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Abstract: Remote sensing allows regional evapotranspiration (ET) values to be obtained. Surface
conductance is a key variable in estimating ET and controls surface flux interactions between the
underlying surface and atmosphere. Limited by the influence of clouds, ET can only be estimated on
cloud-free days. In this study, a gap-filling method is proposed to acquire daily surface conductance,
which was coupled into a Penman-Monteith (P-M) equation, to estimate the regional daily ET
over the Hai River Basin. The gap-filling method is coupled with the canopy conductance, surface
conductance and a simple time extension method, which provides more mechanisms and is more
comprehensive. Field observations, including eddy covariance (EC) fluxes and meteorological
elements from automatic weather station (AWS), were collected from two sites for calibration and
validation. One site is located in Guantao County, which is cropped in a circular pattern with winter
wheat and summer maize. The other site is located in Miyun County, which has orchard and summer
maize crops. The P-M equation was inverted to the computed surface conductance at the field scale,
and latent heat fluxes from EC were processed and converted to daily ET. The results show that
the surface conductance model used in the gap-filling method performs well compared with the
inverted surface conductance, which suggests that the model used here is reasonable. In addition,
the relationship between the results estimated from the gap-filling method and EC measurements
is more pronounced than that between the other method and the EC measurements. The R2 values
improve from 0.68 to 0.75 at the Guantao site and from 0.79 to 0.88 at the Miyun site. The improvement
mainly occurs during the growing crop season, according to the temporal variations in the results.

Keywords: surface conductance; gap-filling; evapotranspiration (ET); ETWatch; Hai River Basin

1. Introduction

Energy and water flux exchange is an important physical process in the research field of
hydrometeorology and global change. Quantitative research on surface heat flux contributes
significantly to water cycle and climatic change interpretations. Evapotranspiration (ET) comprises
vegetation transpiration and evaporation from water and soil, which serves as a key component in
the interaction between the surface and atmosphere. Global total ET accounts for more than half of
the total amount of precipitation. Accurate estimations of ET and its spatiotemporal distribution are
meaningful for optimizing water resource management [1–3].

Ground observations and ET computations are highly precise in estimating individual sites
or at local scales and include observations based on pan evaporation, lysimeter, Bowen ratio,
eddy covariance (EC) and large aperture scintillometer (LAS) [4–10]. Comparably, EC can provide
continuously precise measurements of water and heat flux over a homogeneous surface, revealing
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the character of mass and energy exchange between specific surface features and the atmosphere.
EC measurements have been mostly used for parameter calibration and validation in land surface
models in previous studies. However, field-scale measurements are limited by their spatial
representation and are difficult to promote widely due to the cost. Regarding the underlying surface
heterogeneity and turbulence complexity, regional interpolation of ET from sparse measurements
is unreliable [11].

Remote sensing enables multi-temporal regional ET monitoring at low costs and multiple scales.
Remote sensing-based ET models usually provide model input parameters from remote sensing
measurements, such as land surface temperature, albedo and vegetation indexes, to separate sensible
heat flux and latent heat flux to solve the surface energy balance equation. Satellites equipped with
multi-scale, high-spectrum, multi-view angle sensors are currently designed to provide a more accurate
description of surface topography and hydrothermal conditions.

The Penman-Monteith (P-M) [12,13] equation combines aerodynamics with energy balance
and considers the surface conductance by mass transfer, which achieves the ET estimation for
an unsaturated surface. Surface conductance is a crucial parameter in controlling energy and water
exchanges between surface and atmosphere, which is influenced by vegetation-physiology, type of
underlying surface and environmental factors and is more complex when mixed pixels exist. As remote
sensing techniques develop, leaf area index (LAI)-based surface conductance models have been put
forward to estimate ET using the P-M equation [14–17]. However, accurate calibration for model
parameters requires field observations that limit the application of models in wider areas.

