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Abstract: This paper proposes an approach for the detection of changes in multitemporal Very High
Resolution (VHR) optical images acquired by different multispectral sensors. The proposed approach,
which is inspired by a recent framework developed to support the design of change-detection
systems for single-sensor VHR remote sensing images, addresses and integrates in the general
approach a strategy to effectively deal with multisensor information, i.e., to perform change detection
between VHR images acquired by different multispectral sensors on two dates. This is achieved by
the definition of procedures for the homogenization of radiometric, spectral and geometric image
properties. These procedures map images into a common feature space where the information
acquired by different multispectral sensors becomes comparable across time. Although the approach
is general, here we optimize it for the detection of changes in vegetation and urban areas by employing
features based on linear transformations (Tasseled Caps and Orthogonal Equations), which are
shown to be effective for representing the multisensor information in a homogeneous physical way
irrespectively of the considered sensor. Experiments on multitemporal images acquired by different
VHR satellite systems (i.e., QuickBird, WorldView-2 and GeoEye-1) confirm the effectiveness of the
proposed approach.

Keywords: Very High Resolution images; change detection; multisensor; multitemporal; Change
Vector Analysis; Tasseled Cap; Remote Sensing

1. Introduction

The use of Remote Sensing (RS) in the analysis and evaluation of environmental processes
evolution is a valuable tool whose relevance has increased in conjunction with the use of digital
image processing techniques. Due to the improvement of both acquisition sensor technology and data
processing algorithms, it is possible to get an accurate and automatic identification and extraction of
features for understanding the environmental changes occurring on the ground due to natural and
anthropogenic interactions. The technological evolution resulted in the availability of multitemporal
and multispectral satellite images with Very High spatial Resolution (VHR) acquired by passive sensors
(e.g., QuickBird, WorldView-2, GeoEye, Pleiades). In the context of this paper, we define VHR images
as those acquired with a metric to sub-metric spatial resolution in the panchromatic channel (i.e., spatial
resolution lower than one meter). These images allow a detailed geometrical analysis when compared
to medium or high spatial resolution data [1–4]. When considering VHR satellite systems, it is difficult
to define Time Series (TS) made of images from one single sensor that satisfy the application temporal
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resolution constraints and show homogeneous acquisition conditions characteristics (e.g., similar light
conditions, similar acquisition angle). This is mainly due to the satellite revisit period, the possible
competing orders of different users on the satellite pointing, the limited life of a satellite mission, and
weather conditions. However, since a considerable number of satellites have been launched in the last
decades, the above-mentioned limitations can be mitigated by building TS where images acquired by
different multispectral VHR sensors are considered.

The use of multisensor TS increases the probability of having sequences of multitemporal images
with a proper time sampling but poses some challenges. In addition to real changes occurring on
the ground, multisensor multitemporal images are affected by differences induced by the acquisition
conditions (e.g., atmospheric conditions and acquisition system). On the one hand, some of the
differences in atmospheric conditions (e.g., cloud cover), and the differences in acquisition system
(e.g., view angle and shadows) affect single-sensor multitemporal image processing as well [5]. On the
other hand, multisensor TS poses the big challenge of having system induced differences due to the
type of sensor and the sensor acquisition modes. They result in spectral and geometric differences.
Such differences make state-of-the-art change detection methods (here based on image comparison)
less effective since they usually assume that multitemporal images are acquired by the same sensor and
under similar acquisition conditions. Similar observations hold for the use of quantities like Digital
Numbers (DN) that become non-comparable, thus their use may increase Change Detection (CD) error.
Moreover, standard methods for converting DN in reflectance can be insufficient when using images
acquired by different sensors [6].

An appropriate multitemporal image homogenization is therefore required to reduce both
spectral and geometrical differences, and to ensure that differences in the multitemporal images
can be associated to real changes occurring on the ground. In the literature, multitemporal image
homogenization methods are available for medium and low spatial resolution data [7–12]. However,
their adaptation to VHR images is still an open issue because of the higher within-class spectral
variability induced by the very high spatial resolution, when compared to lower spatial resolution
sensors. In [13] and [14], the authors made a first attempt to adapt existing methods to radiometric
homogenization of a pair of VHR images (IKONOS and QuickBird). Spatial resolution differences
were mitigated by resampling to the images with the lowest spatial resolution [13,14]. Other works
transform DNs to physical information [6,15]. Pacifici et al. [6] showed the importance of working
with physical quantities that are homogenous across time when using VHR optical images acquired by
the same sensor. They pointed out the improvement achieved while increasing the level of information
abstraction in the feature space, and its consequence for the final image homogenization. In [15], a first
attempt to create a fully automated system for CD in VHR and multisensor images is presented.
Attention is paid to the pre-processing steps where the goal is to standardize images across the sensors.
To do so, many steps are carried out, among them the conversion of DN to Top Of Atmosphere (TOA)
reflectance values, which allows the direct comparison of images acquired by different sensors. In other
words, some work on adaptation of homogenization methods is present in the literature. However,
and to the best of the authors’ knowledge, no formal approach exists that properly accounts for the
complexity of data acquired by similar, yet different VHR multispectral sensors [15–18], nor does an
approach exist that guides the user from data pre-processing until the final CD process.

In the literature, methods are available for multitemporal VHR optical images information
extraction in the context of CD [5,19–21]. Both supervised and unsupervised CD techniques have
been widely used in several RS applications (e.g., flood detection, damage assessment, environmental
monitoring). The main drawback of supervised methods lies in the need for collecting and constructing
ground reference data for the system-training phase. However, they lead in general to more accurate
results. On the other hand, unsupervised techniques have the advantage of not requiring any
ground reference information. This mainly results in a faster and more operational processing,
but lower accuracy in part due to the use of non-homogenous features. Accordingly, in the literature
a large attention has been devoted to improving the accuracy of unsupervised approaches [5,6,20–23].
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Among CD techniques, the most widely used are the ones based on Principal Component Analysis
(PCA), Iteratively Reweighted Multivariate Alteration Detection (IR-MAD) and Change Vector Analysis
(CVA) [20,24–26].

CVA has been widely applied to the original spectral bands of multitemporal images from low
to very high spatial resolution [22,23,27–29]. Other authors used CVA on the vegetation index or the
Tasseled Cap (TC) feature space, but with low and medium spatial resolution images only, and/or
for the detection of specific/single vegetation changes [28,29]. In the case of VHR images, original
spectral bands are traditionally used, and the CD mainly focuses on the separation of change and no
change classes, or the identification of a single type of change, without considering the nature (type) of
the changes [5,30–33]. In low, medium, high and VHR cases, features are mostly selected according
to the possible changes occurring on the ground. However, less attention is devoted to explicitly
mitigating the differences induced by the acquisition system, both from the homogenization and feature
selection perspectives [30–33], which in turn would lead to an improvement on the CD accuracy. In the
specific case of IR-MAD, little attention is devoted to the possibility of using these features for CD
in multisensor images [33]. Mostly qualitative visual analysis about the possibility to detect changes
is conducted, but no quantitative change information extraction approach is provided [24]. In this
context, the need arises for defining proper techniques and operational strategies for homogenization
of multitemporal images acquired by different VHR multispectral sensors that mitigates differences in
both atmospheric conditions and acquisition system parameters, thus reducing their impact on the
multitemporal information extraction, and on the CD accuracy. The technique should also be able to
extract changes automatically and distinguish among different types.

