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Abstract: A soil wetness index for optical satellite images, the Transformed Wetness Index (TWI) is
defined and evaluated against ground sampled soil moisture. Conceptually, TWI is formulated as
a non-linear normalized difference index from orthogonalized vectors representing soil and water
conditions, with the vegetation signal removed. Compared to 745 ground sites with in situ measured
soil moisture, TWI has a globally estimated Random Mean Square Error of 14.0 (v/v expressed
as percentage), which reduces to 8.5 for unbiased data. The temporal variation in soil moisture
is significantly captured at 4 out of 10 stations, but also fails for 2 to 3 out of 10 stations. TWI is
biased by different soil mineral compositions, dense vegetation and shadows, with the latter two
most likely also causing the failure of TWI to capture soil moisture dynamics. Compared to soil
moisture products from microwave brightness temperature data, TWI performs slightly worse, but
has the advantages of not requiring ancillary data, higher spatial resolution and a relatively simple
application. TWI has been used for wetland and peatland mapping in previously published studies
but is presented in detail in this article, and then applied for detecting changes in soil moisture for
selected tropical regions between 2001 and 2016. Sites with significant changes are compared to a
published map of global tropical wetlands and peatlands.

Keywords: soil moisture; MODIS; wetlands; peatlands; change detection; Transformed Wetness
Index (TWI)

1. Introduction

Information on soil moisture is critical for understanding both long and short term processes at
the Earth’s surface. Soil genesis and development is largely determined by soil moisture conditions.
The local water cycle largely determines the soil moisture dynamics, which in turn controls the
response to additional precipitation, groundwater flow and runoff, and hence also downstream runoff,
storm flow and flooding. Vegetation production is directly dependent on the soil moisture and its
annual phenology. Combined, the water, soil and vegetation form the primary production unit of any
terrestrial ecosystem [1], with wetlands at the extreme wet end and deserts at the extreme dry end.

The first remote sensing based attempt to estimate the global extent of soil moisture dynamics was
the Global Inundation Extent from Multi-Satellites (GIEMS; [2,3]). GIEMS used multi-source remote
sensing combining thermal band emissivities with both passive and active microwave and, sometimes,
optical reflectances for estimating surface inundation at 0.5-degree resolution. Gravitational data are
the only available satellite derived signal able to retrieve the soil water storage below the surface [4].
Satellite based gravity measurements are, however only operational at very coarse spatial scales (about
150,000 km2). Active microwave synthetic aperture radar (SAR) backscatter and passive microwave
Brightness Temperature (BT) are the best remote sensing options for estimating soil moisture [5–7].
Microwave satellite images indirectly capture the soil moisture of the upper centimeter(s) of the soil
surface through the soil dielectric constant that varies with moisture content. Both microwave BT
and backscatter also relate to several other factors, including (woody) vegetation structure and water

Remote Sens. 2018, 10, 611; doi:10.3390/rs10040611 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-5125-4487
http://www.mdpi.com/2072-4292/10/4/611?type=check_update&version=1
http://www.mdpi.com/journal/remotesensing
http://dx.doi.org/10.3390/rs10040611


Remote Sens. 2018, 10, 611 2 of 22

content, and (micro) topography [8]; and are impaired by radio frequency interference (RFI). Active
radar backscatter is more sensitive to vegetation scattering and surface roughness and less accurate for
soil moisture retrieval compared to the passive BT, but of higher spatial resolution.

Among the microwave bands, the long L-band (1–2 GHz) is a better option than the medium
length C-band (4–8 GHz) or short X-band (7–11 GHz) for retrieving soil moisture. The L-band
is less sensitive to vegetation and the atmosphere is more transparent, simultaneously the lower
frequency signal penetrates the soil deeper and the L-band microwave signal is more closely related
to soil moisture. The Soil Moisture Ocean Salinity (SMOS) Microwave Imaging Radiometer with
Aperture Synthesis (MIRAS) sensor at 1.4 GHz [9,10] was the first operational purpose built sensor
for retrieving soil moisture. Older radiometers including the Advanced Multichannel Scanning
Radiometer (AMSR-E) [11] rely on C and X bands. The first generation of SAR sensors (e.g., Radarsat 1
& 2) also relied on the C–band, and have been used for retrieving soil moisture at high resolution [12].
SAR C-band data are, however, demanding to use for estimating soil moisture, and the accessibility
and revisit frequency of the earlier sensor data is poor. The Soil Moisture Active Passive (SMAP)
observatory was designed to combine active (SAR) and passive (radiometer) microwave sensors for
soil moisture at 3 and 36 km spatial resolution respectively, but the active sensor failed after 7 months
of operation (in July 2015). More recently a refined SMAP passive soil moisture product at 9 km has
been released [13], and another product combining the SMAP L-band BT and Sentinel-1 active C-band
backscatter has become available at 3 km spatial resolution. [14] summarizes the performance of the
present generation microwave sensors for retrieving soil moisture.

1.1. Background and Objective

Wetlands are among the most productive of ecosystems, with large influence on both the water
cycle and other biogeochemcial cycles, including carbon and nitrogen. The soil moisture conditions in
wetlands can either be inundating or restricted to the sub-soil, and also vary strongly both seasonally
and inter–annually Wetlands can occupy different terrain positions as long as the water supply is
sufficient to sustain wet conditions for at least part of the annual climate cycle, and the vegetation
ranges from dense forests to open pans. Wetlands typically occur as transitional ecotones, not seldom
along channels, shores or topographic contour ridges, but with narrow width. Satellite image sourced
mapping and monitoring of wetlands is consequently a non-trivial task [15,16], and best achieved
using multi–source approaches, including estimates of soil moisture and its annual dynamics. The lack
of suitable historical microwave data at adequate spatial and temporal resolution prompted me to
develop an algorithm for retrieving soil moisture estimates from optical data while attempting to map
global pantropical wetlands [17,18].