Due to the difficulty in determining surface conductance, the Surface Energy Balance System
(SEBS) [11,18,19] and Surface Energy Balance Algorithm for Land (SEBAL) [1,20,21] were developed
to compute sensible heat flux and latent heat flux, and therefore, surface conductance can be acquired
as a residual through the energy balance equation. SEBS complemented aerodynamic resistance with
residual resistance, which is determined by KB-1, to solve the difference between the land surface
temperature and aerodynamic temperature, as well as the difference between mass transfer and
heat transfer. SEBS possesses a robust physical basis compared to SEBAL, but SEBS depends on
highly accurate meteorological data. In addition, the precision of the model significantly depends
on KB-1, which is difficult to determine. SEBAL assumes that the land surface temperature has
a linear relationship with the difference between air temperature and aerodynamic temperature,
and parameters in the linear relationship are computed by a hot point and cold point selected in the
study area. The model has strict requirements for extreme points, which is always ensured empirically.
The linear relationship proposed in the model depends on the uniformity of the surface and climatic
conditions, which results in a geographic scale problem [22]. Limited by the availability of satellite
data, both models only work on cloud-free days.

The Atmosphere-Land Exchange Inverse (ALEXI) model was developed as a robust regional
framework for the two-source energy balance (TSEB) land surface model [23], which computes the
local partitioning of the surface fluxes and radiometric temperature between the soil and vegetation
components of a model grid cell [24]. The ALEXI model coupled the TSEB with an atmospheric
boundary layer (ABL) model to simulate the land-atmosphere feedback of air temperature, which
is used as a boundary condition for the sensible heat flux [25]. Given morning surface temperature
rise measurements from geostationary satellites, ALEXI related the time-integrated sensible heat
from the land surface during the morning hours to the rise in ABL temperature without requiring
the near-surface air temperature measurement [25,26]. An associated flux disaggregation algorithm
(DisALEXI), which is also built on the TSEB land surface representation, can be used to downscale
the GEOS-based ALEXI flux estimates to a finer spatial scale using land surface temperature data
from moderate- to high-resolution thermal infrared imaging systems [27–31]. Although regional
daily ET can be obtained from ALEXI, the resolution depends on the geostationary satellite data,
which are always in coarse resolution. Moreover, the models are limited by complexity during the
computational process.
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The ETWatch coupled residual method with the P-M equation is used to acquire regional daily
ET. The residual method estimates sensible heat flux on cloud-free days and latent heat flux can
be obtained as a residual from the energy balance equation. Subsequently, surface conductance for
cloud-free days can be inverted using the P-M equation and extended to daily scale through several
environmental variables. Daily ET can thus be estimated using the P-M equation with daily surface
conductance [32–35]. In this study, an enhanced method for gap-filling of surface conductance is
proposed and applied in Hai River Basin. Daily surface conductance can be estimated from those
on clear-sky days with the method. The enhanced method couples a surface conductance model
with a time extension method, which guarantees a strong, mechanistic physical process and is more
comprehensive in considering impact factors. In addition, the gap-filling method can avoid calibration
of empirical parameters and direct computation of surface conductance thus to ensuring precision
and simplicity in estimating daily regional surface conductance. When coupled with ETWatch, daily
regional ET can be obtained without complex computational procedures and are not limited by specific
data. Multi-source remote sensing and meteorological data were collected for input. Field observations
from two sites were used for calibration and validation.

2. Study Area and Data

2.1. Study Area

The Hai River Basin contains the largest water system in North China, which flows through
eight provinces (112◦–120◦E, 35◦–45◦N) and covers approximately 320,600 km2. The basin has the
semi-humid and monsoonal climate typical of mid-latitude regions. The climate is cold during
the winter but recovers quickly in the spring, with a mean annual temperature range of 1.5–14 ◦C.
The mean annual precipitation in the basin is 539 mm, and the mean annual ET is 512 mm, most of
which occurs during the summer. Figure 1 shows the position and land cover map of the whole basin
using multi-temporal MODIS data and an object-based classification method. The underlying surfaces
of the basin are mainly mountains and plateaus in northern and western regions and plains in the
southern and eastern regions. Winter wheat and summer maize are the two main crops grown on
arable land and are rotated with the change of season. Figure 2 shows the phenology of the two crops.

Two ground observation sites within the basin, which have typical crop types, are selected for
validation. These sites are Miyun station (MY) and Guantao station (GT). The positions of the two
sites are displayed in Figure 1. Site MY is in a valley of Miyun County in Beijing, which is in the north
of the basin (40◦37′N, 117◦19′E). MY has less rainfall and lower temperatures than the basin, and it
is covered by 2.5 km2 of orchard and summer maize and is surrounded by mountains. Site GT is in
the North China plain (36◦30′N, 115◦07′E), which has a homogeneous surface and is planted with
two crops (winter wheat from October to June and summer maize from June to September). At both
sites, an observation system consisting of EC and an automatic weather station (AWS) was installed to
monitor the flux measurements and meteorological elements.