This paper presents an approach for unsupervised CD in multitemporal VHR images acquired by
different multispectral sensors. The proposed approach takes inspiration from two existing frameworks
presented in [5] and [34], but improves them by introducing guidelines and solutions for how to deal
with multisensor VHR images in the context of CD. It exploits some of the concepts in [5] and extends
and integrates them with a strategy for mitigating the effects of the non-homogeneous properties of
multitemporal images acquired by different VHR multispectral satellite systems at both pre-processing
and feature extraction/change detection level. In conclusion, this paper aims at illustrating the entire
processing chain from image acquisition to CD map using multi-sensor images. Attention is focused on
the possible sources of differences, particularly on the ones becoming more critical when multisensor
images are used and may result in change detection errors.

The main steps of the proposed approach are: (i) mitigation of differences induced by the use
of VHR multitemporal images acquired by different sensors; and (ii) detection of multiple changes
occurring on the ground by means of high level physical features. The first step is conducted by
defining homogenization procedures that address radiometric, spectral and geometrical differences.
Thus, multitemporal multisensor images become more comparable (i.e., more homogeneous) across
time. Homogenization is further improved by extracting physical features from multisensor images that
allow for an effective multitemporal comparison across sensors at a given level of abstraction. Features
are designed to detect multiple changes relevant to the user. Although the approach is general, here we
concentrate on the selection of high-level physical features (i.e., features that account for the physical
quantities) suitable to detect changes in vegetation and urban areas. Linear/Orthogonal transformation
features are selected for the detection step. They are shown to be effective for representing the
multisensor information in a coherent physical way versus the considered sensor. Other physical
features should be selected depending on the application. The second step is conducted by means of
CVA in spherical coordinates, where the changes are represented by magnitude and direction variables.
Separation among the changes is carried out in an automatic way. In the case of the magnitude variable,
changed and non-changed pixels are separated by means of a Bayesian decision rule [35], whereas
along direction variables, an adaptation of the Two-Stage Multithreshold Otsu (TSMO) method [36] is
used. Experiments carried out on bi-temporal VHR image pairs acquired by different sensors confirm
the effectiveness of the proposed approach.



Remote Sens. 2018, 10, 533 4 of 23

The remainder of this paper is structured as follows. Section 2 presents an overview and an
analysis of the properties of a CD system for VHR RS images, the proposed approach for the mitigation
of differences induced by the use of VHR multisensor multitemporal images and the CD process.
Section 3 introduces the multisensor datasets, describes the design of experiments, and illustrates and
discusses the experimental results. Finally, Section 4 draws the conclusions and future developments.

2. Methods

In this section, an overview of the conceptual framework for analyzing the properties of a CD
system in the context of VHR RS images is presented. The theoretical structure of the problem in the
context of multisensor VHR images is drawn. This is the model for the design of solutions for different
specific CD problems. After that, the proposed approach for the mitigation of differences induced
using VHR multisensor images is introduced. Last, the description of the CD approach for detecting
changes of interest in bi-temporal images is provided.

2.1. Conceptual Framework: CD Systems for VHR Remote Sensing Images

When considering VHR RS images, the CD problem becomes complex due to the heterogeneous
spatial and spectral characteristics. Further, standard CD techniques often do not account for the
semantic meaning of changes of interest. Standard CD methods often assume that unchanged pixels
have similar signatures on the two dates, whereas changed ones do not. Unfortunately, this assumption
is often not satisfied when we consider multitemporal VHR images, since additional differences may
appear due to spectral and spatial heterogeneity. This becomes more critical when multisensor images
are considered [5,37]. In accordance with [5], a proper understanding and modeling of changes is
fundamental for the development of effective techniques that can mitigate the intrinsic differences
in multitemporal VHR data, and accurately detect multiple changes. Further, most of the current
methods for CD in VHR images focus on: (i) handling images acquired by the same sensor [38,39],
or (ii) detecting specific type of changes by using multisensor images (i.e., deforestation, burned areas,
buildings detection) [30–33]. Thus, their applicability to CD in multisensor image pairs is limited.

In this paper, we aim at developing a CD approach for multisensor VHR optical images. For this
purpose, the framework in [5] is used as a baseline. The general flowchart proposed in [5] consists of
two main steps: (i) definition of the tree of radiometric changes; and (ii) detection of changes.

2.1.1. Definition of the Tree of Radiometric Changes

In this step, possible classes of radiometric changes are analyzed and their taxonomy is defined.
The resulting tree of radiometric changes is specific for the considered CD problem. To this end,
a categorization of the different possible radiometric changes that may be present in a multitemporal
VHR dataset is required.

Figure 1 shows the tree that models radiometric changes for a generic CD problem in
multitemporal multisensor VHR images. Let Ω be the symbol representing the concept of change
class. Thus, each specific type of change will be represented by the symbol Ω and a sub-script
that refers to the meaning of the type of change. According to [5], two main types of radiometric
changes (ΩRad) originate because of the complexity of VHR images: (i) changes due to acquisition
conditions (ΩAcq); and (ii) changes occurring on the ground (ΩGrd). The former corresponds usually
to changes of no interest for the end user. The latter includes the changes relevant from the user’s
viewpoint. ΩAcq changes are the ones associated to differences in atmospheric conditions (ΩAtm) and
in the acquisition system

(
ΩSys

)
. The latter results in the appearance of undesired change patterns,

differences in the geometry and in shadows. ΩSys changes, such as the ones due to the type of sensor
(ΩSen), can be mitigated by working with proper homogeneous features.

Among ΩSen, we find changes due to differences in the spectral resolution (ΩSpe) and spatial
resolution (ΩSpa). ΩSys includes changes due to the sensor view angle (ΩAng) or the solar rays incidence
angle (ΩSun). ΩAng can be related to the topography (ΩTop) and the relief (ΩRel). For example,
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they may generate changes in shadows, whereas ΩSun refers to effects such the ones induced by
seasonal variations of the solar ray incidence angle, which generates shadows differences that are
not associated to changes on the ground. On the other hand, ΩGrd changes can be divided into
four main categories: natural disasters (ΩDis—e.g., earthquake damages), vegetation phenology
(ΩVeg—e.g., leaves lost during winter), environmental conditions (ΩEnv—e.g., variation in soil
moisture levels) and anthropogenic activities (ΩAnt—e.g., harvested crop fields, new buildings).
The tree structure illustrated in Figure 1 has a general validity and can be used to model most of
the CD problems [5]. However, depending on the specific CD problem, the tree can be adapted and
optimized. On the one hand, some leaves/nodes might be irrelevant and thus can be removed. On the
other hand, some leaves may require to be further specified in accordance with the specific study
case (see Section 3 for an example of how to define the tree of radiometric changes for a concrete CD
problem). To extract the changes of interest, it is necessary to select effective features and to count on
prior knowledge about the problem.