Optical data have a high spatial resolution (down to 1 m), with wide swath sensors at moderate
to coarse spatial resolutions having a high revisit frequency. The Moderate-resolution imaging
spectroradiometer (MODIS) sensor, for instance, have a global daily coverage at 250 to 1000 m spatial
resolution. MODIS data have been used for mapping e.g., flood patterns [19] and wetlands [20], and for
downscaling coarser scale estimates of both inundation and soil moisture [21–26]. The “universal
triangle” downscaling method [27,28] combines surface temperature and a vegetation index for
indirect mapping of the soil moisture content. While the approach is useful in combination with a
dis–aggregation algorithm for downscaling coarse soil moisture products, it has been less useful for
direct retrieval of soil moisture or for estimating changes in soil moisture. Improving and automating
the triangle (or trapezoid) method has, however recently been shown to be useful for direct estimation
of soil moisture content [29].

This study presents an alternative approach for mapping surface wetness from optical images
acquired by MODIS: the Transformed Wetness Index (TWI). The derivation of annual soil moisture
phenology from the same TWI version presented here is described in [30], which also summarizes the
formulation and performance. The reported soil moisture phenology, in conjunction with modelled
water flow and topography was used in an expert system to create the global pantropical wetland and
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peatland maps mentioned above [17,18]. In the expert system, the short–comings of TWI are adjusted
using hydrologically modelled data. The phenology derived from TWI was, however, a prerequisite
both for wetland identification in general and for separating different wetland and peatland categories.

The objectives of this study has been (1) to demonstrate the detailed formulation and performance
of an algorithm for estimating quantitative soil moisture dynamics from optical image data;
(2) disseminate the principles behind the model formulation and calibration; and (3) to test the
applicability of the algorithm for monitoring changes in soil moisture for wetlands. The primary aim
for developing TWI has been to support other mapping and monitoring efforts requiring high to
moderate spatial scale soil-moisture estimates.

1.2. Optical Soil Moisture Detection

The rationale behind using optical images for estimating soil moisture is that wet objects absorb
visible (VIS) to infra-red (IR) electromagnetic radiation more strongly than dry objects and hence appear
darker [31,32]. Optical satellite images, however present several obstacles for retrieval of soil moisture:
minimal surface penetration, cloud and cloud shadow contamination, atmospheric attenuation at
different wave-lengths, and the vegetation influence on the signal. Quantitative estimations of soil
moisture are hindered due to these limitations, and because of the inherent variability in soil reflectance.
The literature contains only few examples using optical satellite images for direct quantitative soil
moisture estimations (e.g., [31,33,34]). In a recent review of soil moisture estimations from optical and
thermal data [35], the majority of studies using satellite imagery rely either on vegetation indexes, or
thermal emissivity, or a combination thereof. The review includes several laboratory studies relating
spectral reflectance and soil moisture content, but only a few studies actually employ optical satellite
images as the single source for estimating field soil moisture conditions (e.g., [31,34,36]). The latter
studies are restricted to homogenous field sites and seasonal campaigns. Using dual band Normalized
Difference (ND) algorithms, optical images have been used for mapping open water bodies [37] and
for estimating leaf water content [38–40].

Laboratory studies [31–33,41] (also see reviews in [35]) show that different soil types have
different reflectance offsets, related to soil mineral composition, carbon content, texture and porosity.
The relationship between soil moisture content and spectral reflectance is non-linear, and the complete
spectrum from VIS via Near IR (NIR) to Short Wave IR (SWIR) carry information on the water content.

1.3. Validation of Satellite Derived Soil Moisture Products

There is a large disparity in spatial scale between in situ probing and satellite based retrieval
of soil moisture. While most in situ probes observe the sub-soil moisture content, satellite sensors
only capture the moisture content of the soil upper centimeter(s). The validation of soil-moisture
estimates from satellite images is hence challenging [42]. To eliminate the systematic difference, Reichle
and co-workers [43,44] suggested assimilating (unbiasing) the statistical moments of the satellite
estimated soil moisture to fit those of the in situ data (e.g., [45–47]). The ability of remotely sensed
soil moisture models to capture the true soil moisture variations is usually reported as the residual
Random Mean Square Error (RMSE). This implicitly regards the in situ data as error free, and is also
strongly dependent on the variance of the in situ observations [48]. In this study I also use model
efficiency [49] and the Pearson correlation coefficient [50] for determining the correlation between the
time–series in satellite estimated and ground measured soil moisture. Both measures are sensitive to
the variance of the reference observations.

The spatial resolution of MODIS is approximately equal to that of cosmic-ray probes, that
indirectly measure the soil moisture of the surface soil from the occurrence of cosmic-ray generated
neutrons and integrate the soil moisture content over an area hundreds of meters in diameter [51].
Comparing MODIS derived soil moisture with in situ soil moisture captured by cosmic-ray probes
hence overcome the disparity in spatial scales.
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1.4. Trend Detection

Different statistical methods have been applied for detecting trends and shifts in
hydro-meteorological data [52–58]. Non-parametric methods have in general been favored over
parametric, with the Mann–Kendall (MK) statistical test [59] frequently used for detecting trend
significance. The MK test, however, does not capture the strength of the trend, and other regression
methods are usually applied for strength estimation [60], including the non–parametric Theil-Sen
Regression (TSR) [61,62].

2. Materials and Methods

The TWI algorithm in this study has previously been applied for deriving soil moisture
phenology [30], with the phenology used as input in an expert system for mapping global pantropical
wetlands [17,18]. These previously published studies present TWI as a static algorithm, ignoring
performance details and short–comings. In this study I scrutinize the formulation, performance and
short–comings of TWI, and also compare the performance of TWI with soil moisture products from
microwave BT sensors.

This study only used open source software and data. All data processing is written in Python
making use of packages for e.g. spatial data processing and statistics.