2.2. Site Measurements

The EC flux data are transferred automatically and simultaneously from the stations to the server.
All data are sampled at a 10 Hz frequency and averaged every 30 min with the post-processing software
EdiRe (University of Edinburgh) and EddyPro (Li-COR Biosciences) equipped instruments. Sensible
and latent heat fluxes for 2016 were collected from both stations, and energy closure calibration was
completed based on the Bowen ratio closure method, due to the data energy imbalance. To guarantee the
flux data reliability, abnormal values were removed because of instrument malfunction and bad weather.

The 2016 meteorological data collected from the AWS contain six parameters: wind velocity,
air temperature, relative humidity, pressure, net radiation and soil moisture. The data are recorded by
loggers at an interval of 10 min, and then, they are averaged to acquire daily values. A small amount
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of data, which obviously deviated from physical meaning, were deleted and gap-filled with a linear
interpolation method [36].

Figure 1. Land cover of the Hai River Basin and locations of two stations (MY and GT).

Figure 2. Phenology of crops at stations MY and GT.

The flux data were collected for nearly the whole year from both stations and covered the main
crop growing season. The meteorological data for station GT were adequate, whereas the last four
months of data from station MY were lost due to an instrument malfunction. The detailed information
from collected ground observations are listed in Table 1.

Table 1. Information from collected ground observations.

Station Land Cover Measurements Period

Guantao Winter wheat
Summer maize

EC January–December 2016
AWS

Miyun Orchard
Summer maize

EC January–December 2016
AWS January–Auguat 2016
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2.3. Remote Sensing Data

In this study, several satellite datasets were collected and include MODIS, NCEP, FY-2D and
AMSR-2. Four MODIS images were needed to cover the basin, and the preprocessing included
radiometric, atmospheric and geometric corrections, which were already completed by the data
supplier. MYD09GA and MYD11A1 are surface reflectance and land surface temperature products,
respectively. The data were converted to image files from hierarchical data format (HDF) files, and then,
they were mosaicked and clipped to the study area using interactive data language (IDL) programs.
Normalized difference vegetation index (NDVI) can be calculated using the MODIS 1,2-band, and land
surface albedo was converted to broadband from narrowband [37]. Cloud pixels were detected using
a method proposed by Ackerman [38]. Time series datasets for NDVI and albedo were computed by
linear interpolation and smoothed by Savitzky-Golay filter [39]. MOD07 provided the atmospheric
temperature and humidity profiles, and a planetary boundary layer (PBL) mixing height derived
method was applied to extract information for a PBL [40]. All the MODIS products are 500 m
and 1 km resolution and can be downloaded from the website of LAADS DAAC (https://ladsweb.
modaps.eosdis.nasa.gov/). The wind velocity of a PBL can be extracted from NCEP reanalysis data,
which has a spatial resolution of 2.5◦ and is provided by NOAA Earth System Research Laboratory
(https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html), according to the height
of PBL. FY-2D is the second operational vehicle of the first-generation geostationary meteorological
satellite system operated by the Chinese Meteorological Administration (CMA). The sensor aboard the
satellite consists of one visible channel with a resolution of 1.25 km and four infrared channels
with resolutions of 5 km. Products are distributed on data services website in HDF format
(http://satellite.nsmc.org.cn/portalsite/default.aspx). Cloud data from the FY-2D satellite were
used to compute the sunshine hours, instead of the interpolated meteorological sunshine hours [41,42].
AMSR-2 is a sensor aboard GCOM-W1, which can provide daily global soil moisture of the top soil with
resolution of 10 km (https://gcom-w1.jaxa.jp/auth.html). All the above data were projected to Albers
conical equal area projections and resampled to 1 km resolution using an earth resource development
assessment system (ERDAS), which is a software package for processing remote sensing images.

In addition, daily meteorological elements, including wind velocity, air temperature, relative
humidity and air pressure, which were recorded at 49 national weather stations over the basin, were
collected from the China Meteorological Data Service Center. All parameters were corrected with a
digital elevation model (DEM) and then interpolated into daily maps at 1 km resolution using the
inverse distance weighting method [43]. The interpolated results were projected to Albers conical
equal area projections as satellite data.