Figure 1. General tree of radiometric changes for the multisensor Very High Resolution (VHR) images
case [5].

2.1.2. Detection of Changes

In this step, the type of changes identified in the previous step are detected by selecting the
strategy for the design of the CD method. According to [5], two possible strategies can be adopted
based on: (i) direct extraction of the radiometric changes of interest; or (ii) detection by cancellation of
non-interesting radiometric changes. Most of the current available CD methods for VHR RS images
make use of the direct extraction strategy since their goal is to extract a specific type of change.
Nevertheless, sometimes it is easier to detect the radiometric changes that are of no interest, and
therefore to detect relevant changes by cancellation.

2.2. Proposed Approach to Unsupervised CD in VHR Multispectral Images Acquired by Different Sensors

In this sub-section, details on the proposed approach to solve the CD problem in VHR multisensor
optical images are given. For handling the problem, we focus on two issues: (i) mitigation of
multisensory induced changes ΩSys by the homogenization of multispectral data acquired by different
VHR sensors; and (ii) detection of ΩGrd changes by mitigation of residual ΩSys at the level of feature
extraction. Figure 2 depicts the block scheme of the proposed approach. In order to accomplish
the ΩSys mitigation, two main steps are considered: (1) spectral; and (2) geometric differences
mitigation. ΩGrd detection is accomplished in two steps: (3) multisensor feature extraction; and
(4) change detection.
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Figure 2. Block scheme of the proposed approach to Change Detection (CD) in multitemporal
multisensor VHR optical images.

Let us consider two VHR optical images, X1,a and X2,b, acquired by different sensors S1 and S2,

where a = 1, 2, . . . , A and b = 1, 2, . . . , B represent the multispectral bands for S1 and S2. The number
A and B of spectral channels in S1 and S2 can be equal or different depending on the sensor. Given the
use of different VHR sensors, X1,a and X2,b are likely to show different number of acquisition bands
with slightly different bandwidth and spatial resolution, and/or different view angle. In other words,
different spectral and geometrical properties. Let us assume that X1,a and X2,b sizes are I1 × J1 and
I2 × J2, respectively, and that the images are acquired over the same geographical area at different
times t1 and t2.

2.2.1. ΩSys Differences Mitigation

When dealing with multitemporal images acquired by different sensors S1 and S2, one of the
critical issues is to identify and remove acquisition system induced changes (ΩSys). Handling the
differences due to ΩSys, contributes to mitigating issues on the left side of the tree of radiometric
changes (Figure 1). In single sensor VHR images, ΩSys are mainly due to differences given by the
sensor view angle (ΩAng), and are accentuated by the topography (ΩTop) and relief (ΩRel). All of them
contribute to the geometrical differences and result in radiometric distortions. When multisensor
VHR images are considered, additional problems arise due to the type of sensor (ΩSen) and thus the
differences in the spectral (ΩSpe) and spatial (ΩSpa) resolution. ΩSpe can be mitigated by performing
a radiometric normalization of the images, whereas ΩSpa should be managed by means of geometric
corrections, since they contribute to geometric differences.

To mitigate ΩSpe, two macro-categories of normalization methods exist in the literature: absolute
and relative methods. The former involves the conversion of the DN values into the corresponding
ground reflectance ones [6], while the latter performs image-to-image adaptation in the histogram
feature space [9–14]. When data from two different sensors S1 and S2 are considered, the spectral
information in the multisensor images is not comparable. Thus, absolute normalization is preferred
with respect to the relative one, though not limited.

Absolute normalization estimates surface reflectance values providing information at physical
level and mitigating spectral differences. The steps for spectral differences mitigation are shown in
Figure 3, where X1,a and X2,b are converted from DN to At-Surface Reflectance (ρASR [unitless]) images,
Xs

1,a and Xs
2,b (where s stands for spectrally corrected). Although this step might seem obvious in the

CD process, several works can be found in the literature that use DN in the comparison step. Further,
the mitigation of ΩSpe becomes more critical when multisensor data are considered.
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Figure 3. Block scheme for mitigation of ΩSpe in multisensor VHR images.

To get ρASR, the digitalization process performed at the sensor during image formation must
be inverted [6]. Parameters such as the mean exoatmospheric solar irradiance, solar zenith angle,
Earth–Sun distance, radiance value and others are required. They can be retrieved from the metadata
or from user guides, and are specific for each satellite. The resulting Xs

1,a and Xs
2,b have the same

physical meaning. However, some differences cannot be mitigated. Thus, in addition to physical
driven strategies, some data driven ones (feature extraction) are required (see next sub-section).

Satellites carrying on-board VHR sensors have the capability to acquire images with different view
angles; this increases the probability of having multitemporal images with the required time resolution
and cloud free on a given area. However, when multitemporal images are considered, differences
in the acquisition view angle can induce misalignments because of the impact of topography (ΩTop),
small changes in relief of the terrain or the presence of buildings (ΩRel) [40–43]. Further, when X1,a
and X2,b are acquired by different VHR sensors, small differences in the spatial resolution (ΩSpa) are
also expected. To achieve the geometric differences mitigation (step 2, Figure 2), the block scheme
shown in Figure 4 is followed. Xs

1,a and Xs
2,b are the input images and Xs,g

1,a and Xs,g
2,b are the spectrally

and geometrically mitigated ones (g stands for geometrically corrected).

Figure 4. Block scheme followed for the mitigation of geometric differences in multisensor VHR images.

Geometric distortions due to the joint effect of topography, relief and sensor view angle, are
mitigated by applying orthorectification with a high resolution Digital Elevation Model (DEM). In this
way, most of the misalignments between multitemporal images due to ΩTop and ΩRel are corrected.
However, additional issues remain because of differences in spatial resolutions, thus co-registration
should be applied so that pixels with the same coordinates in the images may be associated with
the same area on the ground. This step is very critical since a poor co-registration may result in an
unreliable final CD map [44]. On the other hand, it is important to clarify that neither orthorectification,
nor co-registration solve the problems derived by the presence of vertical structures (i.e., the parallax
problem). These types of changes are usually considered as sources of noise and are not of interest,
thus they can be removed/mitigated by some feature extraction strategy applied during the CD stage
(e.g., shadow detection and removal).

