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Abstract: Vegetation indices (VIs) derived from active or passive sensors have been used for maize
growth monitoring and real-time nitrogen (N) management at field scale. In the present multilocation
two-year study, multispectral VIs (green- and red-based), chlorophyll meter (SPAD) and plant height
(PltH) measured at V12–VT stage of maize development, were used to distinguish among the N
status of maize, to predict grain yield and economic return in high yielding environments. Moreover,
linear plateau-models were performed with VIs, SPAD and PltH measurements to determine the
amount of N needed to achieve maximum maize grain yields and economic return. The available
N in the topsoil (0–30 cm) was measured, and its relationship with VIs, maize yield and maize N
requirements was analyzed. Green-based VIs were the most accurate indices to predict grain yield
and to estimate the grain yield optimum N rate (GYONr) (216.8 kg N ha−1), but underestimated the
grain yield optimum N available (GYONa) (248.6 kg N ha−1). Red-based VIs slightly overestimated
the GYONr and GYONa, while SPAD highly underestimated both of them. The determination of
the available N did not improve the accuracy of the VIs to determine the grain yield. The green
chlorophyll index (GCI) distinguished maize that would yield less than 84% of the maximum yield,
showing a high potential to detect and correct maize N deficiencies at V12 stage. The economic
optimum nitrogen rate (EONr) and economic optimum nitrogen available (EONa) were determined
below the GYONr and the GYONa, demonstrating that maximum grain yield strategies in maize are
not normally the most profitable for farmers. Further research is needed to fine-tune the response of
maize to N applications when deficiencies are detected at V12 stage, but airborne imagery could be
useful for practical farming implementation in irrigated high yielding environments.

Keywords: vegetation indices; digital multispectral camera; airplane; maize; nitrogen
fertilization; profitability

1. Introduction

Productivity and resource-use efficiency are desirable agronomic, economic and environmental
goals [1,2]. In most crops, nitrogen (N) is the most limiting nutrient for crop production in many of
the world’s agricultural areas [3], and its efficient use is important for economic and environmental
sustainability [4]. Maize (Zea mays L.) is a high N-demanding crop, where insufficient application of N
can result in important economic losses, whereas an excessive fertilization implies wasting resources
and an increase of the environmental pollution [5]. Nitrogen fertilization of maize can account for up
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to 30% of the total production cost [6]. Hence, it is important to optimize its application to maximize
the economic return.

High-yielding environments, such as those of the Ebro Valley (northeastern Spain), where maize
could achieve more than 16 Mg ha−1 of grain, usually require high N rates (Nrates) to cover crop
necessities [7]. The Nrates are the amount of N fertilizer applied to corn during the growing season.
In this area, maize N extractions are about 250–300 kg ha−1 [8–10]. Farmers apply high N rates to
cover maize N requirements and therefore, the N fertilization strategy has a great influence in the
economic return. Multiple assessment tools for N have been used for N management. However,
temporal and spatial variation of crop N requirements [11], together with within-field soil N supply
variability, can influence the assessment of N-field availability [12]. Nitrogen fertilization of crops,
such as maize, has been mostly underpinned by the simplification of fieldwork management and by
avoiding under-fertilization risk. Conducting farms to the common practice of over-fertilization by the
application of high Nrates at early stages of the crop.

The worldwide N recovery in crops is usually less than 50% [3], with the impact that this supposes
on N resource efficiency and the pollution of agroecosystems [13]. Knowing that approximately
one-third of the total maize N uptake occurs after pollination (under favorable soil moisture
conditions) [14], better N practices should be developed to increase N use efficiency.

Determination of within-field soil spatial patterns is a useful tool for N management but
requires the collection and analysis of a large number of samples. Soil [15], plant or chlorophyll
concentration [16] sampling is costly, time-consuming and barely captures the spatial variability often
present within fields. Plant analysis and chlorophyll meter readings have been used for confirmation
of N responsive sites, whereas soil tests for available N (Navailable) have predicted successfully the crop
N needs in arid regions, but not in humid regions [17]. The Navailable is the sum of the N applied (Nrate)
plus the NO3

−–N present in the soil at sidedress time, which gives an estimate of the N that is going
to be accessible for the crop during the growing season. Therefore, there is a need to develop a faster,
more accurate and possibly more economical method to gather crop information and to estimate and
adjust N requirements [18].

Due to the link between net photosynthesis and steady-state fluorescence at airborne spectral
level, field-spectral imaging is a very useful technology for crop growth monitoring and real-time
management at field scale [19–21]. Vegetation indices (VIs) derived from active or passive sensors have
been used to distinguish temporal patterns in crop development [22–26]. For example, VIs have been
used for detecting N stress in maize at early development stages (V4–V7 stage, 4–7 leaves with visible
leaf collar), though with relatively low accuracy [27–29]. This was attributed to the strong background
soil reflectance. Hence, maize ground cover is vital if the pixel resolution does not allow removal of
soil pixels [30]. However, image acquisition after V8 stage seems to be consistently useful to determine
maize N status and to predict yield [23,31–35], increasing progressively its accuracy up to VT stage
(tasseling). In areas where N can be applied via irrigation systems, the image acquisition at V12 stage
is generally preferred to other alternatives. At V12, maize has already taken up about 40% of the total
N [36] and crop response to N fertilizer is still high if N deficiencies are detected. Image acquisition
after VT stage could be affected by color disturbance of the tassels, reducing the correlation between
VIs and N status or yield [37]. Moreover, after VT, the maize response to extra N application is further
limited because the crop has less time to absorb the applied N (compared with V8 or V12 stage) [38].

