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Abstract: Peatlands cover a large area in Canada and globally (12% and 3% of the landmass,
respectively). These ecosystems play an important role in climate regulation through the sequestration
of carbon dioxide from, and the release of methane to, the atmosphere. Monitoring approaches,
required to understand the response of peatlands to climate change at large spatial scales, are
challenged by their unique vegetation characteristics, intrinsic hydrological complexity, and rapid
changes over short periods of time (e.g., seasonality). In this study, we demonstrate the use of
multitemporal, high spatial resolution (1 m2) hyperspectral airborne imagery (Compact Airborne
Spectrographic Imager (CASI) and Shortwave Airborne Spectrographic Imager (SASI) sensors) for
assessing maximum instantaneous gross photosynthesis (PGmax) in hummocks, and gravimetric
water content (GWC) and carbon uptake efficiency in hollows, at the Mer Bleue ombrotrophic
bog. We applied empirical models (i.e., in situ data and spectral indices) and we derived spatial
and temporal trends for the aforementioned variables. Our findings revealed the distribution of
hummocks (51.2%), hollows (12.7%), and tree cover (33.6%), which is the first high spatial resolution
map of this nature at Mer Bleue. For hummocks, we found growing season PGmax values between
8 µmol m−2 s−1 and 12 µmol m−2 s−1 were predominant (86.3% of the total area). For hollows,
our results revealed, for the first time, the spatial heterogeneity and seasonal trends for gravimetric
water content and carbon uptake efficiency for the whole bog.

Keywords: airborne hyperspectral; Compact Airborne Spectrographic Imager (CASI); Shortwave
Airborne Spectrographic Imager (SASI); peatlands; normalized difference water index (NDWI);
gravimetric water content; carbon uptake; photosynthesis; bog; Mer Bleue

1. Introduction

Peatlands are characterized by the accumulation of large amounts of organic carbon (C), generally
from 30 kg C m−2 to >250 kg C m−2 [1]. This accumulation derives from the imbalance between
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the input of plant production and the output of C as carbon dioxide, methane and dissolved and
particulate organic carbon. Long-term C accumulation rates of 10–50 g C m−2 year−1 are common in
northern peatlands, which store more than 400 Gt C [1]. Northern peatlands are often characterized by
a spatial patterning of the vegetation and microforms, which can be regular or irregular and have a
small scale (1–10 m) [2,3]. In bogs, which are nutrient-poor peatland complexes with a convex surface,
the microforms are called hummocks and hollows, lawns being the intermediate surface in between.
Hummocks are drier elevated mounds with a denser cover of vascular plants and a thicker acrotelm
(aerated layer above the water table) than lower-lying, wetter hollows, which are dominated by mosses
(in bogs, generally Sphagnum spp.) [2,3]. These two microforms differ in species composition and
rates of processes such as photosynthesis and respiration [3,4]. Usually, the vertical microtopographic
variation between hummocks and hollows is much less than 1 m [5].

Hydrology plays an important role in the C functioning of peatlands. A high water table slows the
rate at which organic matter decomposes (e.g., [6]). A high water table also constrains the growth of
many vascular plants, whose roots are unable to penetrate beneath the water table, thereby restricting
their effective rooting volume to the aerobic surface layer (e.g., [7]). Vascular plant production generally
increases with a lowering of the water table (e.g., [8]). In many northern peatlands, Sphagnum species
play a critical role in the accumulation of C, through their slow rates of decomposition, compared
to vascular plant tissues (e.g., [6,9]). Their absence of roots means they can tolerate the high water
table common in peatlands and they generate an environment favourable to their survival (e.g., [10]).
Sphagnum productivity is also influenced by the moisture content at the surface, with many studies
having shown that the photosynthetic and C uptake rates of Sphagnum species are dependent on
the moisture content of the capitulum (e.g., [11,12]). As the moisture content increases, the rate
of CO2 uptake increases until an optimum value is reached (generally between 700% and 1300%
gravimetric moisture content) and then decreases as the Sphagnum gets wetter. Severe desiccation
reduces photosynthesis, with a potentially long recovery period after re-wetting (e.g., [13]). Sphagnum
survives drying by developing a dense structure, which reduces moisture loss such as in hummock
species, or by retaining contact with the water table through a high capillarity, such as in hollow species.