Pansharpening (PS) could be applied between orthorectification and co-registration as an
optional step. It is meant to improve the spatial information by integrating the high spectral and
low spatial resolution bands with the high spatial and low spectral resolution panchromatic band.
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Several PS methods exist in the literature, e.g., Intensity–Hue–Saturation (IHS), PCA, wavelets and
Gram–Schmidt [45]. While co-registering, a resampling of the image with highest spatial resolution is
performed in order to get the same common spatial resolution of the one with lower spatial resolution.
The spatial resolution of VHR images is metric to sub-metric. Looking at existing satellite missions,
the spatial resolution of VHR optical images ranges from the 0.3 m of WV-3 and -4 to the 1 m of
Kompsat-2 in the panchromatic channel. Thus, when considering VHR multisensor image pairs
the maximum resolution difference may rise up to about 0.7 m. Therefore, VHR images spatial
resolutions are different yet similar and comparable. The outputs are multisensor VHR images,
Xs,g

1,a and Xs,g
2,b, showing the same spatial resolution and the same physical information, where ΩSys

have been mitigated.

2.2.2. ΩGrd Detection

Once the ΩSys have been mitigated, the proposed approach performs ΩGrd detection. It extracts
the changes of interest by selecting and extracting significant features for specific changes present in
the study area. Standard CD approaches like Univariate Image Difference (UID) [46] and CVA [47]
perform multitemporal comparison by means of the difference operator. The multispectral (or single
spectral, in the case of UID) difference image XD is composed by Spectral Change Vectors (SCV).

The rationale behind the use of the difference operator is that unchanged samples show similar
spectral signatures and thus result in SCVs with almost all zero components, whereas changed samples
show SCVs with components far from zero. However, when multisensor images are considered,
such an assumption is seldom satisfied, even after ΩSys mitigation. Thus, further homogenization is
required in order to satisfy the a priori assumption for a successful employment of simple methods like
UID and CVA. When multisensor images are considered, a proper feature space should be explicitly
identified where pixel based comparison is meaningful. Here we propose the use of higher-level
physical features, derived from the ρASR ones. While reducing residual sensor-induced differences in
the unchanged areas, thus improving the homogenization level, a better highlighting of the changes
of interest is achieved. In other words, working with higher-level physical quantities improves the
level of abstraction while increasing the probability to detect the changes of interest and reducing the
number of false alarms [6].

Since the proposed approach is general, any feature with high-level physical meaning can be used
(e.g., radiometric indices). Further, since the approach is designed for VHR images, it may benefit
from the use of spatial context information [5,48]. However here we are interested in understanding
the performance of the approach for CD and thus of the multisensor homogenization procedure in
mitigating the effects of sensor differences on the CD map. Accordingly, pixel-based features are
considered such as radiometric indices. As an example, if changes due to vegetation phenology (ΩVeg)
are present, a radiometric index to detect vegetation can be used. In the case of natural disasters (ΩDis)
in urban areas, a building index plus vegetation or soil index could be considered. Radiometric indices
suitable to detect most of the relevant type of changes can be found in the literature.

Selection of a proper index becomes more and more complex when the ΩGrd are coming from
different sources. Since here we focus on vegetation and urban changes, we select features based
on linear transformations such as TC or Orthogonal Equations (OrE) among the others [49,50].
TC features were designed originally as a linear transformation for the agricultural analysis on
single date images [49], but they were further analyzed and used for CD analysis in multitemporal
images. The literature works mainly used TCs in medium resolution and single sensor images
(e.g., Landsat) [28,29]. Three main TCs have been studied (i.e., Brightness, Greenness and Wetness)
because of their ability to detect and monitor soil content or transitions, vegetation and canopy moisture.
Since TC is an invariant transformation in the physical feature space, its features are consistent
between different scenes in a multitemporal time series [49] and therefore could be invariant between
multisensor multitemporal images. Similarly, the OrE were derived following the TC philosophy and
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highlight information on crops, vegetation and soil. Additionally, OrE were designed as a substitution
for the sensors which TC coefficients have not been derived in the literature, yet.

Given the above discussion, we use TC or OrE for the ΩGrd detection process. These transformations
compute a linear combination of the spectral bands. The number of features derived from TC is the
same as the number of input features (in our case A and B, respectively), but only 3 TCs are generally
used for CD. In the case of OrE, only 3 features are derived. Equation (1) shows the general equation to
calculate TC or OrE features (F), where j represents each of the F features and Cj,a are the coefficients
calculated for each XF

j . The same equation applies for TC and OrE, though only the red, blue, green
and NIR bands of the sensors are used for the latter. The following analysis applies for both TC
and OrE:

XF
j = ∑A

a=1 Cj,aXs,g
1,a. (1)

Once physical level features have been extracted from different sensors, step 4 (Figure 2) applies
CD. As mentioned above, CVA is employed. Since three features are considered, a 3-D representation
is obtained [34]. Each SCV of XF

D is defined as in Equation (2):

XF
D = XF

2 − XF
1 . (2)

Each SCV component captures the multitemporal behavior of the corresponding feature (either
TC or OrE). SCV components tend to assume small values when no change occurred, whereas if
changes occurred, components assume large values (either negative or positive) depending on the type
of change. This is true, even if single date features may have different ranges across each other since
the difference operator (2) is applied to corresponding features computed at t1 and t2 showing similar
range. To effectively perform CD in the multidimensional space defined by XF

D, the information in XF
D

vector is represented in spherical coordinates by computing its magnitude (ρ), azimuth angle (θ), and
elevation angle (ϕ). The relationship between XF

D in Cartesian coordinates and Spherical coordinates
is described by Equations (3)–(5):

ρ =
√

XF
D,1

2 + XF
D,2

2 + XF
D,3

2, (3)

θ = arctan

(
XF

D,2

XF
D,1

)
, (4)

ϕ = arcos

(
XF

D,3

ρ

)
. (5)

In the spherical representation, unchanged samples having small values in all the XF
D components

assume small magnitude (ρ) values, whereas changed samples assume large values in one or more
XF

D components thus showing a large magnitude (ρ) and a direction along θ and ϕ variables that
depends on the ratios among values of the XF

D components (i.e., on the type of change). Therefore,
the magnitude variable carries information about the presence/absence of changes, whereas the
direction variables carry information about the possible type of changes [22,34,47]. According to these
observations, a magnitude-direction domain (D) (Figure 5) can be defined as in Equation (6) that
includes all SCVs:

D = {ρ ∈ [0, ρmax], 0 ≤ θ < 2π and 0 ≤ ϕ < π}, (6)

where ρmax is the maximum magnitude of XTC
D .