2.1. Datasets

All datasets used in this study are publicly available.
16-day interval Bidirectional Reflection Distribution Function (BRDF) corrected MODIS

(MCD43A4 version 5) images were used for algorithm development, for mapping global surface
wetness conditions for the calendar year 2011 and for estimating the change in soil moisture 2001 to
2016 for selected regions (Southern Africa, South East Asia and Western Amazon). The reflectance
factor values (reflectance * 105) were retained for the MCD43A4 product to save memory space both
on disk and in the processor and to speed up file handling. All internal calculations are in real (float)
numbers. MCD43A4 is a combined product from identical sensors flown on the satellites Terra and
Aqua (that also carries AMSR-E).

Ground probed soil moisture data for the calendar year 2011 were taken from all networks
and stations available from the International Soil Moisture Network (ISMN) (summarized in
Ochsner et al. [63], and Dorigo et al. [64]). All networks, except COsmic ray Soil Moisture Observing
System (COSMOS), rely on buried probes.

The Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) dataset [65] was used
for calculating the Terrain Ruggedness Index (TRI) [66]. The MODIS land cover product (MCD12Q1
version 051) for 2011 was used for determining land cover for each ground site using the International
Geosphere-Biosphere Program (IGBP) classification scheme. The MODIS product for Vegetation
Continuous Fields (MOD44B version 005) for 2010 was used for extracting percent tree cover for each
ISMN station. Table S1 lists stations used in this study including terrain ruggedness, land cover and
tree cover.

Data for determination of dry and wet seasons for reference sites used for defining the TWI
algorithm were taken from the worldclim global dataset [67], representing the average precipitation
situation for approximately the period 1950 to 2000.

AMSR-E daily level 3 (L3) version 2 (maturity V07-Stage 1) data were downloaded from
http://nsidc.org [68] for the period 16 November 2010 to 3 October 2012 (last day of AMSR-E
operation). Only ascending mode soil moisture estimates (AMSR-E is flown on Aqua, ascending
overpass time is 1.30 pm) were used in this study.

Daily SMOS L3 data were obtained from the Centre Aval de Traitement des Données SMOS
(CATDS), operated for the Centre National d’Etudes Spatiales (CNES, Paris, France) by IFREMER
(Brest, France). The downloaded SMOS data cover the period 16 November 2010 to 1 February 2012.

http://nsidc.org
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The daily SMOS L3 data consist of two separate compilations of (i) ascending and (ii) descending daily
L2 data, retaining the highest quality signal for each direction. Only ascending mode soil moisture
estimates (representing an overpass time of approximately 06.00 am) were used in this study.

2.2. Defining the Transformed Wetness Index (TWI)

The conceptual idea behind TWI is to remove the spectral influence of vegetation and define
a model from soil and water reflectance. This requires (1) identification of the relevant spectral
endmembers; (2) application of a spectral unmixing procedure; and (3) formulating a model from the
retained soil and water signals. The procedure used for defining TWI integrates these three steps,
allowing for a united calibration of each step simultaneously. The calibration uses pairs of wet and dry
reference sites, and aims at maximizing the average difference in TWI for all pairs while only accepting
solutions where each pair is correctly ordered.

The spectral unmixing uses a Gram-Schmidt orthogonalization sequentially identifiying
perpendicularly oriented eigen–vectors for each endmember. Orthogonalization is the conceptual
basis for both standardized Linear Mixture Models (LMM) and the Tasseled Cap Transformation (TCT)
developed for Landsat Multi Spectral Scanner (MSS) [69], Landsat Thematic Mapper (TM) [70] and
other sensors [71,72]. TCT uses fixed eigen–values applied identical to each pixel whereas LMM is
defined using application–specific endmembers and the transformation can be adjusted to the local
mixing space [73].

Endmembers used for defining the TWI orthogonalization include (0) dark soil, (1) light soil,
(2) photosynthetic vegetation (PV), (3) non-PV and (4) water. The orthogonalization transformation is
applied equally to every pixel, dis–regarding local variations. The dark soil endmember (0) is not used
for defining a transformation vector, but used as an offset vector, which causes the first eigen–vector to
represent the soil line [74] (i.e., the vector passing both the dark and light soil endmembers):

U = W TC ∗ ( f − r) (1)

where U is the vector of biophysical features, WTC is a unitary (orthogonal) matrix, f a vector with the
original band values, and r the dark soil offset vector. Retaining the soil line sl and water w vectors,
a reference wetness line is defined (Figure 1):

w = a + b ∗ sl (2)

where b is the reference wetness line slope and a the intercept.
By defining the intercept a and slope b, the equation becomes a perpendicular type of index [75]

(see Figure 1), with the perpendicular distance to the reference line defining the wetness value. In this
study a Perpendicular Wetness Index (PWI) was used as a precursor to TWI, and formulated as a
trigonometric function:

PWI = sl ∗ sin(β) + (w − a) ∗ cos(β) (3)

where β is the trigonometric angle of the soil line slope b. By using a trigonometric approach, the
euclidean distance parallel to b (or β) can be calculated as a parallel background index (PBI):

PBI = sl ∗ cos(β)− (w − a) ∗ sin(β) (4)
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Figure 1. Iso-lines of surface wetness as estimated from: left) the Perpendicular Wetness Index (PWI)
and right) the Transformed WI (TWI). The axis are the same in both panels, representing the soil
line (x) and wetness (y) defined from a linear transformation of MODIS satellite reflectance bands.
The reference features in the left panel (PWI) are extracted to represent three phenological situations:
end of wet season (most faded), peak dry season (intermediate), and end of dry season (un-faded).
The seasonality was determined from the worldclim global dataset [67]. The reference features were
used in pairs representing wetter and drier conditions to calibrate the eigen–values (orthogonal matrix)
defining the soil line and wetness, and the slope of the wetness line. Time-series data over swamp
forests and floodplains (see legend) were used to calibrate the non-linearity of TWI as shown in the right
panel. In addition to the reference iso-wetness line (PWI = 0) two more perpendicular wetness lines
are also shown (PWI = −1000 and PWI = 1000), with the latter having their starting point where the
Parallel Background Index (PBI) equals zero. The annotated dots in the right panel (TWI) represent the
theoretical values for; DS: dark soil, LS: light soil, W: water, SDS: saturated dark soil, SLS: saturated light
soil, and DMS: dry medium soil (medium = equal mixture of light and dark soil spectral end members).