Despite the usefulness of multispectral images to aid N management, the adoption of remote
sensing technologies by farmers is still limited [39]. Different technologies have been used for this
purpose. Satellite images normally have lower spatial and temporal resolution and, in some areas,
they can be disturbed by cloud cover and/or sprinkler irrigation during the image acquisition [40].
Unmanned aerial vehicles (UAV) have tremendous potential for high-resolution requirements for
detailed site-specific weed control treatments in early post-emergence [41] or N recommendation [35].
However, such high-resolution is probably not necessary for determining maize N status at V12
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(when the canopy covers the ground entirely), and airborne images could be useful for practical
farming implementation because of their high potential to cover large cropping areas.

While numerous studies have been conducted using remote sensing techniques to determine N
status and predict maize grain yield [19,23,31–34], limited research have been made comparing the
effectiveness of these technologies in irrigated high-yielding environments.

The objectives of the present study were to use VIs derived from multispectral aerial images:
(1) to distinguish among N status of maize at V12 stage, (2) to predict grain yield and economic return,
and (3) to determine the amount of N needed to achieve maximum maize grain yields and economic
return in high yielding environments.

2. Materials and Methods

2.1. Study Area

A two-year experiment (2014–2015) was carried out in two long-term N fertilization experimental
fields located in Lleida (northeastern Spain): Almacelles (AL) (41◦73′N, 0◦50′E) and Gimenells (GI)
(41◦65′N, 0◦39′E) (Figure 1).

Figure 1. Location of the study area and detail of the experimental fields: Almacelles (AL) and
Gimenells (GI).

The experimental fields comprised an area of 108 × 60 m2 and 110 × 130 m2 with plot sizes of
180 m2 and 150 m2 in AL and GI, respectively. However, in the present study only 20 of the 36 and
49 experimental plots were analyzed for AL and GI, respectively. These 20 plots were selected because
they had the same N treatments. It should be noted that plots had been continually used for the same
purpose throughout the previous 13 and 6 years in GI and AL, respectively. Same N fertilization
treatments were maintained over the aforementioned period, so an emphasizing effect of the different
N treatments could be expected.

The study area is characterized by a semiarid climate with low precipitation (192 mm) and
high average temperature (19.1 ◦C) during the maize growing period [7]. The summer of 2015
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(June–August period) was hotter than the same period of 2014 (1.0, 1.5 and 2.1 ◦C for minimum, mean
and maximum temperatures, respectively). Each experimental field received 750–800 mm of water
(lacking nitrate) per growing season, in order to provide the maize with optimum yield conditions.
The soils described in the experimental fields were Typic Calcixerept (AL) and Petrocalcic Calcixerept
(GI) [42], in both cases well-drained. Soil quality indicators and physicochemical parameters were
analyzed using standard methods [43]: soil texture, pH, electrical conductivity (EC), bulk density,
available P (Olsen P) and extractable K (NH4Ac) (Table 1).

Table 1. Chemical and physical soil properties of the experimental fields (2014).

Soil Properties Almacelles (AL) Gimenells (GI)

Depth, cm 0–30 30–60 60–110 0–30 30–60 60–110
Sand, % 42 43 17 39 38 45
Silt, % 33 36 63 40 42 38

Clay, % 25 21 20 21 20 17
pH 8.2 8.4 8.4 8.3 8.3 8.3

Organic matter, g kg−1 33 — — 22 — —
Bulk density, g cm−3 1.64 — — 1.40 — —

EC, dS m−1 0.19 — — 0.20 — —
P (Olsen), mg kg−1 90 — — 31 — —

K (NH4Ac), mg kg−1 383 — — 217 — —
Soil class † Typic Calcixerept Petrocalcic Calcixerept

Precedent crop Maize Maize
† Soil survey staff (2014).

In both locations (AL, GI) and years (2014, 2015) conventional tillage was applied, including disc
ploughing and cultivation to a depth of 30 cm to incorporate maize stover and to prepare the soil for
the next sowing. In early April, the hybrid PR33Y72 (FAO cycle 600) was planted in both fields at a
rate of 90,000 plants ha−1 with 71 cm between rows. Two herbicides treatments were applied: one
at pre-emergence to control the majority of weeds (S-Metolachlor 40% and Terbuthylazine 18.75%,
at 3 L ha−1) and the other at post-emergence to specifically control Abutilon theophrasti M. and Sorghum
halepense L. (Dimethylamine salt of dicamba 48.2% at 1 L ha−1 and Nicosulfuron 6% at 0.75 L ha−1).

Maize was harvested the last week of October with an experimental small-plot combine. Grain
yield was measured in the two central rows (1.5 × 10 m) of each plot and subsequently, the it was
adjusted to 14% moisture content by the use of a 250 g sample in each plot (GAC II, Dickey-John,
Auburn, IL, USA).

The economic return of each plot was calculated as the difference between the income produced
by the selling of the grain yield and the cost of the N fertilizer applied. The N:maize price ratio is
defined as the price per kilogram of N divided by the price per kilogram of maize (price ratio = price
of fertilizer N, € kg−1 N/price of maize, € kg−1 maize) [44]. In the present study, the N:maize price
ratio was 5.3:1, considering a N price (N fertilizer plus application cost) of 0.90 € kg-1 and a maize
grain price of 0.17 € kg-1.