3. Methodology

3.1. Surface Conductance Model

3.1.1. Canopy Conductance

The canopy conductance (Gc) depends both on the atmospheric factors and upon available water
content in the soil [44–46]. The model used in this study to calculate the canopy conductance (Gc) is
as follows [47]:

Gc = gc,max·LAI·F1·F2·F3·F4
4 , (1)

LAI was obtained using the following empirical equation:

LAI =
√

1 + NDVI
1− NDVI

NDVI, (2)

https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html
http://satellite.nsmc.org.cn/portalsite/default.aspx
https://gcom-w1.jaxa.jp/auth.html


Remote Sens. 2018, 10, 554 6 of 18

The factor F1 represents the effect of photosynthetically active radiation and can be defined
as follows [48]:

F1 =
gc,min/gc,max + f

f + 1
, (3)

f = 0.55
Rs

Rgl

2
LAI

, (4)

gc,min and gc,max are minimum and maximum values of canopy conductance, respectively. gc,min is
relatively insensitive in the calculation above and always set as a small constant (2× 10−4 m/s) [46].
Rs is the downward shortwave radiation, and Rgl is a limiting parameter associated with the actual
underlying surface. LAI is the leaf area index [49].

The second factor F2 characterizes the soil water content influence on the root zone. Due to the
difficulty obtaining the soil water content for the root zone in a region, the soil water content product
of the top soil from ASMR-2 was used in combination with a transformed equation as follows [50]:

F2 = 0.1LAI + (1− 0.1LAI){1− exp[θ(−0.5LAI − 1)]}, (5)

θ =
θg − θwilt

θcr − θwilt
, (6)

θg is the soil water content, and θcr is the field capacity, which is approximately 0.75 times the soil’s
porosity [51]. θwilt is the wilting point of the soil water content and is common for many herbaceous
species [52]. Values recommended for θcr and θwilt for different soil types were adopted [53].

The factor F3 addresses the effects of the water vapour pressure deficit Da over the canopy and
can be described as follows [48,49]. Cv is a species-dependent empirical parameter. A larger Da leads
to a smaller F3 and Gc, which increases the resistance of the canopy evaporation.

F3 = 1− Cv·Da, (7)

The factor F4 takes into consideration the air temperature constraint and is proposed as follows [54]:

F4 = 1− 0.0016
(
Topt − Ta

)2, (8)

where Ta is the air temperature above the canopy. Topt is the optimal temperature for the growth of
many crops and always set as 298 K. F4 decreases when Ta departs from the optimal temperature.

Several empirical parameters in the equations above are related to the actual surface and should
be calibrated using ground observations. In this study, the calibrated results from other studies [53,55]
were adopted, which are listed in Table 2.

Table 2. Surface-dependent parameters settings.

Underlying Surface gc,max (m/s) Cv (h/Pa) Rgl
(
W/m2)

Deciduous broad-leaf forest 1/100 0.025 30
Evergreen needle-leaf forest 1/150 0.025 30
Evergreen broad-leaf forest 1/150 0.025 30

Cropland 1/40 0.023 100
Grassland 1/40 0.0155 100
Wetland 1/150 0.0155 100
Bare soil 1/50 – –
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3.1.2. Surface Conductance

Total ET is the sum of transpiration from the plant canopy Ec and evaporation from the soil
Es [15,16].

E = Ec + Es, (9)

The P-M equation has been widely used in previous studies to calculate the ET of the land
surface [14,16,17,33,44,45,50,56,57]. Therefore, the P-M equation is used for E and Ec in this study as
described below:

λE =
∆A + ρcpDaGa

∆ + γ(1 + Ga/Gs)
, (10)

λEc =
∆Ac + ρcpDaGa

∆ + γ(1 + Ga/Gc)
, (11)

where λ is the latent heat of evaporation, ∆ is the slope of the curve relating saturation water vapour
pressure to temperature, γ is the psychrometric constant, A and Ac are the available energy absorbed
by the land surface and canopy surface, respectively, ρ is the air density, cp is the specific heat of air
at a constant pressure, Ga is the aerodynamic conductance, and Gs and Gc are surface conductance
and canopy conductance, respectively. Five variables used here, i.e., ∆, γ, ρ, cp, Da, are assumed to be
known or can be estimated using meteorological results. This study adopted Ga without considering
the stability corrections because the P-M equation is relatively insensitive to aerodynamic conductance,
especially when Ga >> Gs [14]. Here Ga was calculated as Equation (12) described, where k is von
Karman’s constant (0.41), u is wind velocity, z is the height of wind velocity, d is zero displacement
height, zom and zov are the roughness lengths to momentum water vapor transfer. The quantities d, zom