The adjustment of the wetness line slope (expressed as b or β) relied on an ensemble of wetness
lines identified using MODIS image data from the global tropics. For each MODIS vertical tile 8 and 9
(v08 and v09), excluding minor remote islands, the reflectance of the spectral endmembers dark soil,
light soil, PV and open water were automatically extracted [76,77], whereas reflectance for non-PV was
taken from spectral libraries [78]. A Monte-Carlo simulation was applied for generating reflectance
values confined to within 2 standard deviations of the tile ensemble means (Table 1). To be accepted
as a candidate for defining spectral endmembers the randomized reflectance values were tested for
logical and empirical consistencies: all reflectance values positive, light soil more reflecting than dark
soil, vegetation reflectance highest in NIR followed by SWIR.

Table 1. Reflectance factor value (reflectance * 105) mean and standard deviation (in parenthesis) for
global spectral endmembers identified for tropical MODIS (product MCD43A4) tiles (band order given
as they appear in the MCD43A4 product).

Material Red NIR Blue Green SWIRa SWIRb SWIRc

Darksoil 610 985 518 631 1310 1249 869
(208) (397) (220) (269) (676) (739) (556)

Lightsoil 1279 1674 809 1099 2102 2213 1816
(292) (430) (226) (220) (746) (909) (797)

PV 493 4431 296 790 4040 2421 1013
(130) (425) (78) (124) (298) (209) (226)

Water 290 202 386 402 198 200 135
(326) (158) (141) (283) (124) (105) (82)

All candidate reflectance spectra that passed the consistency tests were converted to biophysical
features using the Gram-Schmidt orthogonalization. Varying the slope (b) between 0 and 10 (step = 0.1)
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the internal consistencies of the PWI between the candidate spectral endmembers was tested as
PWIwater >PWIdarksoil >PWIlightsoil. For the regions of b passing this test, the separability of wet and
dry areas was evaluated by using data pairs with wetter and drier ground conditions (Figure 1).
The value of b leading to the highest separability was recorded together with the spectral reflectance
values. The Monte-Carlo simulation was run until 30 spectral reflectance candidates were identified.
The 30 candidates were manually inspected to control for bi-modality and then used for defining dark
soil (offset) reflectance and the eigen–values for the vectors representing the soil line, PV, non-PV and
water (Table 2). The slope of the reference wetness line b, was found to have a value of 1.6.

Table 2. Dark soil offset (reflectance * 105) and orthogonal matrix values (eigen–values) used for
defining the TWI reference wetness-line. The wetness line is defined from the soil line and water
components, while photosynthetic vegetation (PV) and non-PV are omitted (band order given as in the
MCD43A4 product).

Material Red NIR Blue Green SWIRa SWIRb SWIRc

O f f set 563 1008 147 507 1531 1836 1699
Soilline 0.314812 0.320970 0.359456 0.336364 0.249772 0.657334 0.247078
PV −0.193666 0.798701 −0.140345 −0.094762 0.390175 −0.199024 −0.322562
NonPV 0.482520 0.134057 −0.025535 0.347607 0.071952 −0.653813 0.441669
Water 0.188177 0.038364 0.493917 0.350060 −0.358132 −0.173122 −0.662112

The PWI iso-lines of wetness are not parallel, but form an arc that converge towards a
theoretical iso-point of wetness (Figure 1). PWI was hence converted to TWI, using scale preserving
transformations [77]. To preserve the original wetness line in the TWI normalization, PWI and PBI are
rotated 45 degrees while also adding a noise factor C:

rPWI = sl ∗ sin(β + 45) + (w − a) ∗ cos(β + 45) + C (5)

rPBI = sl ∗ cos(β + 45)− (w − a) ∗ sin(β + 45) + C (6)

TWI is then expressed as the normalized difference between rPWI and rPBI, including a rescaling
factor (R):

TWI = R ∗ (rPWI − rPBI)
(rPWI + rPBI)

(7)

The noise factor C was set after comparing model results over regions with known (or assumed)
iso conditions regarding soil wetness but with varying vegetation cover and fixed to 0.7, which equals
a value of 7000 if preserving the range of the reflectance factor values (of the MODIS data). As C cancels
out in the TWI ND equation numerator and doubles in the denominator (Equation (7)), the actual
value for C as given above equals 3500 (Equations (5) and (6)).

The determination of the wetness line intercept a and the rescaling factor R defines the reference
wetness line (where TWI equals zero) and the numerical range of TWI. The values of a and R were
theoretically determined from the spectral endmembers, with a set to −2080 and R to 5942, leading to
a theoretical range of TWI between approximately −5000 (dry light soil) and 3500 (deep open water).
With, a, b, C and R thus defined, MODIS TWI adopted for this study can be simplified to:

TWI = 5942 ∗ −1.199sl + 0.749(w + 2080)
0.749sl + 1.199(w + 2080) + 7000

(8)

The MODIS TWI algorithm does not remove all non-linearities between soil reflectance and
moisture content and tends to trail towards low soil moisture with a steepening rise as soil moisture
increase (see Figure 2). Muller and Décamps [31], and Lobell and Asner [32] found similar relations
and defined exponential models for predicting soil moisture from reflectance data. A global model for
converting MODIS TWI to volumetric soil moisture (expressed as percentage), ΘTWI, was manually
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determined to theoretically fit completely dry (desert) conditions (no soil moisture content), fully
saturated dark soil (50), and deep open water (100) (Figure 2).