2.2. Fertilizer Treatments

Five different inorganic fertilizer Nrates: 0, 100, 200, 300 and 400 kg N ha−1 (N0, N100, N200, N300
and N400, respectively), with four replications under a randomized block design were considered.
The N fertilization treatments were randomized at the beginning of the experiments (2002 and 2010,
in GI and AL, respectively) and applied in the same plots the following seasons. The N fertilizer
(34.5% N, as ammonium nitrate) was manually applied and split into two equal sidedress applications
(50% at V3–V4 and 50% at V6–V7 stage) for all plots except for N400 treatment, where a third sidedress
was applied at V10 stage. Thus, the N distribution in the N400 treatment was 37.5% at V3–V4, 37.5%
at V6–V7 and 25% at V10 stage. The N400 treatment had different N management to increase N use
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efficiency (NUE) and to reduce the risk of pollution by nitrate leaching associated with high Nrates at
early stages. Phosphorus and potassium were also applied every two years in both locations before
planting, at rates of 150 kg P2O5 ha−1 and 250 kg K2O ha−1, to avoid deficiencies of those elements.

2.3. Remote and Proximal Sensing: Data Acquisition and Analysis

A digital multi-spectral camera (DMSC) with a DMSC-2k System sensor (Specterra-Services,
Leederville, WA, Australia), mounted on an airplane (operated by RS Servicios de Teledetección,
Lleida, Spain), was used to acquire multispectral aerial images of the experimental fields at V12 stage.
The surveys were conducted under optimum flight conditions at 880 m (AGL) above both fields on
30th June 2014 and 25th June 2015. The time of flight was less than 1 h between 12:30 and 1:30 h
(GTM) on sunny days, without clouds. The DMSC-2k System sensor consisted of a 4-interline transfer,
a 2048 × 2048 pixel charge-coupled device (CCD) with a Nikon F mount, and 24–28 mm fixed focal
length lenses. The spatial and radiometric resolutions were 0.25 m and 14 bit (recorded as 16 bit),
respectively. The spectral resolution of the camera consisted in four independent and replaceable
narrow bandwidth spectral filters. Twenty nm range width bands centred at 450 nm (blue), 550 nm
(green), 675 nm (red) and 780 nm (near infrared) were captured. The spectral bands were pre-processed
by the provider to compensate for mis-registration due to lens distortion (less than 0.2 pixels) and for
scene brightness due to the bi-directional reflectance distribution function (BRDF).

Seven different VIs reported in the literature (NDVI, GNDVI, GCI, SAVI, GSAVI, WDRVI and
EVI) were computed (Table 2). Then, to summarize the response of the different N treatments to each
VI, fifty points within each individual experimental plot (excluding 1 m buffers from the borders),
were sampled and the VI values extracted. Soil distortion did not affect the VIs because soil pixels
were avoided in the analysis.

Table 2. Vegetation indices (VIs) computed in the study to test the usefulness of multispectral aerial
images to determine maize N status and predict grain yield. †

Vegetation Index Formula Reference

(1) NDVI (Normalized Difference
Vegetation Index)

NIR−Red
NIR+Red [45]

(2) GNDVI (Green NDVI) NIR−Green
NIR+Green [46]

(3) GCI (Green Chlorophyll Index) NIR
Green − 1 [47,48]

(4) ‡ SAVI (Soil Adjusted Vegetation Index) NIR−Red
(NIR+Red+L) ·(1 + L) [49]

(5) ‡ GSAVI (Green SAVI) NIR−Green
(NIR+Green+L) ·(1 + L) [27]

(6) WDRVI (Wide Dynamic Range
Vegetation Index)

(∝ · NIR−Red)
(∝ · NIR+ Red) [50]

(7) EVI (Enhanced Vegetation Index) G NIR−Red
NIR+C1Red−C2Blue+L2

[51]
‡ L = 1− 2·s·(NIR−Red)·(NIR−s·Red)

(NIR+Red) . † Green, Red, Blue and NIR are the reflectance of the green, red, blue and near
infrared light, respectively. L is a correction factor (calculated by the formula presented at the bottom of the table),
where s is the slope of the soil line. α is a weighting coefficient (α = 0.2). In the EVI calculation, G is a gain factor, C1,
C2 are the coefficients of the aerosol resistance term and L2 functions as the soil-adjustment factor (L2 = 1; C1 = 6;
C2 = 7.5 and G = 2.5).

In addition to the VIs, the heights of five plants were manually measured in each experimental
plot at VT stage (10 days after image acquisition). Plant height (PltH) was measured at the last
leaf to avoid differences caused by tassel size and shape, which vary with both plant population
and variety [52]. Non-destructive chlorophyll readings were taken at VT using a small, lightweight,
portable, hand-held meter (SPAD-502, indirect chlorophyll meter; MinoltaCorp, Ramsey, NJ, USA).
In agriculture, the SPAD meter is widely accepted to improve N management by predicting N status
and determining fertilization requirements [53]. SPAD values indirectly evaluate the leaf chlorophyll
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content based on the amount of light transmitted by the leaves at two different wavelengths: red
(650 nm) and near infrared (940 nm). In the present study, SPAD values were determined by sampling
three different parts of the ear leaf (base, middle and top) in five central row plants of each experimental
plot (15 measurements per plot). Then, SPAD values were averaged per each plot.