Mapping the spatial and temporal variations in surface moisture content and water-table position
in peatlands is critical for assessing the C functioning of these ecosystems. To map the spatial variability
of these characteristics through time, remote-sensing approaches require high spatial and spectral
resolutions and an adequate temporal interval of imagery acquisition (e.g., intra- and inter-seasonal).
Hydrological studies considering near-surface water content and water-table position in peatlands
have shown the potential of hyperspectral data for assessing water stress in Sphagnum mosses [14,15] as
well as in the implementation of upscaling approaches [16,17]. Sphagnum mosses have different spectral
properties than vascular plants. In the visible region of the electromagnetic spectrum, mosses present a
“green” peak that depends on species the color (e.g., red, brown, or green) [18]. In addition, [19] found
that Sphagnum mosses had lower reflectance than typical green vegetation between 1.3 µm and 2.4 µm.
Water-related absorption features around 1 µm and 1.2 µm are also noticeable in Sphagnum mosses and
they are highly susceptible to desiccation [19]. Narrowband spectral indices in the shortwave infrared
(SWIR) region of the electromagnetic spectrum (e.g., normalized difference water index NDWI1640)
and continuous wavelet transforms have been successfully used to evaluate near-surface water content
which is related to the water-table position [14–17,20]. Given the high spatial variability of peatland
microtopography [21], pixel sizes no larger than 1 m are necessary to adequately map surface-water
variations. Furthermore, [16] indicates the need for quantitative hydrological information for entire
peatland complexes, which is quite challenging as hyperspectral airborne missions for entire complexes
are expensive and rarely span the intra- and inter-seasonality of peatland areas. Another challenging
aspect in assessing moisture in peatlands is that vascular plants are physiologically distinct from
mosses [10] and, therefore, modeling moisture-related variables (e.g., gravimetric water, water-table
relationships, photosynthetic efficiency) at the landscape level needs to consider the spatial patterns of
the vascular and non-vascular plants (e.g., mosses).
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In this study we applied empirical models to high spatial resolution (1 m) hyperspectral imagery
(HSI) to map biophysical variables related to C dynamics [13,22] at the Mer Bleue Conservation Area,
which is an ombrotrophic bog near Ottawa, ON, Canada. We first produced a map of microforms
(i.e., hummocks and hollows) and trees for Mer Bleue from visible-near infrared (VISNIR) HSI
(Compact Airborne Spectrographic Imager (CASI) sensor) [23] and LiDAR data. From this classification,
we modeled vascular plant-light saturated gross photosynthesis (PGmax) based on a CASI HSI dataset
from 23 June 2016. For hollows (i.e., exposed Sphagnum sp.), we used SWIR HSI imagery (Shortwave
Airborne Spectrographic Imager (SASI) sensor) [23] to derive near-surface moisture, gravimetric
water content and C uptake efficiency (i.e., relative net rate of CO2 uptake [13]) over 5 periods.
Because Mer Bleue is an Arctic Surrogate Simulation Site for Sentinel-2 and Landsat-8 satellite product
validation [24,25], our findings have the potential to inform satellite image analysis for modeling
C uptake efficiency at large spatial scales (e.g., >100 ha). Furthermore, this research contributes to
highlighting the necessity of including peatlands in global models as recently demonstrated by [26].

2. Materials and Methods

2.1. Study Area

The 35 km2 Mer Bleue Conservation Area (MBCA) located approximately 10 km east of Ottawa,
ON, Canada, includes an ombrotrophic bog that is representative of northern peatlands in terms
of its C budget (Figure 1A) [27]. Ombrotrophic peatlands are acidic, nutrient-poor ecosystems
that receive incoming water and nutrients from precipitation and deposition rather than telluric
sources [28]. Vegetation at Mer Bleue has been extensively described in terms of species composition
and structural characteristics [29–31]. Overall, Mer Bleue is characterized by hummock-hollow-lawn
microtopographic features, treed bog areas, poor fen sections, and a relatively dense mixed forest
in the middle. The mean relief between hummocks and hollows is less than 30 cm and the variable
water table is generally below the surface even for the hollows [32]. Mer Bleue also contains
continuously inundated beaver ponds around its margins, with open water and areas covered
mainly by cattail (Typha angustifolia) and floating Sphagnum (Figure 1B,C). Vegetation in the MBCA
encompasses evergreen and deciduous shrubs (Chamaedaphne calyculata, Rhododendron groenlandicum,
Kalmia angustifolia, Vaccinium myrtilloides), patches of sedges (Eriophorum vaginatum) and a few isolated
individuals and patches of Picea mariana, Betula populifolia and Larix laricina. Different species of
Sphagnum moss (S. capillifolium, S. fuscum, S. magellanicum) cover the surface of the bog [32] and are
exposed in the hollows, while the vascular plants comprise the upper plant canopy in hummocks [27].
Mer Bleue has a cool continental climate, with a mean annual temperature of 6.4 ◦C and a mean annual
precipitation of 943.4 mm (Canadian Climate Normals 1981–2010). According to [7], the average
growing season length is 182 days beginning in mid-April and ending in mid-October. For this study
we focused on a 19 km2 section of Mer Bleue which was primarily composed of the peatland without
the surrounding mineral soil treed areas (Figure 1A).
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Figure 1. (A) CASI hyperspectral image mosaic of 12 flight lines acquired 20 April 2016 (R: 756 nm,
G: 689 nm, B: 550 nm) illustrating the entire study area. The green box corresponds to the Mer Bleue
Peatland Observatory where most of the in situ research is carried out. (B) Unmanned aerial vehicle
(UAV) photograph of the peatland margin illustrating a beaver pond with open water, Typha angustifolia
and floating Sphagnum moss. The peatland can be seen to the right (north) of the beaver pond with
mixed forest on mineral soil to the left (south); (C) Ground photograph illustrating the small-scale (<50
cm) hummock-hollow microtopography. Brown-red areas correspond to moss vegetation in hollows,
and green areas correspond to vascular plants in hummocks.