ΘTWI = (TWI + 4300)/430 + 1.067(TWI+4300)∗0.0086 (9)

Values falling outside the range of 0–100 are restrained to within these limits.

Transformed Wetness Index (TWI)
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Figure 2. Scatterplots of the Transformed Wetness Index (TWI) versus in situ observed soil moisture.
The left panel shows the original MODIS TWI values on the x-axis and in situ measured soil moisture
on the y-axis. The black line shows the adopted model (Equation (9)) for converting MODIS TWI to
volumetric soil moisture. The right panel shows MODIS TWI converted to soil moisture (ΘTWI) as
indicated in the left panel, and then assimilated to fit the local statistical moments of the measured
soil moisture of each in situ station. The color codes reveal the dominating land cover (from MODIS
product MCD12Q1) of each sample site.

2.3. TWI Performance Validation

Volumetric soil moisture estimates were compared to in situ observed soil wetness retrieved from
the International Soil Moisture Network (ISMN). Only the top–most measurements (usually 5 cm)
from each ISMN in situ probe were used. Data recordings tagged as erroneous or suspicious were
omitted. In situ stations with less than 6 observations coinciding with MODIS TWI estimates were
discarded. The data for probes falling within the same MODIS pixel were averaged and from a total
of 1040 available in situ time series records for the study period, 823 were used in the validation,
representing 745 different MODIS pixels (Table S1).

The actual date of each MODIS TWI estimate is unknown, and was thus set to represent the 8th
day of each 16-day interval. For the model validation the diurnal site data were smoothed using a
16-day moving average window. The validation was performed for all probes (global) and by dividing
the Earth into three regions, the tropics (between 23° latitudes), the sub-tropics (23° to 46° latitude)
and the temperate zone (46° to 70° latitude).

Two different aggregation techniques were used in the validation: (i) direct assembly and;
(ii) assembly after local (per in situ station) assimilation. The direct assembly simply aggregates
all pairs of modeled and in situ data. Local assimilation rescales the mean (Θ) and variance (σ2) of the
MODIS TWI estimated soil moisture to fit those of the in situ data (only using matching data pairs)
thus removing any bias:

Θm = (Θr − ΘTWI) ∗
σ(Θi)

σ(ΘTWI)
+ Θi (10)
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where Θm is the soil moisture model after assimilation and Θi the in situ observed soil moisture.
Statistical performance was validated using the coefficient of determination, root-mean-square error
(RMSE), the Pearson correlation coefficient and model efficiency E:

E = 1 − ∑ (Θo − Θm)
2

∑ (Θo − Θo)
2 (11)

where Θo is the mean of observed soil moisture, and Θm is modeled and Θo observed soil moisture for
matching data pairs.

2.4. TWI Compared to Microwave Soil-Moisture Products

To compare MODIS TWI (expressed as ΘTWI) to the standard level 3 (L3) soil moisture products
from SMOS and AMSR-E, TWI was resampled to a coarser spatial scale averaging the original
resolution data. To avoid influences from e.g., water bodies, the re-scaling was set to 13 km rather than
25 km (the spatial scales of the SMOS and AMSR-E L3 products). The routine soil moisture retrieval
algorithms for SMOS and AMSR-E discard dubious observations including recordings disturbed by
RFI and from densely vegetated landscapes. In order to reduce artificial biases in the comparison
of the performances of the three sensors and their respective models, only in situ recordings closely
matching SMOS observations (+/− 1 day) were used. With a revisit period of 2 to 3 days all sites
and periods with SMOS observations are included for the validation of AMSR-E and MODIS TWI,
whereas in situ stations lacking matching SMOS observations, as well as longer periods lacking SMOS
observations in other stations, were not used. For the year 2011, 683 stations (723 individual probes)
with data coinciding with regions with soil moisture observations by the SMOS sensor were available
from ISMN. The data for all probes falling within the same image pixel (at 500 m, 13 km and 25 km
spatial resolutions respectively) were averaged and only sites with at least 6 coinciding observations
from the ground data and the respective sensor were used in the validation.

2.5. Trend Detection

The MCD43A4 product lacks observations during seasons with constant cloud cover, particularly
cumbersome over forested tropical regions. To fill in missing observations the overall seasonal TWI
cycle for the whole study period (2001–2016) was first extracted for each cell. For cells with missing
observations, a weighted linear interpolation assigns exponentially declining weights to adjacent dates
with valid observations. The missing value is then estimated by a linear interpolation of the nearest
dates with valid observations, and adjusted for the overall seasonal value.

For the trend detection, the TWI data were aggregated to annual average values and the monotonic
trend calculated from the annual averages. The trends were calculated for the whole period 2001 to
2016 disregarding any change points. Trend significance is determined from the MK test, with the
strength of the trend estimated from the median slope of Theil-Sen regressions.

3. Results

3.1. Model Performance

Globally TWI correctly captures the soil moisture variations (increases and decreases) for three
out of four in situ stations (Table 3). For the tropical and sub–tropical regions, the TWI time–series
variations are significantly correlated to approximately 40% of the ground stations, decreasing to 30%
for temperate region stations.
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Table 3. Pearson correlation coefficients for the relation between TWI and in situ soil moisture
probes from the ISMN network, expressed as the percentage of stations with positive correlations and
significantly positive correlations. Only stations with 12 or more coinciding values are included.

Region/Network Pearson Corr. > 0 Pearson Corr. > 0 and p < 0.05 Stations
% of n Stations % of n Stations n

Global 74 40 459
Tropical 80 40 15
Sub-tropical 74 41 417
Temperate 62 29 27
COSMOS 78 31 32

Globally MODIS TWI has an aggregated bias of 2.5, an RMSE of 14.0 and a model efficiency of
−0.56 compared to the in situ data (Table 4). The soil moisture variation estimated by MODIS TWI,
expressed as the standard deviation (σ), is lower than the σ of the global in situ data (9.6 compared
to 11.2 ), with the difference being significant (Levene’s test <0.05).