Soil NO3
−– N was determined in each plot before planting at a depth of 0–30 cm by a composite

of five individual cores. Soil NO3
−–N was extracted using deionized water and measured using test

strips with a Nitrachek® device calibrated according to the standard procedure [54]. The Navailable for
maize during the growing season was determined by the sum of the Nrate applied in the experimental
plots and the NO3

−–N determined at sidedress: Navailable = Nsoil at sidedress + Nrate.
In order to compare the results of the different Nrates and Navailable among fields and years, indices

ratios were calculated in each field and year by dividing the plot average value (VIs, SPAD, PltH, grain
yield and economic return) by the maximum value of each field and year. Normally, the highest values
were obtained in the considered overfertilized treatment (400 kg N ha−1). Furthermore, the calculated
ratios of VIs, SPAD and PltH were fitted to linear-plateau models with the Nrates, Navailable, and
grain yield to determine the accuracy of these variables to determine maize N status and to predict
grain yield.

2.4. Statistical Analysis

The experiment was analyzed as a split-plot in time with completely randomized blocks and
four replications. The location (GI or AL) was the main plot, and the Nrates (N0, N100, N200, N300
and N400) were subplots. The ratios calculated from the extracted values in the sampling points were
subjected to analysis of variance using the Mixed Model of the Statistical Analysis System (JMP Pro 12,
SAS Institute, Cary, NC, USA), considering Nrates, the year and the location as fixed factors and the
replication as random effect. In addition, the grain yield and economic return means were separated
by the LSMeans Tukey HSD test (p < 0.05), with levels not connected by the same letter considered
significantly different.

Linear-plateau regression analyses were also carried out: (1) between the ratios of the VIs, SPAD,
PltH and grain yield with the Nrates or Navailable to estimate the grain yield optimum N rate (GYONr)
and the grain yield optimum N available (GYONa) [55], (2) between the ratios of the economic return
with the Nrates or Navailable to determine the economic optimum nitrogen rate (EONr) and the economic
optimum nitrogen available (EONa), and (3) between the ratios of the VIs, SPAD and PltH with the
ratios of grain yield to determine their usefulness to predict grain yield at the V12 stage. Analysing
together locations and years, the GYONr, the GYONa, the EONr and the EONa were determined where
the plateau was reached, indicating the non-responsiveness amount of N (saturation point) to extra
N application.

3. Results and Discussion

3.1. Vegetation Indices, SPAD and Plant Height Responses to N Rates and Available N

Table 3 presents the mean values and the ANOVA of the VIs at V12 stage (n = 50 for each plot),
PltH and SPAD at VT stage (n = 15 for each plot), grain yield and economic return (n = 4) for the
different Nrates applied in the experimental plots. The rates are sorted according to the total amount of
applied N.

As expected, the control treatment (0 kg N ha−1) presented the lowest VIs, SPAD and PltH values
in both locations (p-value < 0.05). The differences were more accentuated in GI than in AL. Probably,
the longer period of time without any N application (13 years) and the lower soil organic matter
(OM) content, reduced the soil capacity to provide N to the crop during the growing season. In GI,
the VIs and PltH values of the N0 treatment were higher in 2015 than in 2014. The higher summer
temperatures in 2015 could have contributed to the mineralization of the OM [56,57] and consequently,
to N availability.
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Table 3. Analysis of variance and mean values of the vegetation indices (n = 50 for each plot), plant height (n = 15 for each plot), SPAD (n = 15 for each plot), yield and
economic return (ECO-return) (n = 4) for the different nitrogen rates (Nrates) in the experiments of Almacelles (AL) and Gimenells (GI) during the 2014 and 2015
growing seasons. The results are presented as ratios dividing the indices values or the yield by the maximum observed in each field and year.

Nrates and
Statistics

NDVI GNDVI GCI SAVI GSAVI WDRVI2 EVI SPAD ‡ HEIGHT ‡ YIELD ECO-Return

2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015

R2 model 0.85 0.94 0.94 0.56 0.94 0.94 0.91 0.96 0.90 0.99 0.99

Almacelles (AL)

0 0.92 0.91 0.80 0.77 0.63 0.64 0.95 0.94 0.82 0.79 0.51 0.35 0.89 0.92 0.62 0.69 0.84 0.90 0.42 0.53 0.46 0.58
100 0.95 0.94 0.90 0.88 0.79 0.80 0.97 0.96 0.92 0.90 0.67 0.54 0.93 0.96 0.88 0.80 0.90 0.97 0.75 0.79 0.80 0.83
200 0.96 0.95 0.93 0.91 0.85 0.85 0.98 0.96 0.94 0.92 0.76 0.62 0.96 0.97 0.94 0.94 0.93 0.98 0.92 0.94 0.96 0.97
300 0.97 0.96 0.94 0.93 0.88 0.88 0.98 0.97 0.95 0.94 0.78 0.69 0.96 0.98 0.95 0.96 0.95 0.98 0.94 0.96 0.95 0.96
400 0.99 0.97 0.97 0.95 0.94 0.91 0.99 0.98 0.98 0.96 0.90 0.78 0.99 0.98 0.95 0.96 0.99 0.99 0.96 0.97 0.94 0.93

Gimenells (GI)