2.2. Airborne Hyperspectral Imagery (HSI)

The airborne HSI mission was part of a multitemporal satellite product validation project [24],
where HSI data were acquired over multiple dates between November 2015 and June 2016. A Compact
Airborne Spectrographic Imager 1500 (CASI-1500) and a Shortwave Airborne Spectrographic Imager
(SASI-644) (ITRES Ltd., Calgary, AB, Canada), mounted on a Twin Otter aircraft, were used for HSI
acquisition. The CASI samples 288 spectral channels between 375 nm and 1054 nm, with 1498 across
track pixels, and a field of view of 39.9◦. The SASI samples 160 spectral channels from 883 nm to
2523 nm, with 640 across track pixels, and a field of view of 39.7◦ (Table 1). In this study, we used one
CASI dataset from 23 June 2016 to differentiate hollows and hummocks and estimate the maximum
gross photosynthesis (PGmax) for hummocks (Section 2.5). Five SASI datasets (Table 2) were used to
assess changes in near-surface moisture, gravimetric water content and C uptake for Sphagnum mosses
(Section 2.6).
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Table 1. Summary of the Compact Airborne Spectrographic Imager (CASI-1500) and Shortwave
Airborne Spectrographic Imager (SASI-644) characteristics.

Characteristic CASI-1500 SASI-644

Serial Number 2511 3102

Field of view (FOV) (◦) 39.9◦ 39.7◦

Instantaneous FOV (IFOV) (◦) 0.0270 (nadir)
0.0246 (edge)

0.0646 (nadir)
0.0572 (edge)

No. cross-track pixels (detector) 1500 644

No. cross-track pixels (image) 1498 640

No. channels 288 (max) 160

Spectral range (nm) 375–1054 883–2523

Spectral spacing (nm) 2.4
10.0 nm @ 883 nm

12.8 nm @ 1280 nm (max)
6.2 nm @ 2523 nm

Spectral resolution (nm) 3.2 16 nm @ 883 nm
12 nm @ 2523 nm

Frame rate (Frames s−1)
Programmable—Max rate
dependent on # of channels 60 Hz

Integration time (IT) (ms) 1000/Frame rate <16.67 (Typ. 2.0–6.0)

Focal length (FL) (pixels) 2067.36 886.571

To cover the entire MBCA, 12 flight lines with a 20% overlap were acquired with both instruments,
with the exception of 4 November 2015 with 9 flight lines. Flight data acquisition parameters used for
each date are shown in Table 2.

Table 2. Flight heading and illumination characteristics for the 5 image-acquisition dates. All flights
were conducted at an approximate altitude of 1000 m AGL.

Date Heading (◦) Sun Azimuth Angle (◦) Range Sun Zenith Angle (◦) Range

4 November 2015 344.9 ± 1.0 170.2–191.6 61.1–62.0
20 April 2016 345.9 ± 1.0 153.6–180.3 33.6–36.9
11 May 2016 341.7 ± 0.8 137.6–178.0 27.3–33.8
24 May 2016 340.1 ± 1.5 139.2–189.6 24.7–29.6
23 June 2016 338.8 ± 0.5 128.6–157.9 23.3–30.0

2.3. Hyperspectral Imagery Pre-Processing

For the five mosaic dates, the individual CASI and SASI flight-line images were
spectroradiometrically calibrated to units of spectral radiance (µW cm−2 sr−1 nm−1) and then
geometrically corrected. These pre-processing steps were performed using software modules
developed by the sensors’ manufacturer. The spectroradiometric calibration was performed using
a NIST traceable laboratory calibration performed on March 2015 by the instrument manufacturer.
The geocorrection process was performed using results from a bundling calibration designed to
relate the inertial measurement unit (a combined Global Positioning System (GPS) and inertial
navigation system) to the sensor geometry in May 2016 for the CASI and in April 2013 for
the SASI. The pre-processing modules include an image-based assessment and correction of the
spectral alignment (calibcorr), a removal of signal offsets inherent in the recorded digital pixel
values from sources unrelated to the image independent (electronic offset, dark current) and
image-dependent (frame shift smear, scattered light, and 2nd order diffracted light (CASI only)) sources;
spectroradiometric calibration routine (radcorr); a spectral-smile correction application (speccorr); and an
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image geocorrection routine (geocorr). Our mosaic approach made use of the ‘minimize view zenith
angle’ option to select which of the duplicate pixels located in the overlap area between flight lines are
applied in the resulting mosaic imagery.

Mission planning not only attempted to acquire the hyperspectral image flight lines as coincidental
as possible with the Sentinel-2 satellite overpass [24], but also at a planned ground-track designed
to optimize the alignment with respect to the solar azimuth angle (SAA) to minimize potential
cross-track illumination effects (Table 2). Due to the length of the data-acquisition process which took
approximately 1.5 h to acquire the 12 flight lines, cross-track illumination artifacts were evident along
the flight-line seams within the hyperspectral mosaics, increasing in intensity, as expected, as the
difference of the sensor heading with respect to the SAA increased (sensor heading is equal to the
ground track less the crab angle) [33]. To address this issue, a first order cross–track illumination
correction routine as implemented in ENVI 5.4.1 was applied to the individual flight-line radiance
images prior to geocorrection to reduce the impact of this artifact. This resulted in final mosaic products
in which there is minimal to no illumination artifacts apparent along the flight-line seams. Still, some
illumination artifacts remained in a few areas of the mosaics, although given the large area under
analysis, we considered the effects of these artifacts on the results would be minimal.

