intermediate number of masks has proved to be the
description method that leads to the mathematically more-accurate results when creating the clusters of
this level. By considering these results together with the conclusions of previous works [19], gist can be
reported as a robust global-appearance option to build models of the environment. It presents a good
relationship between compactness and computational cost [19], and it presents a remarkable ability to
represent, in an aggregated form, the visual contents of the scenes captured from near positions. As far
as the CNN descriptor is concerned, it has presented a result that is slightly less competitive, because
some clusters in the laboratory and living room are not completely compact.

4.5. Final Tests

To conclude the experimental section, two additional experiments are carried out with the
objective of (a) testing the performance of the mapping approach in additional environments,
and (b) showing how the hierarchical maps could be used to solve the localization problem and
comparing it with a global localization approach (with no hierarchical map available).

To test the feasibility of the approach in additional environments, some supplementary sets of
images are considered, apart from those shown in Table 2, and the algorithms are run using all the sets
of images. More concisely, four additional rooms are considered, whose main features are shown in
Table 5. In this table, the first two sets belong to the database captured by Möller et al. [43] at Bielefeld
University. The second two sets were captured by ourselves in two spaces of Miguel Hernandez
University using a catadioptric vision system composed of an Imaging Source DFK 21BF04 camera
pointing towards a hyperbolic mirror (Eizoh Wide 70). In all cases, the capture points of the images
form a regular grid whose size is different for each room. To carry out the following experiments,
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a whole dataset composed of the images of Tables 2 and 5 is considered (that is, 8 rooms and 1660
images are used in the following tests).

Table 5. Main features of the additional sets of images used to perform the final tests.

Room Type Number of Images Grid Size (cm) Room Size (m) Resolution (pixels)

Hall 2 160 50× 50 10× 5 81× 561
Combined area 396 10× 10 3.7× 1.2 81× 561

Office 84 40× 40 5.2× 5.2 128× 512
Events room 300 40× 40 8× 11.6 128× 512

Total 940

Firstly, an experiment is carried out to create groups of images in order to obtain the high-level
map, using the approach presented in Section 4.3. In this experiment, the gist descriptor with m = 16
masks and the CNN descriptor are used (since both descriptors have presented a relatively good
performance in Section 4.3). The results obtained with gist are shown in Figure 19, and those obtained
with CNN are shown in Figure 20. Firstly, Figure 19 shows that the performance of some gist
configurations tends to get worse when a larger database is considered. However, we can also find
some configurations that provide us with an accuracy equal to 100% (that is, the algorithm is able to
separate correctly the images into eight clusters, corresponding to each room in the complete dataset).
Among them, it is worth highlighting the single method along with the cityblock distance, because it
also provides comparatively good values of the correlation and inconsistency coefficients. Secondly,
Figure 20 depicts the performance of CNN when the descriptor is obtained from layer (a) fc7 and (b)
fc8. In both cases, the Ward method tends to present relatively good results when the algorithm is
extended to additional sets of images, compared to the results initially obtained in Figure 11. The layer
fc7, along with the Ward methods and either d1 or d2, presents an accuracy equal to 100% with the
complete dataset. However, the correlation coefficients in these cases are slightly lower than those
obtained with the optimal gist configurations.

Secondly, another experiment is performed to create groups of images in order to obtain the
intermediate-level map, using the approach presented in Section 4.4. In this experiment, we make use
of the gist descriptor with m = 16 masks, since it has presented the best results in the previous test
(Figure 19). Figure 21 shows the results obtained with the four additional rooms considered (the results
obtained with the other rooms are the same as those shown in Figure 14). Like in the experiment of
Section 4.4, the results are successful when all the rooms are considered. Despite the different grid
sizes and the visual aliasing phenomenon, the clusters tend to be geometrically compact.

Figure 22 shows some sample images extracted from the datasets considered in this experiment.
Firstly, Figure 22a,b were captured from two distant positions of the hall (Table 2). Secondly,
Figure 22c,d belong to the hall 2 (Table 5), and they were captured from two distant positions. Finally,
Figure 22e,f were captured from two different poses of the events room (Table 5). The two halls are
visually quite similar. Also, the images captured within each room have many visual similitudes.
Despite that, the proposed algorithm is able to separate the images into rooms, and to create clusters
within each room including images captured from geometrically near positions.

Finally, we test the validity of the hierarchical map shown in Figures 14 and 21. With this aim,
the hierarchical localization process is solved and the results are compared with a global localization
process. In both cases, five images are randomly selected from each room (40 images in total),
these images are removed from the map and the localization process is solved as an image-retrieval
problem (that is, the most similar image from the map is obtained and extracted). No prior information
about the capture points of these test images is used—only visual information is considered.
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Figure 19. Legend: � Accuracy c; −◦− Correlation γcoph; −◦− Inconsistency δinconsist. Results of the
high-level clustering with the complete dataset. Gist descriptor (a) m = 16, k6 = 8; (b) m = 16, k6 = 16;
(c) m = 16, k6 = 32.
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Figure 20. Legend: � Accuracy c; −◦− Correlation γcoph; −◦− Inconsistency δinconsist. Results of the
high-level clustering with the complete dataset. CNN descriptor (a) layer fc7 (4096 components) and
(b) layer fc8 (205 components).
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Figure 21. Results of the intermediate-level mapping using gist with m = 16 masks and k6 = 4
horizontal blocks. Bird’s eye view of the four additional rooms considered to validate the approach.
The colors of the capture points indicate the cluster they belong to.
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(a) (b)

(c) (d)

(e) (f)

Figure 22. Sample panoramic images extracted from the database. (a,b) were captured from two
distant positions of the hall, (c,d) were captured from two distant positions of the hall 2 and (e,f) were
captured from two different poses of the events room.