0 0.71 0.88 0.49 0.65 0.32 0.53 0.83 0.91 0.55 0.67 −1.49 −0.31 0.61 0.80 0.49 0.59 0.63 0.83 0.19 0.34 0.22 0.37
100 0.90 0.88 0.79 0.81 0.73 0.78 0.90 0.88 0.80 0.83 0.49 0.47 0.86 0.87 0.85 0.86 0.95 0.91 0.50 0.61 0.53 0.63
200 0.96 0.96 0.97 0.94 0.94 0.91 0.99 0.97 0.97 0.95 0.59 0.52 0.90 0.94 0.96 0.95 0.88 0.98 0.82 0.84 0.87 0.86
300 0.98 0.98 0.98 0.98 0.96 0.97 0.98 0.99 0.94 0.99 0.85 0.77 0.97 0.96 0.93 0.93 0.94 0.96 0.88 0.93 0.89 0.92
400 0.98 0.98 0.98 0.98 0.96 0.96 0.98 0.99 0.95 0.98 0.80 0.78 0.94 0.96 - 0.97 - 0.95 0.93 0.91 0.92 0.86

ANOVA over locations and years

Location
(L) ** ** NS ** ** ** ** ** * ** **

N rates (N) ** ** ** ** ** ** ** ** ** ** **
L × N ** ** ** ** ** ** ** * ** ** **
Error a - - - - - - - - - - -
Year (Y) * NS ** NS NS NS ** NS ** ** **
Y × L ** ** ** NS ** ** * NS NS * *
Y × N ** ** ** * * ** ** NS ** ** **
Y × N × L ** ** ** NS ** ** ** NS ** NS NS
Error b - - - - - - - - - - -

NS No significance * Significant at p-value < 0.05 ** Significant at p-value < 0.01. ‡ SPAD N400 values in Gimenells 2014 were missing. ANOVA was calculated without N400 treatment for
these variables.
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The N100 treatment presented significantly higher VIs, SPAD and PltH values than the control
treatment (N0), but lower than the Nrates above 200 kg N ha−1. In fact, there were very little and
non-significant differences for most VIs, SPAD and PltH at Nrates between 200–400 kg N ha−1.

Previous studies in the area determined the need of 290 kg Navailable ha−1 (0–90 cm) to achieve
maximum maize grain yields [8], with extractions up to 386 kg N ha−1 [58]. Then, the N400, and
probably the N300 treatment, could provide enough N to cover maize’s N requirements. The N200
seemed a non-sufficient amount of N to cover maize N extractions. However, the N200 rate, together
with the initial soil N content at planting and the N mineralization through the growing season, seemed
to provide enough N for maize development. At least until V12-VT, when maize has already absorbed
around 40–50% of the total N [14].

All VIs, SPAD and PltH were able to differentiate among different Nrates of the experiment
(p-value < 0.01), showing their usefulness for differentiating N maize status at V12 stage [37,59,60].
The interaction between location and Nrates (L × N) was significant, probably due to the higher values
of the indices observed in AL with respect to GI in the N0 and N100 treatment. These differences
between locations could be due to field conditions that contribute to soil fertility [61], as well as to
different soil OM contents in AL than in GI, which would have produced higher N mineralization in
Al than GI (Table 1). As mentioned above, the difference in the quantity of N mineralization in the two
fields was evident and can be observed with the grain yields obtained in the control treatments (N0).
The yields of AL (9.0 Mg ha−1) nearly doubled those of GI (4.8 Mg ha−1). The higher yields in 2015
provoked a significant interaction between year and Nrates (Y × N).

The VIs, PltH and SPAD were highly correlated with the Nrates applied (Figure 2) and with
the Navailable (Figure 3). All indices were fitted to a linear-plateau model when compared with the
applied Nrates or Navailable. The GYONr and GYONa were determined when the plateau was reached
(saturation point), indicating where the VIs, SPAD and PltH did not increase with additional N inputs.

Green-based VIs obtained better correlations than red-based VIs with the Nrates or Navailable
(Figures 2 and 3). Indeed, green-based VIs have been normally considered more useful for assessing
leaf chlorophyll variability when the leaf area index is moderately high [62], as it is in maize. Sripada
et al. [18] showed the usefulness of green-based VIs at predicting the GYONr (R2 = 0.67) with aerial
CIR (colour infrared) imagery. Bausch and Khosla [32] used the GNDVI to determine the GYONr

(R2 = 0.91) with QuickBird panchromatic imagery (satellite). In our study, the highest correlations at
V12 between Nrates and VIs were found for GCI (R2 = 0.80), GSAVI and GNDVI (R2 = 0.73). Otherwise,
at VT stage the SPAD correlated up to R2 = 0.89. Red-based VIs, as well as PltH, showed low correlation
with the Nrates. Indeed, the R2 coefficient was 0.44 for PltH, 0.51 for NDVI and 0.45 for EVI, SAVI,
WDRVI (Figure 2).

The response of the VIs, SPAD and PltH to the Navailable was quite similar to that observed for
the Nrates. However, a consistent increase in the R2 coefficient when fitting linear-plateau models was
observed due to the extra information (initial soil NO3

−–N) added to the model (Figure 3). The use of
the Navailable explained better some variations of the indices values for the same Nrates applied. Thus,
in-season nitrate analysis can be used for the fine-tuning of remote sensing prediction of N sufficiency
rates [63].