For the SASI imagery, the atmospheric correction was performed to the resulting mosaic with the
FLAASH module in the ENVI 5.4.1. For the single CASI mosaic, atmospheric correction was applied
to the individual flight lines using ATCOR4 4.7.0 for flat terrain [30] prior to the application of the
cross-track illumination correction and image mosaicking.

2.4. Hummock and Hollow Classification

2.4.1. Plant Area Index In Situ Empirical Model

Plant area index (PAI) (vascular plant area between ground and sky) was determined with a
LI-COR 2000 for 29 field plots (44 cm × 44 cm) during the week of 13–15 July 2009 along a transect
spanning the main research boardwalks in the MBCA including a range of vegetation microforms
(hummock, lawns, hollows). We measured the reflectance ratio over the 400–1100 nm range of the plots
using an ASD Handheld spectrometer with a bare fibre 25◦ field of view (Analytical Spectral Devices,
Boulder, CO, USA) under clear skies on 14 July. PAI was related to the photochemical reflectance index
(PRI) [34,35] where ρ531 is the reflectance at 531 nm and ρ570 is the reflectance at 570 nm (Equation (1),
Figure 2). The PAI:PRI function (Figure 2) was applied to the observed PRI derived from the CASI
mosaic from 23 June to estimate PAI for the entire study area. The PAI surface was also used to identify
trees and aid in the differentiation of hummocks and hollows (Sections 2.4.2 and 2.4.3).

PRI =
ρ531 − ρ570

ρ531 + ρ570
(1)

Figure 2. Relationship between the photochemical reflectance index (PRI) and plant area index (PAI)
(p < 0.0001).
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2.4.2. Tree Mask

Airborne full waveform LiDAR data collected for the National Capital Commission in November
2009 (absolute accuracy of 15 cm vertical and 50 cm horizontal, minimum density 2 pts m−2) were
available for two thirds of the study area. From the LiDAR, we defined trees as vegetation >30 cm tall
and with a canopy diameter >30 cm. However, because the south-eastern sector of the MBCA was
LiDAR data deficient we used the existing LiDAR to develop a model using the CASI PAI surface
to extract “trees” in a consistent way for the entire study area. We determined a PAI threshold for
trees (and dense vascular vegetation such as tall shrubs) from the full CASI mosaic from 23 June
(Section 2.4.1) so that PAI values greater than 2.0 corresponded to dense vegetation at the 1 m pixel
size of the CASI (Figure 3).

Figure 3. (A) Example of the LiDAR point cloud for the research boardwalk area of the Mer
Bleue Conservation Area (MBCA); (B) digital surface model from the LiDAR (basemap) with points
representing trees >30 cm in canopy diameter and height (green points); (C) PAI surface derived from
the CASI mosaic.

2.4.3. Hummock and Hollow Differentiation

A high-resolution (2.2 cm ground-sampling distance) digital surface model (DSM) of the research
boardwalk area, generated from unmanned aerial vehicle (UAV)-based photogrammetry as described
in [21], was used to determine the threshold in PAI between hummocks and hollows from the CASI
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PAI surface. Hollows were determined to be the lowest 25% of the elevation distribution from
the UAV–DSM [36]. By applying this height threshold from the UAV–DSM to the PAI surface,
we determined that hollows were represented by pixels with a PAI < 0.96. In addition, because
hollows can be smaller than 1 m2 and the PAI surface was generated in the leaf-on period (vascular
plants), the reflectance ratio between 883 nm and 1240 nm was examined. It was shown by [24] that for
hummocks the ratio is negative from both vascular plant leaf-on and leaf-off periods while for hollows
it is positive. Therefore, hummocks were determined to be areas with a PAI between 0.96 and 2.0 and a
negative reflectance ratio of 883 nm to 1240 nm from SASI imagery acquired on 20 April (leaf off) and
23 June (leaf on). Hollows were determined to be areas with a PAI between 0 and 0.96 and a positive
reflectance ratio (ρ883/ρ1240) from both April and June.

2.5. Vascular Plant (Hummocks) Light-Saturated Gross Photosynthesis (PGmax)

Ecosystem CO2 exchange was measured in 15 primarily hummock plots during four sampling
periods from July–August 2009. Paired measurements of net ecosystem exchange under light-saturated
conditions, i.e., photosynthetically active photon flux density >1000 µmol photons m−2 s−1, and dark
respiration of CO2, were conducted using a Plexan chamber (60 cm × 60 cm × 90 cm) equipped with
fans and cooling unit. The chamber was covered with an opaque hood for measuring the ecosystem
dark respiration. CO2 concentrations over the time of chamber closure were analyzed using a LiCOR
6200 infrared analyzer. Fluxes of CO2 were calculated on the basis of concentration change in the
chamber head space as a function of time. Fluxes were corrected for temperature and atmospheric
pressure. Light-saturated gross photosynthesis (PGmax) was calculated as the sum of net exchange
and dark respiration [22,37]. Coincident with the measurements of CO2 flux, field spectra representing
the reflectance ratio were collected with the ASD Handheld spectrometer (bare fibre 25◦ field of
view). The normalized difference vegetation index (NDVI) (Equation (2)) was calculated from the
field spectra:

NDVI =
ρNIR − ρRed
ρNIR + ρRed

(2)

where ρNIR and ρRed are the reflectance at 860 nm and 650 nm from the spectroradiometer respectively.
NDVI was related to PGmax via the relationship in Figure 4.