Three subsets of D are of interest: (i) the sphere (Sn) that includes unchanged pixels, i.e., the ones
with small magnitude values; and (ii) the spherical shell (Sc) that includes changed pixels, i.e., the ones
with large magnitude values. Sn and Sc are complementary, the radius T of Sn is the inner radius of
Sc, and their union provides D. T separates changed from unchanged samples along the magnitude.
Since the magnitude is a compressed 1-dimensional representation of the change problem, T is obtained
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as a trade-off among the effects of the types of change. Yet, the definition of T along the magnitude
only is a simple and effective solution [22,34]; and (iii) truncated cone sectors (Sk) of changed pixels
associated to preferred directions (θk, ϕk) in Sc (gray shaded truncated cone in Figure 5). Each preferred
direction is associated to a specific type of change ΩGrd (see Figure 1). The volume Sk associated with
the k-th change is defined as:

Sk =
{

ρ, θ, ϕ : T ≤ ρ < ρmax, θk1 ≤ θ < θk2 , ϕk1 ≤ ϕ < ϕk2

}
. (7)

The upper and lower bounds θk1 , θk2 , ϕk1 and ϕk2 , as well as T, can be calculated manually
or automatically [51]. Once the angular thresholds have been estimated, the magnitude threshold
T can be refined for Sk to account for the behavior of each specific type of change [52]. Finally,
the change detection map (CDmap) is built by including the following labels Ω = {ωn, ΩGrd},
with ΩGrd =

{
ΩDis, ΩVeg, ΩEnv, . . . , ΩAnt

}
, where ωn refers to unchanged areas. As last step,

non-relevant changes (e.g., misregistration, shadows), usually associated with the left side of the tree
of radiometric changes shown in Figure 1, are removed from the CDmap.

Figure 5. Regions of interest for Change Vector Analysis (CVA) in spherical coordinates: domain D of
Spectral Change Vectors (SCVs) in XF

D, sphere Sn of no-changes, spherical shell Sc including changes
and solid truncated cone Sk associated to a generic change k [34].
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3. Experimental Results and Discussion

3.1. Dataset Description and Design of Experiments

The proposed approach was validated over different areas located in the Trentino region in the
north of Italy (Figure 6). These areas show interesting properties from the point of view of orographic
conformation and environmental variety. Over a relatively small region it is possible to find: (i) flat
regions including precious apple and vineyard fields, and urban, sub-urban and industrial areas with
different density and structure; and (ii) hill and mountain environments with a variety of tree species.

Figure 6. Area of interest, Trentino region in the North of Italy.

Three bi-temporal data sets made up of different couple of images among QuickBird (QB), two
WorldView-2 (WV-2) and one GeoEye-1 (GE-1) were constructed over the sample areas (yellow squares
in Figure 6). The three datasets were selected such that different types of change are represented.
Therefore, dataset 1 shows the transition from forest area to several types of vegetation, dataset 2
shows transitions among different phenological states of crop areas; and dataset 3 shows transitions
from vegetation and bare soil (and vice versa) and changes in roofs and roads around an urban area.
These datasets allow us to evaluate the complexity of working with multisensor VHR optical images.
Details about the three datasets are provided in Table 1. The three satellites show some remarkable
differences due to differences in the view angle, the spectral resolution, the number of bands and the
spatial resolution.

Table 1. Datasets description. QB: QuickBird; WV: WorldView; GE: GeoEye.

Dataset 1 and 2 Dataset 3

t1 t2 t1 t2

Sensor QB WV-2 WV-2 GE-1
Acquisition date July 2006 August 2010 May 2011 September 2011
Off-nadir angle 14.1◦ 19.3◦ 7.8◦ 14.4◦

The QB and GE-1 images have four multispectral bands, whereas WV-2 has eight. The spatial
resolution of the QB image is 0.6 m for the panchromatic band and 2.4 m for multispectral bands,
whereas WV-2 and GE-1 offer a higher spatial resolution in both panchromatic and multispectral
bands with 0.5 m and 2 m, respectively. Table 2 summarizes the characteristics of QB, WV-2 and
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GE-1 images from the spectral and spatial point of view. The spatial resolution differences imply that
the sizes I1 × J1 and I2 × J2 of X1 and X2 images, respectively, are different despite they cover the
same surface. The size of QB image in Figure 6 is 8674 × 6300 pixels, whereas the size of WV-2 and
GE-1 images is 10297 × 7139 pixels. Thus, pixel-by-pixel comparison cannot be directly applied since
the same pixel coordinates in the two images do not correspond to the same position on the ground.
Concerning spectral resolution, we can observe that the four primary multi-spectral bands of QB,
GE-1 and WV-2 are acquired over similar spectral ranges (e.g., red), but not fully identical (e.g., blue).
Similar considerations hold for green and NIR bands.

Table 2. Main characteristics of QuickBird, WorldView-2 and GeoEye-1 optical sensors [53].

Satellite QuickBird WorldView-2 GeoEye-1

Bands (nm)

445–900 (pan) 450–800 (pan) 450–800 (pan)
400–450 (coastal)

450–520 (blue) 450–510 (blue) 450–510 (blue)
520–600 (green) 510–580 (green) 510–580 (green)

585–626 (yellow)
630–690 (red) 630–690 (red) 655–690 (red)

705–745 (red edge)

760–900 (NIR)
770–895 (NIR 1)

780–920 (NIR)860–1040 (NIR 2)

Spatial Resolution (m) 0.61 0.46 0.41
2.44 1.84 1.65

In order to apply the proposed approach, we define the tree of radiometric changes (ΩRad) specific
for the considered study areas (one single joint tree is provided for the three datasets), apply mitigation,
extract suitable features and perform ΩGrd detection. As a first step, we define the specific tree of
radiometric changes (ΩRad) for the considered problem by starting from the general tree given in
Figure 1 [5]. The three datasets show changes due to acquisition conditions (ΩAcq) and changes
occurring on the ground (ΩGrd). With regard to ΩGrd, there are changes in the phenological state of
the vegetation (ΩVeg) (e.g., radiometry of some crops yards, trees, small roads between crop yards
(ΩCro), re-vegetation) and changes due to anthropogenic activities (ΩAnt) (e.g., changes in road ΩRoa,
deforestation ΩDef, roofs ΩBui and crop planting). It is important to clarify that even though the types
of changes can be visually separated by photointerpretation, we do not have enough information to
give a precise “from-to” label to them.

Concerning ΩAcq, both atmospheric conditions (ΩAtm) and acquisition system
(
ΩSys

)
effects

are present. ΩAtm is mitigated by means of atmospheric corrections [6]. ΩSys is related to the type
of sensor (ΩSen) and to the sensor view angle (ΩAng). The ΩAng changes generate small differences
in the appearance of objects, leading to geometric distortions, thus to residual misregistration even
after proper alignment of images, and to spectral differences when tall buildings are present. We can
also see some differences in shadows, which become more critical when high buildings, structures or
reliefs are present. ΩAng and ΩSen changes are non-relevant from the application viewpoint. Therefore,
they are explicitly handled before proceeding to detect ΩGrd and tuning the final CD map. ΩSys such
as the ones due to sensor acquisition mode (ΩMod) are not considered since we are working with
passive sensors. ΩGrd like the ones due to natural disasters (ΩDis) or environmental conditions (ΩEnv)
are ignored, since such events did not occur in the considered study area. According to this analysis
and to the general taxonomy in Section 2, the tree of radiometric changes for the considered problem
becomes the one in Figure 7.
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Figure 7. Tree of radiometric changes for the considered problem.