The GYONr and the GYONa undoubtedly gives interesting information for N management since
they allow to differentiate between N-deficient and N-sufficient plots [23]. All VIs and PltH achieved
saturation between applied Nrates of 202.9 and 235.0 kg N ha−1. However, the SPAD was not able to
differentiate above 142.1 kg N ha−1. This findings are similar to the reported by Liu et al. [64] in a
5 Nrates study at lower yielding conditions. In their study, SPAD was able to distinguish between Nrates

up to 135 kg N ha−1. In high-yielding environments, SPAD has shown saturation at 173 kg N ha−1,
which is consider not enough to achieve maximum yields [65]. Therefore, the usefulness of SPAD as a
predictor of maize N status in high-yielding environments is probably limited.
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Figure 2. Response of (a) NDVI, (b) GNDVI, (c) GCI, (d) SAVI, (e) GSAVI, (f) WDRVI2, (g) EVI vegetation indices at V12 stage, (h) SPAD and (i) plant height (PltH)
at VT stage to different nitrogen rates (Nrates) tested in the experiments. Saturation N dose was determined when there was no response to higher N fertilization.
The results of Almacelles (AL) and Gimenells (GI) are presented as ratios dividing the indices values by the maximum observed in each year. ‘Both’ indicates that the
two fields were analyzed together.
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Figure 3. Response of (a) NDVI, (b) GNDVI, (c) GCI, (d) SAVI, (e) GSAVI, (f) WDRVI2, (g) EVI vegetation indices at V12 stage, (h) SPAD and (i) height at VT stage to
the available nitrogen in the top soil layer (0–30 cm) (Navailable) determined in the experiments. Saturation N dose was determined when there was no response to
higher N fertilization. The results of Almacelles (AL) and Gimenells (GI) are presented as ratios dividing the indices values by the maximum observed in each year.
‘Both’ indicates that the two fields were analyzed together.
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Generally, the GYONr determined by the green-based VIs (≈210 kg N ha−1) was lower than
that determined by the red-based VIs (≈230 kg N ha−1). The GYONa was similar to the GYONr

for the green-based VIs, however, the GYONa predicted with red-based VIs increased to 250–270 kg
Navailable ha−1. SPAD increased the GYONa by 27% compared with its determined GYONr, but even
so, the GYONa was highly underestimated. The relationship between Navailable and the studied indices
could also help to explain the better N status seen in 2015 compared to 2014 in GI, when higher indices
values in the N0 treatment were correlated with higher Navailable (Figure 3).

In our conditions, the GYONa determined by the VIs for maize production was between 200 and
270 kg N ha−1. These amounts of available N were similar to those reported in other studies in the
Ebro Valley [7,8,66,67]. Thus, the tested VIs enabled the spatial characterization of N status and were
able to assess crop performance even under low-N stress [68].

3.2. Grain Yield and Economic Return Responses to N Rates and Available N

Grain yield and economic return varied significantly according to Nrates (p-value < 0.01), location
(p-value < 0.01) and year (p-value < 0.05) (Table 4). Moreover, interactions between location and Nrates

(L × N), year and location (Y × L), and year and Nrates (Y × N) were detected and can be explained by
the same reasons described above.

Averaging both years, there were not significant yield differences among the highest Nrates

(200–400 kg N ha−1), however, AL showed high average yields than GI (Table 4).

Table 4. Analysis of variance and mean values of yield and economic return (ECO-return) for the
different nitrogen rates (Nrates) on the experiments of Almacelles (AL) and Gimenells (GI) during 2014
and 2015. Tukey’s HSD test was performed in 2014 and 2015 (and both years together) for the yields of
the both sites (AL and GI): different letters indicate homogeneous groups with respect to the mean
differences at a p-value of <0.05.

Nrates and
Statistics

YIELD (Mg ha-1) ECO-Return (€ ha-1 × 1000)

2014 2015 Both Years 2014 2015 Both Years

Almacelles (AL)

0 8.7 g 9.2 fg 9.0 d 1.5 ef 1.6 ef 1.5 c
100 15.6 de 16.1 de 15.9 bc 2.6 cd 2.7 bcd 2.6 b
200 19.1 a 18.4 abc 18.8 a 3.1 a 3.0 ab 3.0 a
300 19.6 a 18.9 ab 19.2 a 3.1 a 2.9 ab 3.0 a
400 20.0 a 18.9 a 19.4 a 3.0 a 2.9 abc 3.0 a

Gimenells (GI)

0 3.5 i 6.1 h 4.8 e 0.6 h 1.0 g 0.8 d
100 9.1 g 11.0 f 10.0 d 1.5 f 1.8 e 1.6 c
200 15.0 e 15.2 de 15.1 bc 2.4 d 2.4 d 2.4 b
300 16.0 de 16.8 cde 16.4 bc 2.5 d 2.6 cd 2.5 b
400 17.2 bcd 16.4 de 16.8 b 2.5 d 2.4 d 2.5 b

ANOVA over locations and years

Location (L) ** **
N rates (N) ** **

L × N ** **
Year (Y) * *
Y × L ** **
Y × N ** **

Y × N × L NS NS

NS—No significance. * Significant at p-value < 0.05. ** Significant at p-value < 0.01.

Consistently with high grain yields, higher economic returns were found at high Nrates.
The maximum economic return was obtained in an N200 treatment in AL (3068 € ha−1) and in an
N300 treatment in GI (2578 € ha−1) but there were no statistical differences among the treatments
of 200, 300 and 400 kg N ha−1. The economic return was mostly determined by grain yield at the
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studied N:Maize price ratio of (5.3:1), so a slight reduction in grain yield was drastically penalized
by the economic return. It was evident that, at higher N:Maize price ratios (worse relation of prices
for farmers), the efficiency of the N will affect more the economic return of the crop. Sripada et al. [44]
tested an interval of price ratios from 4:1 to 14:1 (N:Maize), so the 5.3:1 price ratio used in our study
was close to the optimum for farmers and highly affected by the grain yield.