Table 4. Statistics of fit between volumetric soil moisture estimated from the MODIS Transformed
Wetness Index and in situ probes from the International Soil Moisture Network (3 December 2010 to
2 February 2012). Global results represent data without rescaling. Unbiased results have ΘTWI means
(x) and standard deviations (σ) locally fitted to the in situ data. The difference between the global
and unbiased results equals the model bias. Statistical significances for differences in x and RMSE are
calculated using two-tailed student t-test. The significance of differences in variance are calculated
using Levene’s test. The correlation coefficients (r2) and model efficiencies (E) for assimilated model
results are given for each in situ site in Table S1.

Model x σ RMSE r2 E n stn n

Global region
Global 21.9 a 9.6 b 14.0 0.02 −0.56 745 12,294
Unbiased 19.4 11.2 8.5 – – 745 12,294

Tropical region
Global 19.0 b,d 11.4 b,c 13.4 0.26 0.16 19 372
Unbiased 22.0 c 14.7 c 6.3 d – – 19 372

Sub-tropical region
Global 21.4 a,d 8.8 b,d 13.5 d 0.02 −0.48 657 11,036
Unbiased 19.1 d 11.1 d 8.5 d – – 657 11,036

Temperate region
Global 29.6 a,c 14.1 a,c 19.4 c 0.0 −2.2 69 886
Unbiased 21.6 c 10.8 d 10.2 c – – 69 886

COSMOS network (cosmic-ray probes across all regions)
Global 24.0 a,c 11.0 b 14.3 0.07 −0.50 52 771
Unbiased 20.3 c 11.7 c 5.3 d – – 52 771

non Forested sites across all regions
Global 18.7 b,d 6.8 b,d 11.6 d 0.05 −0.09 574 9679
Unbiased 19.1 d 11.1 8.0 d – – 574 9679

a Estimated variable significantly higher (p < 0.05) than in situ data; b Estimated variable significantly lower
(p < 0.05) than in situ data; c Variable significantly higher (p < 0.05) than for other regions/probes/land cover;
d Variable significantly lower (p < 0.05) than for other regions/probes/land cover.

The regionalized results show that TWI has a negative bias for the tropics (−3.0) and a higher
bias for the temperate zone (8.0). The temperate zone TWI estimates also have a much larger σ, and
an RMSE that is significantly larger than for any other region (p < 0.05). The unbiased results show
lower RMSE for the cosmic–ray probes and for the tropical region. The global variations in model
performance are explored in Figure 3 (corresponding statistical results are reported in Table S1). Figure 4
illustrates the TWI results for ISMN stations representing different regions, land cover and tree cover.
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Figure 3. Scatterplots of the MODIS Transformed Wetness Index (ΘTWI) compared to in situ data.
Color codes indicate the dominating land cover (from MODIS product MCD12Q1) of each sample site,
and symbol form represents the latitudinal region. The upper left panel shows the relation between
the Terrain Ruggedness Index (TRI) (derived from GMTED2010) and the Random Mean Square Error
(RMSE); the lower left panel instead shows the relation between tree cover (from MODIS product
MOD44B) and RMSE; the upper right panel shows the model bias as a function of tree cover; and the
lower right panel shows the tree cover plotted against the difference (bias) in variance (σ) between the
TWI model and the in situ data.

Figure 4. Cont.
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Figure 4. Comparison of soil moisture observations from in situ station data and soil moisture estimated
by the MODIS Transformed Wetness Index (ΘTWI). Each panel shows both the global MODIS TWI
model (o) and the unbiased model (r), with the statistical fit shown for the latter. Precipitation data on
right and top axis (right column panels only). Legend codes in the two upper left panels (Ev.G.N.L.F. =
evergreen needleleaf forest).

3.2. Comparison with Microwave Soil Moisture Products

Table 5 compares the performance of soil moisture models from the MODIS (TWI), AMSR-E and
SMOS sensors. All models have significant biases (p < 0.05), with the MODIS TWI models having a
smaller positive bias and AMSR-E and SMOS larger negative biases. All global models fail to capture
the dynamic range in soil moisture as observed by the in situ data (Levene’s p-test < 0.05). SMOS has
the highest correlation with the in situ data (r2 = 0.24), but the large bias causes the global efficiency (E)
to be low. With the soil moisture estimates unbiased, SMOS has a significantly lower RMSE compared
to AMSR-E and TWI, and AMSR-E has a significantly lower RMSE compared to TWI. The regionalized
data (Table S2) shows that the global MODIS TWI models have a pronounced trend in both r2 and
model efficiency E, with better results for the tropical region, declining at higher latitudes. Figures S1
and S2 compare the performances of TWI, AMSR-E and SMOS for stations representing different ISMN
networks and land cover.

Table 5. Statistics of fit between soil moisture estimates from TWI at the original (o) MODIS spatial
resolution (500 m) and resampled (r) to 13 km, and AMSR-E and SMOS (both at 25 km spatial resolution),
compared to global in situ probes for the period 2010-12-02 to 2012-02-01. See Table 4 for explanations.

Sensor x σ RMSE r2 E n stn n

Global a b c

MODIS (o) 19.2 8.1 12.2 0.07 −0.13 516 6886
MODIS (r) 19.6 7.6 11.5 0.11 0.0 468 6560
AMSR-E 12.8 3.3 12.0 0.15 −0.11 497 56,153
SMOS 12.2 9.0 12.4 0.24 −0.21 517 52,457
Unbiased d

MODIS (o) 18.8 11.4 7.1 – – 516 6886
MODIS (r) 18.9 11.4 6.8 – – 468 6560
AMSR-E 18.5 11.4 6.3 – – 497 56,153
SMOS 18.9 11.3 5.6 – – 517 52,457

a All biases are significant (p < 0.05); b All global variances (σ) are significantly lower than the variances of
the in situ data (Levene’s test < 0.05); c Global RMSE (p = 0.05): MODIS(r) < all others, AMSRE = MODIS(o),
(AMSRE and MODIS(o)) < SMOS; d Unbiased RMSE (p = 0.05): SMOS < all others, AMSRE < both MODIS,
MODIS(r) < MODIS(o).