Figure 4. Relationship between normalized difference vegetation index (NDVI) and PGmax (µmol
m−2 s−1) for 15 plots over four sampling dates (July–August 2009).

The function identified in Figure 4 relating NDVI and PGmax was applied to the NDVI surface
calculated from the 23 June CASI HSI mosaic with ρNIR as 859.39 nm and ρRed as 649.02 nm. Four
broad classes of PGmax (<4, 4–8, 8–12, >12 µmol m−2 s−1) for the hummocks were inferred from [22].

2.6. Near-Surface Moisture, Gravimetric Water Content, and CO2 Uptake Efficiency (Hollows)

Because gravimetric water (GWC) content and CO2 uptake efficiency were assessed by [13,17] for
Sphagnum moss, we limit our analysis for these two variables to hollows (i.e., mosses are exposed).
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Therefore, in order to assess the temporal changes in gravimetric water content and CO2 uptake
efficiency for the hollows from the five SASI mosaics, we first calculated the near-surface moisture
content based on the normalized difference water index (NDWI1640, Equation (3)) [38].

NDWI1640 =
ρ883 − ρ1640

ρ883 + ρ1640
(3)

where ρ883 is the reflectance at 883 nm and ρ1647 is the reflectance at 1640 nm [21]. Then, from
the NDWI1640 we derived gravimetric water (GWC) content for the hollows based on an empirical
relationship found by [17] (Equation (4)) and previously tested for a section of the MBCA by [21].

GWC = 4714 × NDWI1640 + 437.7 (4)

For the hollows, four classes of CO2 uptake efficiency based on GWC were inferred from [13].
These four classes included GWC up to 250% which was shown by [13] to be water-deficient conditions
where Sphagnum is only functioning at a maximum of 20% capacity of CO2 uptake; 250–700% which
represent sub-optimal moisture conditions where Sphagnum is functioning up to 80% of its maximum
capacity of CO2 uptake; 700–1300% which represent optimal conditions for CO2 uptake; and >1300%
which represent wet conditions approaching saturation where CO2 uptake is reduced.

3. Results

We found that hummocks cover 51.2% of the total area, hollows 12.7% and trees 33.6% (Figure 5).
Unclassified vegetation and water account for only a small portion of the Mer Bleue peatland (2.4%).
The spatial distribution of PGmax from 23 June 2016 for the hummocks is shown in Figure 6. PGmax
values between 8 and 12 (µmol m−2 s−1) comprise 86.3% of the area and are distributed throughout
the bog, with the exception of the middle section of the peatland where PGmax values between
4 and 8 (µmol m−2 s−1) cover 9.9% of the area.

Figure 5. Distribution of peatland microform and tree classes for Mer Bleue based on CASI imagery
from 23 June 2016.
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Figure 6. Spatial distribution of maximum gross photosynthesis (PGmax) for hummock surfaces at
Mer Bleue based on CASI imagery from 23 June 2016. Areas in grey include hollows and treed areas
not included in the PGmax analysis.

NDWI1640 spectral index results reveal a decreasing trend from 4 November 2015 (HO: 0.181, HU:
0.110) to 4 April 2016 (HO: 0.151, HU: 0.076) for both hollows and hummocks (Table 3, Figure 7). From
4 April 2016 to 11 May 2016, NDWI1640 values are similar, and there is a slight decrease in near-surface
moisture for hollows and hummocks from 11 to 24 May 2016 (Table 3, Figure 7). Then, near-surface
moisture content increases for 23 June 2016 (HO: 0.174 and HU: 0.174) to values similar to hollows in 5
November 2015 (0.181) (Table 3, Figure 7). Overall, hollows have higher near-surface moisture values
than hummocks with the exception of 23 June 2016 (Table 3, Figure 8). t-test results comparing hollows
and hummocks for each date indicates a significant difference between these vegetation types (p = 0,
α = 0.05) (Table 3). Because of the large sample size used in the t-test we also calculated the probability
density functions (PDF) comparing hollow (HO) versus hummock (HU) near surface water content
based on the NDWI1640 (Figure A1 and Table A1). Overall, PDF results indicate a greater NDWI1640 in
hollows than in hummocks.

Figure 7. Hollows’ and hummocks’ near-surface moisture temporal trends for five time periods based
on NDWI1640 (SASI HSI) at the Mer Bleue bog (mean and standard deviation).
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Table 3. Mean, standard deviation and t-test statistics for paired t-test comparison results of NDWI1640

spectral index (near-surface water content) for hollows (HO) and hummocks (HU) for five dates at the
MB bog.