The economic return is important not only for N management in maize production system,
but also for the reduction in N contamination of groundwater [11]. As EONr for maize is usually
consistent with good environmental stewardship, it could therefore be used as a tool to determine
maize N requirements [44], and could be considered essential for responsible N management of
maize crops.

In the present study, the grain yield and economic return were highly correlated with the Nrates

(R2 = 0.82 and 0.77, respectively) and Navailable (R2 = 0.89 and 0.87, respectively) in linear-plateau
models (Figure 4). As observed for the VIs, knowledge of the Navailable in the topsoil layer slightly
increased the accuracy of the model. The GYONr and GYONa were respectively determined at
216.8 and 248.6 kg N ha−1, similar to the Nrates reported in previous studies in the area [8,67,69,70].
However, the maize N extractions were probably not completely covered by the determined GYONr

and GYONa in the linear-plateau model.

Figure 4. Response of (a) yield to nitrogen rates (Nrates), (b) yield to available nitrogen (Navailable),
(c) economic return to Nrates and (d) economic return to Navailable as tested and determined in the
experiments. Saturation N dose was determined when there was no response to higher N fertilization.
The results of Almacelles (AL) and Gimenells (GI) are presented as ratios dividing the yield and
economic return values by the maximum observed in each year. ‘Both’ indicates that the two fields
were analyzed together.

In similar environments, Maresma et al. [35] and Yagüe and Quílez [70] reported respectively a
GYONr of 239.8 and 300 kg N ha−1, where the N extraction of maize is around 250–300 kg N ha−1 [8–10].
These Nrates can be considered low compared to the extractions, but if N is provided when needed, maize
could uptake the N and translates it into yield. Moreover, Biau et al. [58] quantified the maize N uptake
up to 386 kg N ha−1 for grain yields of 16 Mg ha−1, in similar conditions. Probably, the difference between
applied N and N uptake was supplied by soil OM mineralization during the growing season, which has
been quantified in around 100 kg N ha−1 [8] for our conditions.
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The EONr was lower than GYONr, showing the non-economic justification of the maximum
yield strategies. The maize yield per kg of applied N is reduced when increasing the Nrates and,
consequently, the last yield increment normally entails a decrease in crop profitability. This is because
the income obtained per kg of grain is lower than the cost of the N fertilizer input. Di Paolo and
Rinaldi [71] reported a reduction of 25 kg of maize per kg of N fertilizer when applying high amounts
of N fertilizer (300 kg N ha−1) in irrigated Mediterranean conditions (14 Mg maize grain ha−1). At a
N:Maize price ratio of 5.3:1, and considering both site location and year, the EONr was 176.6 kg N ha−1

while the EONa was 209.4 kg N ha−1. Although EONr could vary depending on the prices of maize
and N [44], Schlegel et al. [72] concluded that in same fields, the EONr was relatively insensitive to
changes in these prices. In their study, the EONr was similar for low-, medium-, and high-yielding
years, concluding that application of an extra N as insurance reduced crop profitability. Therefore,
as EONr and EONa could be considered stable in same fields, the EONr (176.6 kg N ha−1) and the
EONa (216.8 kg N ha−1) reported in this study could be useful for the guidance of the N management
strategies in maize fields located in high yielding environments.

3.3. Correlation between Vegetation Indices, SPAD and Plant Height with Grain Yield

The calculated ratios of VIs at V12, SPAD and PltH at VT stage showed moderate to high correlations
with the grain yield ratios (R2 between 0.45 and 0.90) (Figure 5). Several studies have proven the usefulness
of red-based VIs, as NDVI, for predicting grain yield in different conditions [18,68,73–77]. However, in
the present study the green-based VIs showed higher correlation with grain yield than the red-based VIs.

Figure 5. Response of (a) NDVI, (b) GNDVI, (c) GCI, (d) SAVI, (e) GSAVI, (f) WDRVI2, (g) EVI
vegetation indices at V12 stage, (h) SPAD and (i) plant height (PltH) at VT stage to yield achieved at
harvest in the experiments. Saturation N dose was determined when there was no response to higher
N fertilization. The results of Almacelles (AL) and Gimenells (GI) are presented as ratios dividing
the indices values by the maximum observed in each year. ‘Both’ indicates that the two fields were
analyzed together.
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In a two-year study and under similar conditions, Bausch et al. [31] demonstrated the usefulness
of green-based indices at V12 and later growth stages for predicting grain yield (R2 = 0.81) and its
variability within a field for in-season N management. Isla et al. [33] also reported better grain yield
predictions with GNDVI and SPAD (R2 = 0.93) than with red-based VIs (R2 = 0.65).

The higher indices values determined at V12 stage resulted in higher grain yields. However, there
was variability among the highest indices values that was not clearly translated into grain response
(Figure 5). Linear-plateau models were fitted to identify the saturation of the indices for predicting
grain yield. This saturation provided information about the percentage of maximum grain yield up
to which the index can differentiate. Therefore, the indices that presented saturation at higher grain
yields were determined to be more useful due to their capacity to distinguish between nearly optimal
maize N statuses. In this case, green-based VIs performed better than red-based VIs in determining
maize vigor. This fact could be explained by problems of saturation associated with red-based indices
for some types of vegetation during their later growth stages [33]. The highest saturation of VIs for
grain yield prediction corresponded to SAVI (at 86% of maximum yield). The usefulness for predicting
leaf chlorophyll content and N status in maize in different growth stages of VIs derived from SAVI
has been reported [76,78]. However, its low correlation with grain yield (R2 = 0.48) demonstrated that
its usefulness for grain yield prediction is still uncertain.The best VI to predict grain yield was GCI,
which was able to differentiate up to 84% of the maximum yield and showed high correlation with the
linear-plateau model (R2 = 0.87). Hence, small N deficiencies in maize at V12 stage could be detected
by GCI and corrected with extra N application.