Once the radiometric tree was defined, we performed spectral and geometric differences
mitigation. All images were provided by DigitalGlobe Foundation in the context of the
“MS-TS—Analysis of Multisensor VHR image Time Series” project [54]. Conversion from DNs
to At-Surface Reflectance (ASR) was conducted before delivery by means of the Atmospheric
Compensation (AComp) algorithm [6,55,56]. Given the orography of the study area and the possible
distortions, we applied orthorectification by using a DEM obtained from LiDAR data [57]. Further
distortions appear in dataset 1, since it is located in mountain area, and dataset 3 because of the presence
of buildings. Additional pixel-to-pixel problems are also observed due to ΩAng, and co-registration
should be applied.

In order to achieve a better co-registration, PS was applied by means of the Gram–Schmidt
method. Here ENVI software package was employed [58]. After PS, the spatial resolution for QB is
0.6 m, and 0.5 m for GE-1 and WV-2 multispectral bands. Co-registration was carried out over the
QB–WV-2 and WV-2–GE-1 pairs, covering the whole study area in Figure 6, by using a polynomial
function of second order. For the QB 2006 and WV-2 2010 couple, 79 uniformly distributed Ground
Control Points (GCP) were selected, whereas 68 uniformly distributed GCP were selected for the WV-2
2011 and GE-1 2011 couple. The WV-2 2010 image was resampled during co-registration. Resampling
was performed by means of the nearest neighbor interpolation. Figure 8 shows the pansharpened
multisensor VHR QB, GE-1 and WV-2 images after applying spectral and geometric mitigation in the
first and second column, respectively.

Datasets 1 and 2 show a common spatial resolution of 0.6 m and a size of 640× 640 pixels, whereas
dataset 3 shows a common spatial resolution of 0.5 m and a size of 1800 × 1800 pixels. Datasets 1, 2
and 3 appear in first, second and third row of Figure 8, respectively. In order to perform qualitative
and quantitative analysis, a reference map for datasets 1 and 2 was defined by photointerpretation and
exploiting prior knowledge on the scene as no ground truth was available (see Figure 8c,f, showing
332,414 and 280,928 unchanged pixels (white color) and 77,186 and 128,672 changed pixels (different
colors), respectively). For dataset 3, considering the extent of the area and the fact that we have no
complete knowledge of the changes occurring on the ground, it was not possible to derive a complete
reference map. Thus, quantitative analysis was based on 62808 pixels marked as changed, and 6263 as
unchanged, selected by photointerpretation. For comparison purposes, a false color composition of the
two acquisitions is provided, green and fuchsia areas represent changes (Figure 8i). Changed pixels in
the reference map include ΩGrd, only. For dataset 1, changes from (i) forest to bare soil; (ii) forest to
grass; (iii) base soil to grass and (iv) bare soil to some road are identified. For dataset 2, changes from
(i) dense vegetation to sparse or light vegetation and vice versa; and (ii) bare soil to vegetation are
present. In addition, for dataset 3, changes are from (i) bare soil to vegetation, both dense and sparse;
(ii) one to another color of the roofs; and (iii) old to new roads.
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Figure 8. True color composition of the pansharpened multispectral multisensor VHR datasets: (a,d) QB
image acquired in July 2006; (b,e) WV-2 image acquired in August 2010; (g) WV-2 image acquired in
May 2011; and (h) GE-1 image acquired in September 2011; (c,f) Reference maps; and (i) false color
composition for dataset 3 (magenta and green shades highlight changes).

Once spectral and geometric mitigation was achieved, mitigation of residual ΩSys was performed
at the level of feature extraction. The selection of the features is therefore designed to detect the residual
ΩSys and the ΩGrd. According to the tree of radiometric changes (Figure 7), residual ΩSys might be
related to ΩAng, resulting in possible shadows and/or registration noise, whereas ΩGrd includes three
type of changes: ΩCro, ΩRoa and ΩDef. Residual ΩSys due to shadows, due to vegetation or buildings,
were detected by means of the method in [59], whereas ΩSys due to registration noise are negligible.
ΩGrd were detected by employing TC and OrE features.

Three main TCs (i.e., Brightness, Greenness and Wetness) and three OrE (Crop mark, Vegetation
and Soil) have been studied because of their sensibility to soil content or transitions from-to soil,
vegetation, canopy moisture and anthropogenic activities have been studied. Thus, we expect them
to properly detect the different changes in the study area, with the exception of some transitions
between green areas that do not show up in TC features. These are the cases of datasets 1 and 3,
where transitions from forest to grass and crop to grass are misdetected. This is due to the fact that
the difference is more in texture rather than in TC features. In order to evaluate and compare the
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proposed approach, experiments carried on features such as ASR, are also conducted. The detection of
changes is obtained by applying CVA to a 3D TC and OrE feature space. However, other features such
as IR-MAD [24] could be also used, despite no approaches for automatic detection with these features
in multisensor VHR images exist yet. The drawback with IR-MAD is that it requires an end-user
interaction to select the most specific components that represent the specific change of interest and to
separate among changed and un-changed samples. This is time consuming and makes the approach
not fully automatic.

Two experiments were designed: (i) experiment 1 (exp. 1) applies CVA to the transformed
ASR bands features; and (ii) experiment 2 (exp. 2) applies CVA to TC (for datasets 1 and 2) or OrE
(for dataset 3 which has a large presence or urban areas) features. In exp. 1, the first two selected bands
are the Near-IR (NIR) and Red (R) given their high spectral sensibility in the analysis of vegetation and
anthropogenic activities. The R bands of QB, GE-1 and WV-2 have quite similar spectral range, whereas
the NIR ones do not (see Table 2). Therefore, between NIR1 and NIR2 WV-2 bands, NIR1 (770–995 nm)
was selected given that its spectral range better matches to the QB NIR (760–900 nm) and GE-1 NIR
(757–853 nm) band spectral range. Another ASR feature to be selected could be the Green or Blue band.
Empirical experiments showed a slightly improvement in the final CD accuracy while using Green
band instead of Blue one. Therefore, Green band was selected as third feature. In exp. 2, for datasets
1 and 2, TC features were selected based on: (i) the maximum number of TC features that can be
derived for each specific sensor, (ii) the radiometric tree of changes; and (iii) the possibility to compare
between multisensor TC features. Thus, 4 TC features were derived, bounded by QB properties.
In accordance with the radiometric tree, features should be selected that are able to highlight ΩVeg

and ΩAnt. Based on the level of comparison between the multisensor TC coefficients, and according
to the state-of-the-art, only the first three TC features of each sensor show similar physical meaning.
For dataset 3, only three OrE features exist in the literature and are derived by means of the 4 main
spectral bands of the sensors.