and zov were estimated using d = 2h/3, zom = 0.123h and zov = 0.1zom, where h is canopy height [58].
The estimation of h can be described as Equation (13), and the corresponding parameters including
maximum height (hmax), minimum height (hmin), maximum NDVI (NDVImax) and minimum NDVI
(NDVImin) of various underlying surface can refer to field measurements and exist achievements of
other researchers [59]. A equals the result of daily net radiation Rn minus the daily soil heat flux
G. Daily G can be neglected here due to its opposing character in the daytime versus nighttime.
Daily Rn can be estimated using sunshine hours from FY-2D, albedo from MODIS products and
meteorological results [41].

Soil evaporation has an important role in the total ET, especially in sparse vegetation. The
assumption that soil evaporation occurs at some fraction f of the equilibrium rate at the soil surface is
as follows [14,15]:

Ga =
k2u

ln((z− d)/zom) ln((z− d)/zov)
, (12)

h = hmin +
hmax − hmin

NDVImax − NDVImin
(NDVI − NDVImin), (13)

λEs =
f ∆As

∆ + γ
, (14)

In the equations above, the total available energy A is partitioned into that absorbed by the canopy
surface Ac and by the soil surface As. The vegetation fraction fc, which is estimated from the NDVI,
is applied in the ratio of total available energy absorbed by the canopy and soil:

Ac = A fc, (15)

As = A(1− fc), (16)

fc =

(
NDVI − NDVImin
NDVI − NDVImax

)2
, (17)
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The soil evaporation fraction f used in this study is relevant to the top soil moisture status
where evaporation occurs. According to the complementary relationship hypothesis, water vapour
pressure deficit and humidity response to the variation in moisture in the top soil via land-atmosphere
interactions [60,61], f can be described as follows:

f = a(RH)Da/β, (18)

where RH is the air humidity, β is the empirical parameter, which is set to 100, and a is the added
factor for adjustment. Combining Equations (9)–(16), the surface conductance can be obtained with
the following:

Gs = Gc

1 + (1− fc)Ga
(∆/γ+1)Gc

[
f − (∆/γ+1)(1− f )Gc

Ga

]
+

ρcpDaGa
∆Rn

1− (1− fc)
[

f − (∆/γ+1)(1− f )Gc
Ga

]
+

ρcpDaGa
∆Rn

, (19)

3.2. Gap-Filling Method

ETWatch is an integration of the “residue approach” and P-M equation [25,32–35,43]. The residue
approach is an energy balance model combined with the mass transfer method, which can compute
ET on cloud-free days based on SEBS. ETWatch consists of several subsystems: net radiation model,
soil heat flux model, sensible heat flux mode, aerodynamic roughness length model and PBL model.
ETWatch computes ET on cloud-free days with multi-source remote sensing data. The basic files are
used as auxiliary data in the computation of subsystems, which include a digital terrain model, latitude
file, aspect file and slope file. The sensible heat flux H is computed first, and then, the latent heat flux
λE can be obtained as the residue. The latent heat flux can be converted to actual ET in diurnal scales
through the latent heat of evaporation and evaporative fraction (EF) method [62,63]. Figure 3 shows
the estimation flowchart for ET on cloud-free days.

Figure 3. Estimation flowchart for ET on cloud-free days. The green indicates input data, the blue
indicates methods, the orange indicates results.

Daily ET data are difficult to acquire because of cloud cover over the basin. A gap-filling method
of surface conductance extended from clear-sky surface conductance, which can be computed with
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clear-sky ET results from ETWatch and an inversion from the P-M equation, is proposed in this study
to generate daily surface conductance and to compute the daily ET using the P-M equation.