It is known that intra-field yield spatial variability can be occasioned by different stress problems,
resulting in a grain yield variability of 15–38% with respect to non-stress conditions [79,80]. Therefore,
under N deficits these differences would probably be higher. Detection of maize N status that would
yield less than 84% of maximum yield would improve the average maize grain yields and, consequently,
N management. Similarly, the other green-based VIs tested at V12 showed similar trends to GCI.
GNDVI and GSAVI saturated at 80% and 79% of the maximum grain yield, respectively.

High variability was observed among the red-based VIs. The NDVI predicted grain yield
accurately (R2 = 0.73), but was able to differentiate only up to 64% of the maximum yield. WDRVI
and EVI were respectively saturated at 45% and 58% of the maximum yield, and, together with the
PltH (56%), were the least accurate at differentiating among the highest grain yields. These results
partially disagree with those presented by Maresma et al. [35], who in a one year-site study found the
WDRVI to be the best grain predictor using a high-resolution UAV service. Nevertheless, although in
the present study the plateau was not reached for high relative grain yield, there was a clear tendency
of increasing WDRVI values when increasing the yield (Figure 5f). This trend might corroborate the
potential of this index to distinguish yield at high Nrates with high resolution imagery.

SPAD and PltH measured at VT proved their potential to predict grain yield. SPAD differentiated
up to 86% of the maximum yield, confirming the usefulness of chlorophyll meters for predicting grain
yield [37,53,81]. However, PltH was partially useful for grain yield prediction (differentiating up to
56% of the maximum grain yield). Although Liu and Wiatrak [64] did not find a correlation between
PltH and grain yield at V8 stage (R2 = 0.03), our results do concur with Yin et al. [82], who predicted
grain yield with PltH at VT stage (R2 between 0.52 and 0.86, depending on the year).

3.4. Vegetation Indices, SPAD and Plant Height to Predict GYONr, GYONa, EONr and EONa

The studied indices were useful determining the GYONr (216.8 kg N ha−1—Figure 4).
Linear-plateau models (R2 = 0.73–0.80) showed saturation of green-based VIs at rates of 210 kg N ha−1,
which makes them the best predictors of GYONr at V12 stage (Figure 2). The red-based VIs
(at V12 stage) or PltH (at VT stage) also predicted the GYONr (206–235 kg N ha−1) but the lower
correlation with the linear-plateau model (R2 = 0.44–0.51) causes uncertainty. The SPAD widely
underestimated (142.1 kg N ha−1) the GYONr, agreeing with the results of Maresma et al. [35]. Thus,
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despite the potential of SPAD to predict yield, it should not be used to estimate the GYONr in high
yielding environments.

The GYONa (in the first 30 cm of soil) was 248.6 kg N ha−1 (Figure 4). The red-based VIs predicted
accurately the GYONa (252–271 kg N ha−1) (Figure 3) and slightly increased their correlation with
the linear-plateau model (R2 = 0.48–0.58) compared with the GYONr. However, the effectiveness of
green-based VIs, WDRVI and PltH at determining the GYONa was negatively impacted by adding the
Navailable to the model. SPAD, as was observed for the GYONr, highly underestimated the GYONa

(181.9 kg N ha−1).
The EONr (and EONa) were determined below the GYONr (and GYONa). Therefore, since the

VIs proved their usefulness for determining the GYONr and GYONa, they would over-estimate the
EONr (and EONa). However, at low N:maize price ratios, EONr (and EONa) will be more accurately
predicted by the indices since the economic return is mainly affected by the grain yield.

4. Conclusions

Vegetation indices derived from multispectral airborne images showed their usefulness to
distinguish maize N status and yield potential in high yielding environments. The VIs, SPAD and PltH
were useful to predict maize grain yield (R2 between 0.48–0.90). Similarly, VIs have proven to be an
outstanding tool to accurately differentiate between N responsive and N nonresponsive areas in the
field at V12 stage, when N deficits can still be corrected by late sidedress applications. Green-based
VIs, and especially GCI, were the most accurate at predicting the GYONr, whereas red-based VIs
slightly overestimated it and SPAD highly underestimated it. The EONr was overestimated by the VIs,
confirming their higher potential to predict grain yield than economic return.

The determination of the Navailable did not improve the accuracy of the VIs to determine the
GYONa. However, in our study N fertilization treatments were maintained during a long-term period
and probably the residual N in the soil was stabilized for each N treatment. Commercial fields might
have larger differences in N patterns within fields, and Navailable calculation could be very useful to
determine N responsive and N non-responsive areas.

Overall, VIs could contribute to enhancing N management in farming practices for maize cropping.
The use of VIs could reduce the risk of contamination by over-fertilization, improve the economic
return, and increase the NUE by reducing N inputs while maintaining grain yield. Further research is
needed to fine-tune the response of maize to N applications when deficiencies are detected at V12 stage.
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Abbreviations

Nitrogen N
OM organic matter
N rates Nrates

available N Navailable
Nitrogen use efficiency NUE
Unmanned aerial vehicles UAV
Digital Multi-Spectral Camera DMSC
Grain yield optimum N rate GYONr

Grain yield optimum N available GYONa

Economic optimum nitrogen rate EONr

Economic optimum nitrogen available EONa
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