3.3. Soil Moisture Trends

Applying TWI for detecting decadal changes in soil moisture are illustrated in Figures 5–7.
Maps showing the minimum and maximum wetness for each study region are included in the
Supplement (Figure S3: Southern Africa; Figure S10: South East Asia; Figure S15: Western Amazon).
The supplement also includes larger scale maps of the wetlands/peatlands indicated in Figures 5–7,
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including maps over areas that have experienced significant monotonic trends in soil moisture over
the period 2001 to 2016, and excerpts of the wetland/peatland map presented in [18].

Figure 5. Estimated average (top) and absolute volumetric change in soil moisture for parts of Southern
Africa for the period 2001-2016. The wetness is calculated from the MODIS Transformed Wetness Index
for the period January 2001 to December 2016. All wetland regions outlined (maroon boundaries) are
shown in larger scale maps in the supplement.
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Figure 6. Estimated average (top) and absolute volumetric change in soil moisture for Indonesia for
the period 2001–2016. The wetness is calculated from the MODIS Transformed Wetness Index for
the period January 2001 to December 2016. For legends see Figure 5. All regions outlined (maroon
boundaries) are shown in larger scale maps in the supplement.

Figure 7. Cont.
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Figure 7. Estimated average (top) and absolute volumetric change in soil moisture for the Western
Amazon basin for the period 2001–2016. The wetness is calculated from the MODIS Transformed
Wetness Index for the period January 2001 to December 2016. For legends see Figure 5. All regions
outlined (maroon boundaries) are shown in larger scale maps in the supplement.

4. Discussion

In this study it has been assumed that the in situ station data are accurate, both regarding the soil
moisture conditions and in geographical positions, and that the recorded soil moisture represent the
footprint of a MODIS pixel. The positional errors are, however larger than the side of a MODIS pixel
for some stations, and only stations equipped with cosmic-ray probes capture the soil moisture over
an area approximately equaling the area covered by a MODIS pixel. Further, the exact date of each
pixel in the MODIS MCD43A4 product is unknown, and the temporal difference between TWI and the
ground measured soil moisture can differ by up to 8 days.

4.1. Model Performance

The performance of TWI varies both between regions and individual stations within the regions.
The temporal soil moisture variations are captured with significant correlation for approximately 4
out of 10 ground stations. For a quarter of the ground stations, TWI fails to capture the soil moisture
dynamics. Possible explanations for the inaccuracies include: vegetation phenology perturbing the
TWI estimations through e.g., leaf water content and ground shadows, and non-linear reflectance
responses at different soil moisture levels for different soil minerals.

TWI soil moisture estimates are biased related to site specific conditions, in particular related
to vegetation cover and soil properties (Table S1). Inaccuracies related to soil and bedrock
conditions include: underestimation in regions with light soil (e.g., quarts dominated arenosois),
and over-estimated in regions with darker surfaces (e.g., vertisols, andosols and basaltic outcrops).
Dense vegetation stands also perturb TWI: dense stands of e.g., papyrus and reed lead to
under-estimations whereas dense moist forests and dark (needleleaf) forests leads to over–estimation.
The over–estimations in forested locations are most likely related to shadowed soil surfaces and leaf
water content.
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The Gram-Schmidt orthogonalization applied for spectral unmixing and retrieval of the linearly
transformed vectors representing different biophysical materials is less stable compared to other
orthogonalization algorithms. However, as the TWI definition only requires up to the fourth
orthogonalized vector, this is of no concern in this study. The primary problem with the conceptual
LMM approach is that the same spectral endmembers (eigen–values) are applied for the global region
rather than being adjusted to local conditions. The varying spectral properties of different (soil)
minerals distort the TWI—illustrated by the theoretical values for dark and light soil, and water
saturated dark and light soil in Figure 1. Variations in vegetation reflection, both regarding vegetation
types and leaf water status are also disregarded. Ground shadows cause problems both in forests
(in particular needleleaf forests) and in topographic complex terrain. The latter could potentially be
solved by applying terrain correction to the image data as a preparatory step. Adjusting TWI for
vegetation phenology and leaf water status could possibly be done using the image data itself but
would probably benefit from incorporating a vegetation growth model.

The unbiased model results with a global RMSE of 8.5 (v/v expressed as percentage), reduced to 5.3
for cosmic-ray probes are comparable to the results obtained from microwave BT data [42,46], with single
stations comparing well with stations reported in these studies (cf. Table S1 and corresponding tables
in Draper et al. [46], and Jackson et al. [42]).

4.2. Comparison with Microwave Soil Moisture Products

The global comparison of TWI with AMSR-E and SMOS soil moisture products (Table 5) does not
indicate that any sensor performs universally better than the others. The unbiased results show that
SMOS has a significantly lower RMSE compared to the other sensors after assimilation. SMOS also has
a more stable performance across the three latitudinal regions used in this study (Table S2).

From several aspects, both optical and microwave image data are hampered by related problems
when adapted for mapping soil moisture. Vegetation and leaf water contents are not completely
suppressed. Edaphic conditions relating both to soil mineral compositions, organic matter content,
porosity and texture offsets the derived moisture signals for optical data and also perturb the
microwave data. Soil moisture estimates from microwave data in general rely on radiative transfer
models or machine learning [79,80], either using only the microwave data (e.g., [81]), but more
commonly supported with ancillary datasets adjusting for the effects of surface roughness, vegetation
and the occurrence of e.g., wetlands and open water. The TWI algorithm presented in this study is one
of only few examples in developing algorithms for directly retrieving soil moisture estimates from
optical images and was developed without any ancillary data.