Gs,clear =
λEclearGaγ

∆A− (∆ + γ)λEclear + ρCpDaGa
, (20)

Func = Gc

1 + (1− fc)Ga
(∆/γ+1)Gc

[
f − (∆/γ+1)(1− f )Gc

Ga

]
+

ρcpDaGa
∆Rn

1− (1− fc)
[

f − (∆/γ+1)(1− f )Gc
Ga

]
+

ρcpDaGa
∆Rn

, (21)

Gs,daily

Gs,clear
=

Funcdaily

Funcclear
, (22)

where Gs,clear is the surface conductance on clear-sky days, λEclear is the diurnal latent heat flux on
clear-sky days resulted from ETWatch, Equation (20) is the inversion of P-M equation. Equation (19)
is an expression for surface conductance proposed in Section 3.1.2 and the right part of the equation
can be marked as Func shown in Equation (21). The subscript daily and clear represent daily scale
and clear-sky days respectively. Once the Gs,clear is acquired, daily surface conductance (Gs,daily) can
be estimated using the gap-filling method expressed as Equation (22). Funcdaily and Funcclear have
the same form according to Equation (21) and consist of a series of empirical parameters including
gc,max, Rgl , Cv, which remain unchanged for the same kind of land cover over time and several
external variables such as vegetation fraction, temperature, radiation, wind velocity, etc., which change
significantly. Therefore, the Equation (20) suggests that the daily surface conductance estimation
is mainly based on the temporal variation in environmental factors between unclear-sky days and
clear-sky days, which also indicates that surface-dependent parameters including minimum canopy
conductance, empirical parameters related to the radiation and temperature factors have less important
roles in the estimation because of their stabilities over time, although they have different values among
land covers.

3.3. Evaluation Index

For the quantitative analysis of model performance, a set of evaluation indexes was selected.
The coefficient of determination (R2) is used to provide a measure of consistency between estimation
and observation. The mean bias error (BIAS) and the root-mean-square error (RMSE) are usually used
to measure the average difference between estimation and observation. The mean relative error (MRE)
describes the relative extent of deviation of estimation from observation. The calculation methods of
these evaluation indexes are listed as follows:

R2 =

[
∑n

i=1
(

Pi − P
)(

Oi −O
)]2

∑n
i=1
(

Pi − P
)2

∑n
i=1
(
Oi −O

)2 , (23)

RMSE =

√
∑n

i=1(Pi −Oi)
2

n
, (24)

BIAS =
∑n

i=1(Pi −Oi)

n
, (25)

MRE =
100
n

n

∑
i=1

Pi −Oi

O
, (26)

where Pi is No.i time estimation and Oi is No.i time measurement. P and O are mean of estimations
and measurements respectively, and n is the number of measurements.
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4. Results

4.1. Estimation of Surface Conductance

Surface conductance can be estimated as the inversion of the P-M equation with EC and
meteorological measurements. Therefore, the surface conductance model described in Section 3.1 was
calibrated using inverted values calculated with part of site measurements and key parameters, such
as gc,max and a, which were determined at sites GT and MY. The surface conductance estimations
using satellite and meteorological data at both sites were compared to the inverted results using site
measurements. The validation results are shown in Figure 4. The sample numbers indicate that both
satellite data and EC measurements are of good quality.

Figure 4. Comparisons of surface conductance between inverted results of the P-M equation and
estimated results of the surface conductance model at the Guantao (a) and Miyun (b) stations. The red
line is fitting line. The black boxes indicate values of surface conductance.

As shown in the linear fitting results in Figure 4, GT shows a high coefficient of determination
value (R2 = 0.82) and low root mean square error value (RMSE = 0.0025 m/s). MY shows values similar
to those of GT. Both sites have smaller fluctuations compared to the inverted results. In addition,
the plots exhibit an obvious seasonal change with the crop calendar. The surface conductance
estimations are relatively high values (scattered points greater than 0.015 m/s) from April to May
and July to August at GT and from July to August at MY, which are consistent with the growth of
the winter wheat and summer maize. A significant correlation between the estimation and inverted
results indicated that the surface conductance model mentioned in this study can effectively estimate
the surface conductance, when the empirical parameters are accurately calibrated.

4.2. Comparison between Different Methods with EC Measurements

The method proposed in this study (hereafter referred to as the enhanced method) and another
method (hereafter referred to as original method) were coupled into the P-M equation to estimate the
daily basin ET, and the comparison was executed to evaluate the performance of these two methods.
The original method estimates the daily surface conductance by multiplication and temporal variation
of limited variables including LAI, net radiation (Rn), soil moisture (SM) and wind velocity (U) [33].
Equation (27) gives the expression of the original method. Figure 5 reports the estimation of daily ET
plotted against the EC measurements at the GT and MY sites.
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Figure 5. Daily ET comparisons between estimations and EC measurements. (a) Estimation with
enhanced method at GT site; (b) estimation with enhanced method at MY site; (c) estimation with
original method in GT site; and (d) estimation with original method at MY site. The red line is fitting
line. The black boxes indicate values of ET.