Mean Stdev tstat df sd ci p-Value

4 November 2015

HO (n = 2.40 × 106) 0.181 0.181 −1104.05 3,838,142 0.0907, 0.0868 −0.0701, −0.0699 0
HU (n = 9.41× 106) 0.110 0.015

20 April 2016

HO (n = 2.43 × 106) 0.151 0.022 −1123.08 3,647,862 0.0895, 0.0925 −0.0741, −0.0738 0
HU (n = 9.77 × 106) 0.076 0.016

11 May 2016

HO (n = 2.43 × 106) 0.149 0.021 −1169.98 3,689,468 0.0894, 0.0908 −0.0760, −0.0758 0
HU (n = 9.77 × 106) 0.073 0.016

24 May 2016

HO (n = 2.43 × 106) 0.126 0.017 −1023.25 3,484,644 0.0832, 0.0919 −0.0663, −0.0661 0
HU (n = 9.77 × 106) 0.070 0.013

23 June 2016

HO (n = 2.43 × 106) 0.174 0.016 −406.85 3,295,761 0.0628, 0.0763 −0.0216, −0.0214 0
HU (n = 9.77 × 106) 0.174 0.013

Note: tstat is value of the test statistic, df correspond to degrees of freedom, sd is the pooled estimate of the
population standard deviation, and ci is the confidence interval for the difference in population means of hollows
and hummocks.

Figure 8. Spatial pattern of gravimetric water content (GWC%) in hollows at the Mer Bleue peatland
for five dates between 4 November 2015 and 23 June 2016. The bins represent the natural breaks based
on 5 classes; therefore, the range of each class differs slightly by date.
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The GWC results for hollows reveal the spatial variations in different sections of Mer Bleue as
well as in the temporal trends (Figures 8 and 9, respectively). Changes in GWC are most noticeable in
the north-west portion of Mer Bleue. This portion has lower GWC following snow melt (24 April 2016)
than prior to snow fall the previous year (4 November 2015). The lowest GWC values are seen from
the 24 May 2016 imagery. A similar pattern is observed in the south-eastern area part of Mer Bleue.
The middle area of Mer Bleue remains more or less consistent with high GWC values (e.g., >1300%).
Overall GWC for hollows confirms the temporal trends expected at Mer Bleue (Figure 9A). Our analysis
of variance (ANOVA) results comparing GWC between the different periods indicates significant
differences for all periods (p = 0, α = 0.05) (Table 4), while the Tukey’s honest significant difference
(HSD) tests for all pairwise comparisons between means reveal that each period is significantly
different from each other (result not shown). Because of the large the sample size, as suggested by the
t-test results (Table 3), the probability density functions of GWC (Figure 9B), better depict, visually,
the differences in GWC between periods.

Figure 9. (A) Temporal gravimetric water content (GWC) changes for hollows at the Mer Bleue peatland
(mean ± standard deviation). (B) Probability density function for GWC for the same dates.

Table 4. Multiple group comparison for GWC at Mer Bleue for five dates between 4 November 2105
and 23 June 2016.

Source SS df MS F Prob > F

Groups 4.6 × 1010 4 11,469,950,111 667,178 0
Error 2.1 × 1012 12,120,001 171,917
Total 2.1 × 1012 12,120,005
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Spatial patterns of CO2 uptake efficiency in hollows derived from SASI HSI show that, regardless
of the time period, the central area of Mer Blue is considered wet (>1300% GWC class) and therefore is
inferred to have a lower net rate of CO2 uptake than drier hollow areas (Figure 10). The suboptimal
category (200–700% GWC) is more noticeable in the north-western part of Mer Bleue, especially in the
24 May 2016 imagery, where the suboptimal class (250–700% GWC) dominates and dry conditions
also present (<250% GWC). Overall, there is a larger predominance of the wet and optimal categories;
however, the overall percentage of areas defined as wet decreases by approximately 20% from 4
November 2015 to 24 May 2016 as these areas became optimum. (Figure 11). Smaller variations
across time are shown in the optimal category, while the suboptimal category shows an increase of
approximately 10% during the 14 May 2016 period (Figures 10 and 11).

Figure 10. Spatial patterns of CO2 uptake efficiency for hollows over five dates at the Mer
Bleue peatland.

Figure 11. Percentage of total area for CO2 uptake efficiency for hollows for five dates at the Mer
Bleue peatland.
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4. Discussion

Our study is the first of its kind as it integrates empirical models and multitemporal airborne
hyperspectral imagery (VISNIR and SWIR) to develop estimates of the spatial variation of two
C exchange parameters (ecosystem PGmax of hummock vegetation and CO2 uptake efficiency
of hollow Sphagnum mosses) across a large peatland with variable microtopography, vegetation
and hydrology. Due to the spatial pattern of vegetation communities in peatland and its
microtopographic elements [2,39], ideally the classification of vegetation microforms (e.g., vascular
plant-dominated hummocks, exposed mosses in hollows, trees, etc.) in peatlands would utilize very
fine spatial-resolution imagery (<1 m) (e.g., [21,40]). However, since we did not have a fine-scale
elevation grid for the whole study area, we derived the relationship between PAI and PRI (Figure 2)
and applied it to the CASI imagery from 23 June 2016. By determining thresholds of modeled
PAI derived from the aforementioned relationship from a microtopography digital elevation model
for a subset representative of Mer Bleue’s microforms [32], we were able to classify hummocks
(vascular plant-dominated) and hollows (exposed moss-dominated). Classification of the entire
bog allowed us to determine not only the proportion of hummocks and hollows but their spatial
distribution as well (Figure 5). For instance, it has been shown that the main research area located in
the north-western sector of the bog (i.e., top finger) is dominated by hummocks [32]. Based on our
results, hummocks represent approximately 51.2% of the total area, but the dominant microform varies
spatially throughout; the centre of the bog is dominated by hollows while the north-eastern and central
western sectors have a high proportion of tree cover (Figure 5). Due to the spatial resolution of the CASI
imagery (1 m2), our estimation of hollows is conservative and areas with smaller hollows may have
been missed (and hummocks in that region overestimated). The treed areas located on the western
side of the middle of the bog are associated with areas of sandy deposits remnant from the formation
of the bog 8500 years B.P. [32]. On the eastern side, the large proportion of trees may be related to
a man-made drainage ditch from approximately 80 years ago (linear feature from north to south in
Figure 5), which influences the hydrology and vegetation composition in this area [31]. In addition,
the treed areas classified in our study were consistent with those previously mapped by [30] using
Landsat imagery and leaf area index (LAI) models. Further validation of our preliminary classification
for Mer Bleue would require the use of very high-resolution photogrammetry, as measured by [21] for
a 10-hectare section of Mer Bleue, in order to carry out an adequate classification accuracy assessment.