4.3. Soil Moisture Trends

The biases reported above are of less concern when applying TWI for trend studies,
except when vegetation conditions changes during the study period (e.g., through deforestation).
The mis–representation of soil moisture dynamics is of a larger concern. Assuming that vegetation
growth varies from year to year dependent on water availability, changes in leaf water status and
ground shadows would theoretically reinforce any detected trends. I thus suspect that the presented
maps of change are more likely to over–estimate than under–estimate changes in forested regions.

Areas with well known changes in moisture conditions over the past decades, including Lake
Ngami and the Makgadikgadi pans in Botswana (Figure 5 and Figure S7) are captured as expected.
In Indonesia the site of the Mega Rice project in Kalimantan (Borneo, site C, Figure 6 and Figure S13)
shows relatively large variations in both absolute wetness and in monotonic trends. Whether the
drying in the Brazilian Amazon (along the Bolivian border) (Figure 7 and Figure S18) is a true drying
or an effect of deforestation is not explored.

As I have not been able to identify any soil moisture time–series data representing wetlands
or peatlands, it has not been possible to validate the results of the change detection quantitatively.
Before such a validation can be undertaken, the usefulness of the change detection is primarily as
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a monitoring tool for identifying threatened peatlands and wetlands. The wetland/peatland map
against which the monotonic trends in soil moisture are compared (see Supplement) represent the year
2011 and the comparison was thus restricted to graphical.

The lack of openly accessible data on ground water tables and soil moisture content for wetlands
and peatlands in the global pantropical region is remarkable. The huge carbon storage and the
anthropogenic and climate pressure on wetlands and peatlands can potentially lead to the release of
large amounts of carbon dioxide.

4.4. Further Development

In this study TWI was compared to the top–soil moisture content. The study suggests that
leaf–water status and vegetation shadows influences the TWI with deeper shadows and higher
content of soil–water elevating TWI. If these suggestions carries validity, TWI could be adjusted
regarding vegetation and leaf–water status and tested as a predictor for moisture content in the
deeper soil–column.

In laboratory studies, estimates of soil moisture have been improved by adjusting for inherent
mineral brightness. A similar adjustment could be applied to TWI either by using ancillary data on
the regolith composition or by using reference wetness data. As the available in situ data is scarce,
and the station data usually lack descriptions on mineral compositions, an alternative would be to
downscale microwave derived soil moisture products (e.g., from SMAP) using TWI itself and then
assign a pixel-wise adjustment factor.

5. Conclusions

The developed algorithm, the Transformed Wetness Index (TWI), suffers from biases caused
by mineral compositions and vegetation and most likely also from shadows and leaf water content.
The estimated temporal variations in soil moisture are probably also affected by vegetation phenology
and non-linear responses in soil-reflectance related to soil moisture. The biases could potentially be
reduced by local adjustments, whereas the failures in estimating variations would require additional
data from e.g., vegetation growth models or microwave sensors.

TWI bypasses some of the drawbacks that hamper determination of soil surface wetness
from optical data; atmospheric attenuations including cloud contaminations are negligible, MODIS
includes three SWIR bands, and the vegetation signal influence is reduced through a pixel unmixing
orthogonalization and omitting vegetation in a subsequent non-linear normalized differencing. When
compared to in situ probed soil moisture the TWI global RMSE was estimated at 14.0 (v/v expressed
as percentage) compared to 745 ground observation sites (11.6 when compared to non forested sites).
The RMSE is reduced to 8.5 (8.0 for non forests) for unbiased data. MODIS TWI performs better
compared to cosmic-ray probes (unbiased RMSE equal to 5.3) with a footprint equalling the spatial
resolution of MODIS data. TWI is outperformed by microwave BT data but has a much higher spatial
resolution. Consequently TWI might be an alternative for downscaling of microwave derived soil
moisture products.

TWI should be regarded as a complement to microwave soil moisture estimates useful for
(1) filling in historical trends; (2) estimating soil moisture dynamics at higher spatial resolution;
and (3) potentially downscaling absolute soil moisture estimates. Applied to multi–year time–series
TWI can be used as a screening tool for changes in soil moisture conditions and for identifying potential
hot spots (cool spots) of wetland/peatland degradation (growth).

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/10/4/611/s1,
Figure S1: Comparison of in situ and satellite derived soil moisture estimates from SMOS, AMSR-E and the
MODIS Transformed Wetness Index (TWI), Figure S2: Same time-series and sensors as in Figure S1 but with
each soil moisture product unbiased to the in situ stations, Figure S3: Estimated minimum and maximum soil
moisture content for parts of Southern Africa for the period 2001-2016, Figure S4: Etosha pans in Namibia,
Figure S5: Cameia wetlands in Angola, Figure S6: Barotse floodplains in Zambia, Figure S7: Okavango and
Linyanti swamps and Lake Ngmai in Botswana, Figure S8: Kafue flats in Zambia, Figure S9: Bangweulu Lake

www.mdpi.com/2072-4292/10/4/611/s1
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and wetlands in Zambia, Figure S10: Estimated minimum and maximum soil moisture content for Indonesia for
the period 2001-2016, Figure S11: Central Sumatra (A), Figure S12: South East Sumatra (B), Figure S13: Southern
Borneo (C, the mega rice project, Kalimantan), Figure S14: South Western Guinea (D), Figure S15: Estimated
minimum and maximum soil moisture content for the Western Amazon basin for the period 2001-2016, Figure
S16: Pastanza-Marañon (Peru), Figure S17: South central Amazon (Brazil), Figure S18: South Western Amazon
basin (across the Bolivian-Brasilian border), Table S1: Statistics of fit between soil moisture estimates derived from
the MODIS Transformed Wetness Index (TWI) and global in situ stations for the period 2010-12-03 to 2012-02-02,
Table S2: Statistics of fit between regionalized soil moisture estimates derived from MODIS TWI, AMSR-E and
SMOS, compared to global in situ probes for the period 2010-12-02 to 2012-02-01.
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