TC and OrE features were derived directly from the spectrally mitigated data and by using the
coefficients in Tables 3–5. For TC, only coefficients corresponding to the first three TC feature are
present. Here the set of coefficients in [60] was applied to the QB image. The coefficients are derived
from the DN feature space (Table 3). There are no TC coefficients derived from TOA values for QB
images in the literature. Thus, we applied the QB TC coefficients over the QB DN features, and
compared the derived TC features as a higher level primitive. For the WV-2 image, coefficients are
applied as given in [61], but to the ASR features instead of TOA ones, as originally derived (Table 4).
The OrE features were derived by means of the coefficients shown in Table 5 and as per Equation (1).

Table 3. Tasseled Cap (TC) coefficients for QuickBird Digital Numbers (DN) values [60].

Bands Brightness (TC1) Greenness (TC2) Wetness (TC3)

B1 0.319 −0.121 0.652
B2 0.542 −0.331 0.375
B3 0.490 −0.517 −0.639
B4 0.604 0.780 −0.163

Table 4. TC coefficients for WorldView-2 TOA values [61].

Bands Brightness (TC1) Greenness (TC2) Wetness and shadows (TC3)

B1 −0.060 −0.140 −0.271
B2 0.012 −0.206 −0.316
B3 0.126 −0.216 −0.317
B4 0.313 −0.314 −0.243
B5 0.412 −0.411 −0.256
B6 0.483 0.096 −0.097
B7 −0.161 0.601 −0.743
B8 0.673 0.504 0.202
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Table 5. Orthogonal coefficients for WorldView-2 and GeoEye-1 [50].

Orthogonal Component Blue Green Red NIR

WV-2
Crop Mark −0.38 −0.71 0.20 −0.56
Vegetation −0.37 −0.39 −0.67 0.52

Soil 0.09 0.27 −0.71 −0.65

GE-1
Crop Mark −0.39 −0.73 0.17 −0.54
Vegetation −0.35 −0.37 −0.68 0.54

Soil 0.08 0.27 −0.71 −0.65

3.2. Results and Discussion

In order to assess the effectiveness of the ΩSys mitigation and the ΩGrd detection approach based
on higher-level physical features, CVA was applied by considering the 3D feature space defined above
and by means of Equations (2)–(5). We first extracted all the areas that correspond to radiometric
changes in the image, by thresholding the magnitude variable. The selection of a threshold T over
ρ showed to be a simple and fast way to separate among changed and non-changed pixels. A good
separation, among the three dimensions of CVA was guaranteed in average. T was automatically
selected by applying a Bayesian decision rule [35] and by following the implementation presented
in [62]. In [62], the statistical distribution of the magnitude as a mixture model representing the classes
of unchanged and changed pixels is approximated by a Gaussian mixture. Parameters for the statistical
distribution are derived by means of the EM algorithm and decision of the threshold is made using
a Bayesian minimum cost criterion [46]. The T values for each of the datasets in the two experiments
are shown in Table 6.

Figure 9 shows the multispectral difference image 3D histogram for the dataset 1, where bigger
circles represent higher density (corresponding to the un-changed samples) and small circles represent
lower densities (related to the different types of changes). In Figure 9a,c, it is possible to see how XASR

D
and XTC

D are distributed in a coplanar and sparse way, respectively. This kind of distribution leads
to an easier visual interpretation of the XTC

D , if compared to XASR
D . In fact, from the 3D histograms in

Figure 9, we can see that the coplanar distribution of ASR features does not allow good separation
between changes of interest and changes of no interest. A similar behavior is observed between the
ASR and OrE features. Right column of Figure 9, presents the changed samples after removing the
unchanged ones. Different clusters fit to different Sk sectors and are associated with different changes.
As we move from XASR

D to XTC
D , or XASR

D to XOrE
D , it becomes evident how different clusters locate

around preferred directions and how the number of clusters increases, making their detection and
separation more effective. Separation among different clusters can be performed by automatic or
manual methods.

Table 6. Magnitude (T) threshold values for the three datasets in Exp. 1 and 2.

Dataset Exp. T

1
1 0.060
2 0.080

2
1 0.025
2 0.030

3
1 0.090
2 0.060
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Figure 9. Histogram in spherical coordinates of (a) XASR
D , (c) XTC

D , and changed samples after
thresholding ρ for (b) At-Surface Reflectance (ASR) and (d) TC features.

The last step builds the multiple CDmap by means of the extraction by cancellation strategy. To this
end, selection of each of the clusters in the changed region was conducted automatically by means
of an adaptation of the TSMO proposed in [36]. The TSMO method yields the same set of thresholds
as the conventional Otsu method, but it greatly decreases the required computation time. This is
achieved by introducing an intermediate step based on histogram valley estimations, which is used
to automatically determine the appropriate number of thresholds for an image. Final multiple CD
maps were built by cancelling the remaining ΩSys and the ΩGrd that are out of interest (e.g., cars in
road and parking areas, Figure 10). As expected, some vegetation changes that affect more texture
rather than TC features are misdetected in datasets 1 and 3. In other words, the selected higher-level
physical features are not optimized for those changes, but different higher-level physical features could
be selected to properly model most of the types of changes.

In order to perform a qualitative analysis, a comparison of the CD maps with their reference
maps (for datasets 1 and 2) and the set of points collected by photointerpretation (dataset 3) was
carried out. The comparison pointed out the improvement achieved when working with higher-level
physical quantities, specifically for transitions from and to bare soil and different types of crops.
This is confirmed when we analyze dataset 1 where changes are mainly from-to vegetation and bare
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soil. TC features outperform the results obtained when using ASR features (Table 7). As expected,
both TC and ASR features have similar problems to identify the change from forest to vegetation.
An analogous situation occurs on dataset 2, with changes from-to different types of crops. In this case,
TC outperforms ASR being able to separate among changes C2 and C3 (which cannot be discriminated
when using ASR features—see Figure 10d–f).

Figure 10. Change detection maps obtained by CVA in 3D applied to the three datasets in: (a,d,g) ASR
features; (b,e) TC features; and (h) Orthogonal features. (c,f) Reference map; and (i) false color
composition for dataset 3 (magenta and green shades highlight changes).

For datasets 1 and 2, the major improvement is related to the decrease of False Alarms (FA)
(see Tables 7 and 8). In dataset 1, the FA correspond to the main road passing through the area and to
some of the remaining shadows generated by the tree lines. Even though an index was used to remove
the shadows, a small percentage of them remained. In dataset 2, the FA correspond mainly to the linear
structures like roads in between the different crops. Moreover, it is possible to observe improvements
in terms of detection and separation of the different types of changes. The number of Missed Alarms
(MA) decreased as well when working with TC, leading to a better detection of changes, especially
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when a higher number of changes exist, such as the case of dataset 2. From the quantitative viewpoint,
the reduction in both FA and MA reflects in the Overall Accuracy (OA) that increases of about five
percent and seven percent for dataset 1 and 2, respectively (see Tables 7 and 8).

Table 7. Confusion matrices for dataset 1 in Exp. 1 and Exp. 2.