Estimation of the spatial distribution of maximum gross photosynthesis (PGmax) for hummocks
was performed during the peak of the growing season (23 June). Our results show that values of
8–12 µmol m−2 s−1 are predominant at Mer Bleue during this time, although it is important to note
that the empirical model relating PGmax and NDVI has a coefficient of determination of 0.6, and
therefore our results of PGmax for hummocks are approximate. The current relationship between
NDVI and PGmax is also dependent on the three lower data points (NDVI < 0.6), a limitation of the
available data for assessing PGmax at the landscape level. More plot-level measurements combined
with field spectroscopy focusing on both vascular plants and mosses are recommended at MBCA
to improve the models we use here. Nevertheless, given the high proportion of hummocks (51.2%)
that are dominated by green broadleaf vegetation in June, we identified spatial differences in PGmax
throughout the bog. For instance, the central part of Mer Bleue has a larger proportion of lower PGmax
values (4–8 µmol m−2 s−1), which might be explained by higher gravimetric water content in this area
of the bog (Figure 8). Overall, a reduction of photosynthetic activity in waterlogged areas is expected
for vascular plants due to a decrease in O2 and lower stomatal aperture [41], even under conditions
where plants are adapted to wet conditions.

Remote-sensing studies have shown the utility of the SWIR region (0.9–2.5 µm) for assessing water
content in vegetation and the acrotelm of bog ecosystems (see [42] for a review). Based on the NDWI1640

index, we identified temporal patterns of near-surface water content for hollows and hummocks. High
near-surface water content was found in November 2015 (prior to snowfall), with decreasing values
from April to May (spring) and a significant increase for June 2016 (Figure 8), following typical
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phenological patterns associated with the greening up of the vegetation at Mer Bleue [25]. Moreover,
as expected, significantly higher NDWI1640 values were found for hollows than for hummocks for
all periods. Sphagnum species are specially adapted bryophytes, for which water is supplied to their
capitula from rainfall or via capillary movement from the water table [14], which allows them to
accumulate more near-surface water than vascular plants. Sphagnum leaves are only one cell thick and
in direct contact with the water in their environment [10]. It has also been shown that vascular plants
have higher reflectance in the SWIR region as they have lower water content [18]. The relatively high
and equivalent mean values of NDWI1640 (between HU and HO) from 23 June might be explained by
the solar azimuth angle (SAA) relative to the heading of the flight line being diagonal to the SASI’s
field of view. Kalacska et al. 2018 (in this issue) describe how certain ranges of SAA might introduce
errors into the resulting biophysical models. Moreover, it is important to mention that our t-test
results (Table 3) are limited given the large sample size we used to compare HO and HU for each
date [43]. In this case, we compared the probability density functions for the 5 dates for HU and HO to
support our findings (Appendix A). Further statistical analysis could enhance the understanding of
the temporal patterns we found for HO and HU; however, this is beyond the scope of this study.

Similar to our empirical model for PGmax, our GWC is derived for the different days with a
linear model based on NDWI1640 [17], which explains 85% of the total variance (up to 1600% GWC).
Our results capture the temporal variation of GWC and we also found significant differences in GWC
between dates (Table 4, Figure 9B). Due to the large sample size (n > 11 million) it is important to
interpret the significance values for the statistical tests with caution [43]; the confidence intervals may
be more informative in terms of the differences in the mean values than the actual p value (Table 3).
For instance, Figure 9B compares the probability density function (PDF) for GWC for each date, which
provides a visual assessment on the differences in GWC between dates. Spatially, we identified that a
central belt of Mer Bleue has GWC values > 1000% (Figure 8) and that more GWC temporal variations
are found not only in the three fingers in the western sector, but also some sections of the eastern sector.
The area comprising the top finger corresponds to a well-studied section of Mer Bleue. Temporal
variations in GWC here might be related to an identified domed shape of this section, with peat depths
varying from 5–6 m in the middle and decreasing to about 2 m toward the edges (as described in [32]).
This section of Mer Bleue is also close to a beaver pond and transition areas are located between the
pond and the bog area.