On the one hand, to address the localization hierarchically, a representative descriptor is calculated
for each cluster in the high-level and intermediate-level maps, by calculating the average entity of
each cluster. After that, the next steps are followed for each test image: (1) The distance between the
descriptor of the test image and the representatives of the high-level map is calculated. The most similar
one is retained. This permits knowing from which room the test image was captured, and only the
intermediate-level map contained in this room is considered in the next step. (2) The distance between
the test image descriptor and each representative of the intermediate-level clusters is calculated,
and the most similar one is retained. Only the descriptors contained in this cluster are considered in
the next step. (3) The distance between the test image descriptor and the descriptors contained in the
intermediate-level cluster is calculated, and the most similar one is retained. This localization process
is considered successful if the capture point of this image is one of the four nearest neighbors to the
capture point of the test image.

On the other hand, to address the localization globally, the distance between the test image
descriptor and the descriptors of all the other images is calculated, and the most similar one is retained.
The localization process is considered successful again if the capture point of this image is one of the
four nearest neighbors to the capture point of the test image.

Table 6 shows the results obtained with both localization methods, when considering the gist
descriptor to create the representatives of the clusters. A variety of configurations of the descriptor are
considered in the experiment. The table shows the percentage of correct localizations and the average
localization time for both methods. According to these results, the hierarchical localization proves to
be a competitive alternative to the global localization, except when a low number of masks and cells
is considered. When m = [16, 32], the hierarchical localization shows the same percentage of correct
localizations as the global one, and the necessary time to obtain the most similar images is substantially
lower in the case of the hierarchical localization.
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Table 6. Results of the localization process using the gist descriptor. Comparative between hierarchical
and global localization. Percentage of correct localizations and average time to obtain a result.

Hierarchical Localization Global Localization

m k6 % correct t(ms) % correct t(ms)

4

4 80 0.47 82.5 0.59
8 87.5 0.51 90 0.82

16 95 0.54 95 1.03
32 97.5 0.60 97.5 1.52

16

4 95 0.49 95 0.95
8 95 0.57 95 2.18

16 100 0.80 100 5.18
32 100 1.10 100 11.29

32

4 95 0.54 95 1.41
8 97.5 0.82 97.5 5.20

16 97.5 1.14 97.5 11.34
32 100 1.64 100 22.54

5. Conclusions

In this work, the problem of map building in mobile robotics has been addressed. A framework
was proposed to create topological hierarchical maps, using a clustering approach. An omnidirectional
vision sensor mounted on the robot is the only source of information to capture data from the
environment to map. Furthermore, to define the entities of the clustering process from the visual
information, global-appearance descriptors are used. The experiments have shown that the use of
such techniques leads to straightforward mapping algorithms and successful results in real, working
environments. The resulting hierarchical map is expected to enable the robot to estimate its position
robustly and with computational efficiency.

About the mapping process, the creation of the model is addressed in several stages. Firstly,
a high-level map is built and, as a result, a set of clusters are created, which contain the images captured
within each room. A hierarchical clustering approach has demonstrated to perform accurately in this
task. Secondly, an intermediate-level map is built by classifying the images of each room into clusters
that group images that have been captured from close points. In this case, a spectral clustering method
has proved to be the optimal choice to solve the problem.

Finally, as far as the global-appearance description method is concerned, the excellent performance
of gist can be highlighted, because it is able to solve both the high-level and the intermediate-level
mapping problems with a similar configuration of its parameters. The goodness of such a configuration
suggests that it should be the global-appearance reference option to implement all the steps of a
hierarchical mapping algorithm. Gist constitutes a robust choice to describe panoramic scenes, since it
has proved to be capable of expressing the visual information in a compact and robust fashion, in such
a way that it collects the visual similitudes between images captured from nearby points, in spite of
the visual aliasing effect that is present in a high number of real-life indoor environments. Also, it has
proved to be efficient in the solution of the hierarchical localization problem.

The framework has been tested with a complete dataset of panoramic images captured indoors,
in realistic environments, and has presented a good performance. Using panoramic images is
especially relevant because the global-appearance methods have been designed to provide a descriptor
that is invariant against changes of the orientation of the robot in the ground plane. This way,
the hierarchical model contains complete information about the surroundings of the robot, and this
information is the same, independent of the orientation that the robot had when the dataset was
captured. The mapping method could be extended to other camera geometries, but if they do not
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provide panoramic information, this property would not be met, and this should be considered while
implementing the localization process.

Future works include delving into this framework to build a robust map that increases the
autonomy of the robot in complex environments. For example, the strategy should be extended
and adapted to environments that are not composed of distinguishable rooms, such as outdoor
environments and, in general, to environments that are not composed of rooms limited by walls. Also,
methods to update the map could be developed, to reflect the changes that it may experience in the
long term. Incremental clustering algorithms could be an option to address this problem. Finally,
such algorithms could also be extended to build the map incrementally, and the process could be
addressed as a SLAM (simultaneous localization and mapping) problem.
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