Exp. Changes Found
Actual Changes

C1 C2 C3 C4 C5 Reliability

1

C1 39775 596 91 0 2129 93.38%
C2 2206 9500 1501 44 28428 22.79%
C3 9 5 2427 128 2077 52.24%
C4 0 0 0 0 0 0.00%
C5 3765 13090 2718 1327 299780 93.48%

Accuracy 86.93% 40.96% 36.02% 0.00% 90.18%

Overall Accuracy 85.81%

2

C1 36558 250 92 0 910 96.69%
C2 2412 8153 1355 94 6571 43.87%
C3 0 2 1464 42 1152 55.03%
C4 0 0 0 0 0 0.00%
C5 6785 14786 3829 1363 323781 92.36%

Accuracy 79.9% 35.15% 21.72% 0.00% 97.40%

Overall Accuracy 90.32%

Table 8. Confusion matrices for dataset 2 in Exp. 1 and Exp. 2.

Exp. Changes Found
Actual Changes

C1 C2 C3 C4 C5 C6 Reliability

1

C1 5381 6 1 10387 12286 16408 12.10%
C2 142 40242 19330 3560 4 47406 36.35%
C3 0 0 0 0 0 0 0.00%
C4 18 0 50 9472 10 2688 77.40%
C5 0 0 0 0 0 0 0.00%
C6 1198 7973 3643 13800 1169 214426 88.53%

Accuracy 79.85% 83.45% 0.00% 25.48% 0.00% 76.33%

Overall Accuracy 65.80%

2

C1 3269 8 3 10447 12423 12197 8.52%
C2 66 37971 291 0 22 29301 56.13%
C3 116 773 19534 3713 2 15080 49.81%
C4 59 3 196 15476 51 4156 77.61%
C5 0 0 0 0 0 0 0.00%
C6 3229 9466 3000 7583 971 220194 90.08%

Accuracy 48.51% 78.74% 84.84% 41.58% 0.00% 78.38%

Overall Accuracy 72.37%

In the case of dataset 3, ASR features poorly separates among C3 and C4 classes that correspond to
transitions from bare soil to sparse and dense vegetation, respectively. The number of MA for the class
C3 by ASR features is clearly larger than for OrE ones (see Table 9). Moreover, OrE features are able to
better detect the classes C2 and C7 than ASR features. C2 and C7 correspond to changes occurring on
building roofs and roads renewed in the studied period. Finally, ASR features do not detect class C8
(change in roof color of a building), whereas OrE features do. Other transitions from-to vegetation
and bare soil can be seen in the change classes with less MA and FA when the OrE features are used.
It is worth noting that changes due to moving cars on roads or in parking areas were considered as
non-relevant for this study and thus neglected. From the quantitative perspective, the OA obtained by
OrE features increased the overall accuracy of about 2% over that of ASR features. This improvement
can be considered relevant given the complexity of the scene with the presence of more types of
changes. Proper higher-level physical features, such as some radiometric indexes or texture features,
may provide better results. Tables 7–9 show the confusion matrices obtained for each dataset in the
two experiments.
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Table 9. Confusion matrices for dataset 3 in Exp. 1 and Exp. 2.

Exp. Changes Found
Actual Changes

C1 C2 C3 C4 C5 C6 C7 C8 C9 Reliability

1

C1 905 0 0 0 0 0 0 0 0 100%
C2 0 206 0 0 0 0 0 0 0 100%
C3 0 0 1642 334 0 0 0 0 11 82.64%
C4 0 0 27 450 0 0 16 0 0 91.28%
C5 0 0 0 0 240 0 0 0 0 100%
C6 0 0 0 0 0 400 0 0 12 97.09%
C7 3 0 0 68 0 0 195 0 0 73.31%
C8 0 0 0 0 0 0 0 0 0 0.0%
C9 725 0 203 392 0 198 89 213 62785 97.18%

Accuracy 55.42% 100% 87.71% 36.17% 100% 66.89% 65.00% 0.00% 99.96%

Overall Accuracy 96.75%

2

C1 1294 0 0 0 0 0 0 0 91 93.43%
C2 0 206 0 0 0 0 0 0 0 100%
C3 0 0 1792 134 0 0 0 0 22 91.99%
C4 0 0 27 1052 0 0 16 0 0 96.07%
C5 0 0 0 0 240 0 0 0 0 100%
C6 0 0 0 0 0 582 0 0 143 80.27%
C7 0 0 0 0 0 0 158 0 205 43.53%
C8 0 0 0 0 0 0 0 66 0 100%
C9 339 0 26 58 0 16 110 147 62347 98.90%

Accuracy 79.24% 100% 97.13% 84.57% 100% 97.32% 55.63% 30.98% 99.27%

Overall Accuracy 98.07%

4. Conclusions and Future Developments

In this paper, an approach for CD in VHR multispectral multisensor optical images has been
presented. The proposed approach aims at defining and illustrating a data flow for effectively handling
differences due to acquisition sensors. It is based on a general framework for the design of CD systems
for VHR multitemporal images presented in [5]. In order to deal with multispectral and multitemporal
images acquired by different sensors, it integrates in the general approach the following two concepts:
(i) spectral, radiometric and geometric homogenization between images acquired by different sensors;
and (ii) detection of multiple changes by means of features that guarantees homogeneity over time and
across sensors. Experimental results on real datasets, made-up of VHR bi-temporal and multisensor
optical images, confirmed the effectiveness of the proposed block scheme and the improvement
achieved by the use of higher-level physical features (i.e., TC and OrE) over the traditional features
(i.e., TOA or ASR). In the specific cases of datasets 1 and 2, a major improvement is observed when
changes from-to vegetation and bare soil, and different types of crops are considered. This given that
the higher-level physical feature (i.e., TC) were selected to highlight such type of changes. In the
case of dataset 3, the use of OrE for the detection of changes described above, as well as for changes
from-to vegetation and bare soil (i.e., forest to grass, crop to grass, bare soil to grass/forest) and small
changes on roads and roofs, resulted in better CD accuracy than that obtained by using ASR. In general,
both TC and OrE features allow a better separation and interpretation of ΩGrd by guaranteeing that
these changes are distributed in compact and well separated clusters (when in the 3D feature space).

As future developments, further analysis should be carried out to determine which cluster
represents a specific type of change, and to define appropriate features for other types of changes.
For the mitigation of remaining ΩSys and the better detection of the ΩGrd, the use of additional features,
either in the physical feature space or in the spatial feature space, could help to make the separation
and distinction better, thus improving the final OA. Additional improvements from the ΩSys mitigation
process point of view in both spectral and geometric perspective should be considered. For the spectral
differences, and given that some of the VHR multisensor optical images have different number of
bands and different spectral ranges, the use of regression methods for predicting bands that match
from the spectral viewpoint could be considered. For the geometric differences, improvements on the
co-registration process by the use of co-registration methods designed for multisensor images could be
also explored. Improvements on the detection of building changes could be also integrated.
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