CO2 uptake efficiency in hollows was inferred from an optimum curve for Sphagnum species [13];
therefore, our results are an approximation for Mer Bleue, for which further field validation would be
required. Water availability is very important for Sphagnum mosses because they lack a mechanism to
actively control water loss; therefore, water-table level (capillary transportation), density of capitula
(e.g., species in hummock vs hollow), and surface water availability influence C assimilation [10,14].
Our results confirm that the GWC for the central part of Mer Bleue are within the optimal-to-wet
conditions for all periods, which might be an indication of the water table closer to the surface in
this area. Conversely, it is important to note that the upper and lower fingers in the study area
show a higher variation of CO2 uptake efficiency over time, especially during green-up (11 and 24
May sampling dates) where suboptimal CO2 uptake efficiency values are predominant with some
areas falling into the water-deficit category (Figure 10). This is an important finding because the
effects of climate change scenarios for northern peatlands are still under discussion [44–46] and both
water availability and temperature changes, in addition to other ecosystem variables [47], could have
major impacts on the capability of Sphagnum mosses to effectively uptake and store C. Furthermore,
water-table position in the north-west part of Mer Bleue is highly variable within and across years [48],
and continuous monitoring of this section both with in situ measurements and using hyperspectral
remote-sensing tools could better inform the actual response of mosses to deficits in water availability.
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5. Conclusions

Studies of peatland ecosystem-level photosynthesis (e.g., CO2 uptake and respiration) are
important in order to understand the response of these ecosystems to climate change in the long
term (sink vs. source) and to evaluate short-term (e.g., seasonal) responses of mosses and vascular
plants to water availability. Because of the low accessibility to peatland areas (e.g., [49]) and their
fragile structure, integrating in situ empirical models with remotely sensed data acquired at adequate
spatial, spectral and temporal scales might be the only way to understand patterns and processes
at larger spatial scales (>100 hectares). Our study offers a methodological approach that combines
empirical models based on in situ characterization of peatland microforms with high spatial resolution
hyperspectral imagery. However, even using remotely sensed data at the necessary scales, we relied
significantly on empirical models that might not cover the full range of variation in this peatland area.
Therefore, our results require further validation either by increasing ground sampling to other areas
at Mer Bleue, or by continually acquiring hyperspectral data for multiple areas over a longer period
of time in order to assess the consistency of our results. Moreover, as Mer Bleue is considered an
Arctic Surrogate Simulation Site for Sentinel-2 and Landsat-8 satellite data product validation and a
Committee for Earth Observation Satellites (CEOS) Land Product Validation (LPV) Subgroup supersite,
future research will continue in order to evaluate the use of these or similar space-borne systems in
assessing ecosystem-level carbon dynamics.

An important aspect not fully addressed in this paper is the effect of cross-track illumination
artifacts when using airborne hyperspectral mosaics. Observable cross-track illumination artifacts
were identified in certain flight lines (i.e., when the ground track differed from the solar azimuth angle).
After the application of a simple removal of the artifacts, minor issues remained. We considered them
to be minimal in their effect on the overall results as they accounted only for very specific and narrow
sections of the full mosaic (e.g., overlap between adjacent lines). However, further analysis is needed
to fully correct for these artifacts in the products derived from airborne hyperspectral imagery.

We identified spatial differences in ecosystem gross photosynthesis across the entire area of the
bog. Furthermore, for the hollow class, the temporal and spatial variation of GWC and CO2 uptake
efficiency is highly variable. Because a substantial part of the field research at Mer Bleue has focused
on the research boardwalk area, which covers approximately 10 ha, our results shed new light on
other zones of interest where further studies are recommended to validate the patterns and trends
obtained from the imagery. For example, the eastern sector modified by the drainage ditch could be
used as a model for remote-sensing studies of drained peatlands (e.g., agriculture, harvesting) in order
to understand the impact of land-use cover change on carbon uptake. Finally, our findings could also
be integrated into net ecosystem exchange models where the proportion of microforms in a landscape
play a fundamental role.
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Appendix A

Figure A1. Probability density functions (PDF) comparing hollow (HO) v hummocks (HU) near surface
water content based on the NDWI1640.
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Table A1. Normal probability density function parameters for the hummock (HU) and hollow (HO)
GWC comparison.

µ

(Mean)

µ-ci
(95% Confidence

Interval)

σ

(Standard
Deviation)

σ_ci
(95% Confidence

Interval)

4 November 2015

HO 0.206 0.20555, 0.20577 0.087 0.08676, 0.08692
HU 0.136 0.13559, 0.13571 0.091 0.09066, 0.09074

20 April 2016

HO 0.188 0.18829, 0.18852 0.092 0.09239, 0.09256
HU 0.114 0.11438, 0.11449 0.090 0.08951, 0.08959

11 May 2016

HO 0.188 0.18764, 0.18786 0.091 0.09072, 0.09088
HU 0.112 0.11178, 0.11190 0.089 0.08933, 0.08941

24 May 2016

HO 0.167 0.16712, 0.16735 0.092 0.09186, 0.09203
HU 0.101 0.10097, 0.10108 0.083 0.08315, 0.08323

23 June 2016

HO 0.199 0.19888, 0.19908 0.076 0.07628, 0.07641
HU 0.177 0.17741, 0.17749 0.063 0.06280, 0.06286
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