The figure above clearly demonstrates that two methods can estimate ET to a reasonable
extent, while the enhanced method shows less dispersed results and a higher correlation with the
measurements than the original method. For site GT, the R2 values increase from 0.68 to 0.75, and the
RMSE decreased from 0.90 to 0.79. The improvement mainly occurred during the crop growing season,
which can be proven because the high ET values in the scatter plots displayed various distributions
among the two methods. This finding indicates that the enhanced method can better describe the
surface conductance variation in the crop growth. The same analysis was used to evaluate the
differences between the two methods at site MY, and comparable results were obtained. The enhanced
method also performed better than the original method, with R2 values that improved from 0.79 to
0.88 and an RMSE that reduced from 0.80 to 0.62.

Gs,daily =
Gs,clear × (LAI × Rn × SM×U)daily

(LAI × Rn × SM×U)clear
, (27)

Due to the gaps in time series EC measurements and for convenient comparability, monthly
averaged ET was calculated from the field observations and remote sensing estimations. Figure 6
shows a comparison of the results.

As shown in Figure 2, winter wheat and summer maize reach their growth peaks in May and
August, respectively. For site GT, the ET temporal variations correspond to the crop calendar, which
fluctuates throughout the whole year and exhibits a relatively low value because of the winter wheat
harvest. ET estimated from the enhanced method shows a characteristic advance compared to
the original method, especially during the growing season. The former has less distinction with
measurements in May and August than the latter, which suggests that the surface conductance
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model used in this paper can better reflect the physiological changes in the crops. For site MY, ET
has high values from June to August, following the orchard and summer maize growth periods.
The enhanced method also better estimates the peak growth of summer maize in August, compared to
the original method.

Figure 6. Variation in the monthly averaged ET from both methods and EC measurements at stations
Guantao (a) and Miyun (b).

Several statistical indices were selected to evaluate the estimation accuracy and consistency of
measurements. The results are shown in Table 3. The R2 and RMSE values of monthly averaged
ET show the same trend as the daily results for both sites. The MRE values range from −14.6% to
−12.5% for the GT site and from −3.3% to −2.8% for the MY site, which indicates a smaller estimation
deviation of the enhanced method from the measurements. The BIAS values also show notable
differences among the results of both methods and show a preferable performance from the enhanced
method. Both methods slightly underestimated the ET compared with field observations.

Table 3. Comparison statistics of the daily and monthly averaged ET for both methods at the Guantao
and Miyun sites.

Sites
Original Method Enhanced Method

R2 RMSE BIAS MRE R2 RMSE BIAS MRE

Daily Guantao 0.68 0.90 −0.42 −22.1% 0.75 0.79 −0.26 −12.5%
Miyun 0.79 0.80 −0.07 −4.2% 0.88 0.62 −0.05 −3.3%

Monthly
Averaged

Guantao 0.96 0.29 −0.38 −22.5% 0.97 0.27 −0.27 −14.6%
Miyun 0.97 0.26 −0.06 −3.1% 0.98 0.23 −0.05 −2.8%

4.3. Spatiotemporal Distribution of Results

The gap-filling method proposed in this study was applied combined with P-M equation to
estimate regional daily ET for Hai River Basin. As shown in Figure 7, the ET spatial patterns
showed a decrease from southeast to northwest and were consistent with the precipitation pattern.
The precipitation in the east and southeast regions was significantly greater than in other regions, and
accordingly, the ET values were high in this area. Further analysis of the land cover map (Figure 1)
revealed that crops in the southeast region consumed more water than the forest in the northwest
region and urban areas. In addition, the area around Bohai Bay showed the highest ET, where the
surface was moist, and the rainfall was abundant. Crop land and forest were further classified into
dry farmland and paddy field and into arbour forest and shrub forest, respectively, based on Figure 1.
The annual ET values for different land covers were counted and are displayed in Figure 8. Water
surface was the highest, with more than 700 mm. Paddy field was slightly higher than dry farmland,
due to the different crops. For the forest, arbour evaporated more than shrub, while the ET of forest
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was less than the cropland. Grassland and artificial surface were the lowest among these classes.
The difference between ET and precipitation in the artificial surface resulted from many urban areas
being covered by impervious surfaces, such as roads and buildings. In addition, Figure 9 shows the
temporal variation in the monthly ET over the whole basin. The values increased gradually from
January to May and decreased in June, which was influenced by the variation in meteorological
elements and phenology of winter wheat. A rapid recover in July and August was shown because of
the growth of summer maize.

Figure 7. Spatial distribution of (a) the annual precipitation and (b) annual ET over the Hai River Basin
for 2016.

Figure 8. Variation in the annual ET for different land covers over the whole basin from the enhanced
method (1: Dry farmland, 2: Paddy field, 3: Arbour forest, 4: Shrub forest, 5: Grassland, 6: Water
surface, 7: Artificial surface).
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Figure 9. Variation in the monthly ET over the whole basin from the enhanced method.

5. Discussion

Surface conductance is a key parameter in the P-M equation and is difficult to estimate, especially
at the regional scale because of its complex underlying surface conditions. In this study, daily surface
conductance is estimated from inverted surface conductance for a clear day to meet the requirements of
the P-M equation to acquire the regional ET. The gap-filling method used here contains the estimation
methods of the surface conductance and temporal change in surface variations, considering both the
surface conductance mechanism and environmental factors.

Surface conductance has many impacting factors and cannot be displayed well by the model.
To decrease the ET error when surface conductance is used in this study, a surface conductance
simulation from the ET inversion is obtained through the P-M equation. Otherwise, ET is separated
into two parts: vegetation transpiration calculated from the P-M equation and soil evaporation
calculated from the equilibrium ET. Correspondingly, net radiation is also separated into two parts
through the vegetation fraction, which simplifies the partition process of net radiation compared
with others but matters little in the ET accuracy. In addition, the soil EF calculated through the
land-atmosphere interactions replaces the soil moisture usage, can improve the applicability of the
soil evaporation model and avoids soil conductance. For the canopy conductance, the Jarvis model
is applied, because it performed well in many previous studies [44,46,47]. According to the results
shown in Figure 4, the estimations from the surface conductance model have a near-linear relationship
with the inversion results from the in situ measurements.

Accurate estimation of surface conductance requires calibration of several key parameters,
including maximum canopy conductance, empirical parameters related to radiation, temperature,
vapour pressure deficit and the adjustment factor in the soil evaporation calculation. All parameters
should be calibrated with in situ measurements, meaning the field measurements for each type of land
cover are needed for calibration, which is hard to accomplish. The surface conductance gap-filling
method can avoid the calibration and adopt the reference values from other studies, as shown in
Table 2. In this study, the surface conductance model is not used to calculate conductance values; it is
only used for expression. Daily surface conductance is estimated from clear day surface conductance,
which mainly depends on the environmental factor variations. The parameters mentioned above stay
constant over time and therefore do not influence the results.

ET differs significantly in various land cover types. The method discussed here is applied only in
two sites for two crops. The results are limited by the field datasets for specific underlying surfaces.
Further research should be focus on the applicability of the method to other crops and land cover
types, as well as in arid and semi-arid regions. In this study, two sites are surrounded by homogeneous
and flat arable land. Therefore, field measurements are representative and matched for the MODIS
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pixels. As shown in Figures 5 and 6, the method proposed in this study performed better than the
original method. The latter contains only three environmental factors and adopted a multiplication
form. Comparably, the former is more considerate and has a better mechanism. Surface conductance is
strongly determined by the surface itself and the environmental factors, especially the meteorological
elements. In the future, the contribution of variables for surface conductance should be studied to
select the main variables, which will benefit the surface conductance simulation.

6. Conclusions

This study proposed a gap-filling method to acquire daily surface conductance from clear day
surface conductance estimation. The method combines a time extension method with the canopy
and a surface conductance model and is carried out with multi-source remote sensing data, coupled
with the P-M equation to estimate the regional daily ET. The field observations over the winter wheat
and summer maize for the two sites are obtained to validate the method’s performance. The results
show that the method performs well at both sites, with the R2 values reaching 0.75 and 0.88 at the
Guantao and Miyun sites, respectively. Compared to other methods, the method proposed in this study
increases the accuracy of the ET estimation to different degrees. The reason attributed to improvements
might be the comprehensiveness of the impact factors and mechanism of the latter method. However,
limited by the availability of in situ data in this study, this method is applied to only two crops. Further
applications are necessary in different land cover types and climatic conditions.
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